
Cofactorization on Graphics Processing Units

Andrea Miele1, Joppe W. Bos2?, Thorsten Kleinjung1, and Arjen K. Lenstra1

1 LACAL, EPFL, Lausanne, Switzerland
2 NXP Semiconductors

Abstract. We show how the cofactorization step, a compute-intensive
part of the relation collection phase of the number field sieve (NFS),
can be farmed out to a graphics processing unit. Our implementation on
a GTX 580 GPU, which is integrated with a state-of-the-art NFS im-
plementation, can serve as a cryptanalytic co-processor for several Intel
i7-3770K quad-core CPUs simultaneously. This allows those processors
to focus on the memory-intensive sieving and results in more useful NFS-
relations found in less time.
Keywords: Cofactorization, Graphics Processing Unit, Number Field Sieve

1 Introduction

Today, the asymptotically fastest publicly known integer factorization method
is the number field sieve (NFS, [47, 30]). It has been used to set several integer
factorization records, most recently a 768-bit RSA modulus as described in [27].
In the first of its two main steps, pairs of integers called relations are collected.
This is done by iterating a two-stage approach: sieving to collect a large batch
of promising pairs, followed by the identification of the relatively few relations
among them. Sieving requires a lot of memory and is commonly done on CPUs.
The follow-up stage requires little memory and can be parallelized in multi-
ple ways. It may therefore be cost-effective to offload this follow-up stage to
a coprocessor. Most previous work in this direction focussed on offloading the
elliptic curve integer factoring (ECM, [31]), which is only part of this follow-up
stage. For graphics processing units (GPUs) this is considered in [7, 5, 10] and
for reconfigurable hardware such as field-programmable gate arrays in [54, 46,
17, 14, 19, 32, 59]. To allow the CPUs to keep sieving, thus optimally using their
memory, in this paper the possibility is explored to offload the entire follow-up
stage to GPUs. We describe our approach, with a focus on modular and elliptic
curve arithmetic, to do so on the many-core, memory-constrained GPU platform.
Our results demonstrate that GPUs can be used as an efficient high-throughput
co-processor for this application.

Our design strategy exploits the inherent task parallelism of the stage that
follows the actual sieving, namely the fact that collected pairs can be processed
independently in parallel. Because the integers involved are relatively small (at

? Part of this work has been performed while the second author was working for
Microsoft Research, WA, USA.

most 384 bits for our target number), we have chosen not to parallelize the
integer arithmetic, thereby avoiding performance penalties due to inter-thread
synchronization while maximizing the compute-to-memory-access ratio [5]. We
use a single thread to process a single pair from the input batch, aiming to
maximize the number of pairs processed per second. Because this requires a large
number of registers per thread and potentially reduces the GPU utilization, we
use integer arithmetic algorithms that minimize register usage and apply native
multiply-and-add instructions wherever possible.

For each pair the follow-up stage consists of checking if two integer values,
obtained by evaluating two bivariate integer polynomials at the point determined
by the pair, are both smooth, i.e., divisible by primes up to certain bounds. This
is done sequentially: a first kernel filters the pairs for which the first polynomial
value is smooth, once enough pairs have been collected a second kernel does the
same for the second polynomial value, and pairs that pass both filters correspond
to relations. Each kernel first computes the relevant polynomial value and then
subjects it to a sequence of occasional compositeness tests and factorization
attempts aimed at finding small factors.

We have determined good parameters for two different approaches: to find
as many relations as possible (≈ 99% in a batch) and a faster one to find most
relations (≈ 95% in a batch). The effectiveness of these approaches is demon-
strated by integrating the GPU software with state-of-the-art NFS software [16]
tuned for the factorization of the 768-bit modulus from [27]. A single GTX 580
GPU can serve between 3 and 10 Intel i7-3770K quad-core CPUs.

Cryptologic applications of GPUs have been considered before: symmetric
cryptography in [33, 20, 57, 21, 45, 11, 18], asymmetric cryptography in [40, 55,
22] for RSA and in [55, 1, 9] for ECC, and enhancing symmetric [8] and asym-
metric [7, 5, 6, 10] cryptanalysis.

Our source code will be made available.

2 Preliminaries

The Number Field Sieve. For details on how NFS works, see [30, 51]. Its
major steps are polynomial selection, relation collection, and the matrix step.
For this paper, an operational description of relation collection for numbers in
the current range of interest suffices. For those numbers relation collection is
responsible for about 90% of the computational effort.

Here we call an integer B-smooth if there is no prime-power larger than B
that divides it (elsewhere such numbers are called B-powersmooth). Relation col-
lection uses smoothness bounds Br, Ba ∈ Z>0 and polynomials fr(X), fa(X) ∈
Z[X] such that fr is of degree one, fa is irreducible of (small) degree d > 1, and
fr and fa have a common root modulo the number to be factored. The poly-
nomials fr and fa are commonly referred to as the rational and the algebraic
polynomial, respectively. A relation is a pair of coprime integers (a, b) with b > 0
such that bfr(a/b) is Br-smooth and bdfa(a/b) is Ba-smooth.

Relations are determined by successively processing relatively large special
primes until sufficiently many relations have been found. A special prime q de-
fines an index-q sublattice in Z2 of pairs (a, b) such that q divides bfr(a/b)b

dfa(a/b).
Sieving in the sublattice results in a collection of pairs for which bfr(a/b) and
bdfa(a/b) have relatively many small factors. To identify the relations, for all
collected pairs the values bfr(a/b) and bdfa(a/b) are further inspected. This can
be done by first simultaneously resieving the bfr(a/b)-values to remove their
small factors, then doing the same for the bdfa(a/b)-values, after which any co-
factors are dealt with on a pair-by-pair basis. Alternatively, cofactoring can be
preceded by a pair-by-pair search for the small factors in bfr(a/b) and bdfa(a/b),
thus simplifying the sieving step. The latter approach is adopted here, to offload
as much as possible from the regular CPU cores, including the calculation of
the relevant bfr(a/b)- and bdfa(a/b)-values. The steps involved in this extended
(and thus somewhat misnomered) cofactoring are described in Section 3.

Montgomery arithmetic. For arithmetic modulo a fixed odd modulus m
Montgomery arithmetic [36] may be used because it avoids trials during the
divisions and allows simple coding. Let r be the machine radix (here r = 232),
let k ∈ Z>0 be minimal such that rk > m, and let µ = −m−1 mod r. The Mont-
gomery representation of an integer x ∈ Z/mZ is defined as x̃ = xrk mod m.
Given Montgomery representations x̃, ỹ of x, y ∈ Z/mZ, it follows that t̃ such
that t = (x ± y) mod m is calculated as t̃ = (x̃ ± ỹ) mod m, and that s̃ such
that s = xy mod m satisfies s̃ = x̃ỹr−k mod m. This Montgomery product s̃ can
be computed by first calculating the ordinary integer product u = x̃ỹ, and by
next performing Montgomery reduction: modulo m divide u by rk by replacing
k times in succession u by (u + [((u mod r)µ) mod r]m)/r, then s̃ = u − m if
u ≥ m and s̃ = u otherwise. If 0 ≤ x̃, ỹ < m, then the same bound hold for s̃.

Jebelean’s exact division. If n is known to be an integer multiple of an odd
integer p, the quotient n

p can be computed using an iteration very similar to

Montgomery reduction: let µ = −p−1 mod r, then v = ((n mod r)(r−µ)) mod r
equals the least significant radix-r block n

p mod r of n
p , after which n is replaced

by (n− vp)/r and the other radix-r blocks of n
p are iteratively computed in the

same way. This is known as Jebelean’s exact division method [24].

3 Cofactoring Steps

This section lists the steps used to identify the relations among a collection of
pairs of integers (a, b) that results from NFS sieving for one or more special
primes. See [26] for related previous work. The notation is as in Section 2.

For all collected pairs (a, b) the values bfr(a/b) and bdfa(a/b) can be cal-

culated by observing that bkf(a/b) =
∑k

i=0 fia
ibk−i for f(X) =

∑k
i=0 fiX

i ∈
Z[X]. The value z = bkf(a/b) is trivially calculated in k(k − 1) multiplications
by initializing z as 0, and by replacing, for i = 0, 1, . . ., k in succession, z by
z + fia

ibk−i, or, at the cost of an additional memory location, in 3k − 1 mul-
tiplications by initializing z = f0 and t = a and by replacing, for i = 1, 2, . . .,

k in succession, z by zb + fit and, if i < k, t by ta. Even with the most naive
approach (as opposed to asymptotically faster methods), this is a negligible part
of the overall calculation. The resulting values need to be tested for smoothness,
with bound Br for the bfr(a/b)-values and bound Ba for the bdfa(a/b)-values.

For all pairs (a, b) both bfr(a/b) and bdfa(a/b) have relatively many small
factors (because the pairs are collected during NFS sieving). After shifting out
all factors of two, other very small factors may be found using trial division,
somewhat larger ones by Pollard p−1 [48], and the largest ones using ECM [31].
These three methods are further described below. In our experiment (cf. 5.2) it
turned out to be best to skip trial division for bfr(a/b) and let Pollard p− 1 and
ECM take care of the very small factors as well. Based on the findings reported
in [28] or their GPU-incompatibility, other integer factorization methods like
Pollard rho [49] or quadratic sieve [50] are not considered. It is occasionally
useful to make sure that remaining cofactors are composite. An appropriate
compositeness test is therefore described first.

Compositeness test. Let m − 1 = 2tu for t ∈ Z≥0 and odd u ∈ Z. If for

some a ∈ (Z/mZ)∗ it is the case that au 6≡ 1 mod m and au2
i 6≡ −1 mod m for

0 ≤ i < t, then m is composite and a is a witness to m’s compositeness. As shown
in [35, 52], for composite m more than 75% of the integers in {1, 2, . . . ,m − 1}
are witnesses to m’s compositeness.

This test is used as follows to process an m-value that is found as an as yet
unfactored part of a polynomial value bfr(a/b) or bdfa(a/b). If 2 is a witness to
m’s compositeness, then m is subjected to further factoring attempts; if not, the
polynomial value is declared fully factored and the corresponding pair (a, b) is
cast aside if m > Br for m | bfr(a/b) or m > Ba for m | bdfa(a/b). This carries
the risk that a non-prime factor may appear in a supposedly fully factored poly-
nomial value, or that a pair (a, b) is wrongly discarded. With a small probability
to occur, either type of failure is of no concern in our cryptanalytic context.

Trial division. Given an odd integer n, all its prime factors up to some small
trial division bound are removed using trial division. For each small odd prime p
(possibly tabulated, if memory is available) first π = (−p)−1 mod r is calculated
(per thread, at negligible overhead), with r = 232 as in Section 2. Next, n
is tested for divisibility by p: with u initialized as n and k the least integer
such that u < rk, the integer u is modulo p divided by rk (using Montgomery
reduction, with p and π in the roles of m and µ, respectively). If the resulting
32-bit value u satisfies u mod p ≡ 0, then n is divisible by p and the divisibility
test is repeated with n replaced by n

p (computed using Jebelean’s method).

Pollard p − 1. The prime factors p of n for which p − 1 is B1-smooth can
be found at a cost of O(B1) multiplications modulo n by means of “stage 1”
of Pollard’s p − 1 method [48]: with t = ak mod n, for some a 6= ±1 mod n,
a 6= 0 mod n and k the product of all prime powers ≤ B1, the product of all
such p divides gcd(t − 1, n). In practice the value a = 2 is used for efficiency
reasons. If the order modulo n of t is at most B2, for some bound B2 > B1,
this can be exploited in “stage 2” [37], thereby allowing in p− 1 one additional
prime factor between B1 and B2. Naively, gcd(t` − 1, n) could be computed for

all primes ` in (B1, B2]. A much faster but memory-consuming method uses the
fast Fourier transform (cf. [39]). On GPUs a baby-step giant-step approach is
more suitable and is used here. It follows from the description below and the
optimizations described in [37].

Elliptic Curve Method. Stage 1 of Pollard’s p− 1 method uses O(B1) multi-
plications modulo n to find prime factors p of n for which the groups (Z/pZ)∗

have B1-smooth order. Thus, p can be found in time mostly linear in the largest
prime factor of p − 1. The elliptic curve method (ECM) for integer factoriza-
tion [31] works analogously but replaces the fixed group (Z/pZ)∗ of order p− 1
by a number of groups with orders behaving like random integers close to p:
given one such group with B1-smooth order, p can be found in O(B1) multipli-
cations and additions modulo n. Trading off the number of groups attempted and
the smoothness bound, finding p can heuristically be argued to take exp((

√
2 +

o(1))(
√

log p log log p)) elementary operations modulo n, where p→∞.

Like Pollard’s p−1 method, each ECM attempt operates on a group element
and the product k of all prime powers ≤ B1, mimics the “mod p” operations by
doing them “ mod n”, and hopes to run into the identity element mod p but not
modn, if not in stage 1 then in stage 2. Where Pollard’s method is based on
arithmetic in the group of integers modulo the composite multiple n of p, ECM
is based on arithmetic with “points” belonging to groups associated with elliptic
curves over prime fields, mimicking those operations by doing them modulo the
composite multiple n of those primes. Because the operations may not be well-
defined, they may fail, thereby revealing a factor of n.

The current best approach to implement ECM, as used here, is “a = −1”
twisted Edwards curves (based on [15, 4, 23, 3]) with extended twisted Edwards
coordinates (improving on Montgomery curves [37] and methods from [58]). Be-
low points are represented as pairs of projective points ((x : z), (y : t)) for
x, z, y, t ∈ Z/nZ, with zero point ((0 : 1), (1 : 1)). Applying the additively writ-
ten “group operation” requires a total of eight multiplications and squarings
in Z/nZ. With initial point P the point kP can thus be calculated in O(B1)
multiplications in Z/nZ, after which the gcd of n and the x-coordinate of kP is
computed. Because the same k is often used, good addition-subtraction chains
can be prepared (cf. [10]): for B1 = 256, the point kP can be computed in 1400
multiplications and 1444 squarings modulo n. Due to the significant memory
reduction this approach is particularly efficient for memory constrained devices
like GPUs. We also select curves for which 16 divides the group order, further en-
hancing the success probability of ECM (cf. [2, Thm. 3.4 and 3.6] and [3]). More
specifically we use “a = −1” twisted Edwards curve (E : −x2 + y2 = 1 + dx2y2)
over Q with d = −((g − 1/g)/2)4 such that d(d+ 1) 6= 0 and g ∈ Q \ {±1, 0}.

Related work on stage 1 of ECM for cofactoring on constrained devices can
be found in [54, 46, 17, 14, 19, 32, 59, 7, 5, 10]. Unlike these publications, the GPU-
implementation presented here includes stage 2 of ECM, as it significantly im-
proves the performance of ECM.

ECM Stage 2 on GPUs. The fastest known methods to implement stage 2 of
ECM are FFT-based [12, 37, 38] and rather memory-hungry, which may explain

why earlier constrained device ECM-cofactoring work did not consider stage 2.
These methods are also incompatible with the memory restrictions of current
GPUs. Below a baby-step giant-step approach [53] to stage 2 is described that
is suitable for GPUs. Let Q = kP be as above. Similar to the naive approach to
stage 2 of Pollard’s p− 1 method, the points `Q for the primes ` in (B1, B2] can
be computed and be compared to the zero point modulo a prime dividing p but
not modulo n. The latter amounts to computing the gcd of n and the product
of the x-coordinates of the points `Q. With N primes `, computing all points
requires about 8N multiplications in Z/nZ, assuming a few precomputed small
even multiples of Q. Balancing the computational efforts of the two stages with
B1 = 256 as above, leads to B2 = 2803 (and N = 354).

The baby-step giant step approach from [37] speeds up the calculation at
the cost of more memory, while also exploiting that for Edwards curves and any
point P it is the case that

y(P)

t(P)
=
y(−P)

t(−P)
, (1)

with y(P) and t(P) the y- and t-coordinate, respectively, of P .
For a giant-step value w < B1, any ` as above can be written

as vw ± u where u ∈ U =
{
u ∈ Z : 1 ≤ u ≤ w

2 , gcd(u,w) = 1
}

, and

v ∈ V =
{
v ∈ Z :

⌈
B1

w −
1
2

⌉
≤ v ≤

⌊
B2

w + 1
2

⌋}
. Comparing (vw − u)Q

to the zero point modulo p but not modulo n amounts to checking if
gcd(t(uQ)y(vwQ) − t(vwQ)y(uQ), n) 6= 1. Because of (1), this compares
(vw + u)Q to the zero point as well. Hence, computation of gcd(m,n) for
m =

∏
v∈V

∏
u∈U (t(uQ)y(vwQ)− t(vwQ)y(uQ)) suffices to check ifQ has prime

order in (B1, B2]. Optimal parameters balance the costs of the preparation of

the ϕ(w)
2 tabulated baby-step values (y(uQ) : t(uQ)) (where ϕ is Euler’s totient

function) and on the fly computation of the giant-step values (y(vwQ) : t(vwQ)).
Suboptimal, smaller w-values may be used to reduce storage requirements. For
instance, the choice w = 2 · 3 · 5 · 7 and B2 = 7770 leads to 24 tabulated values
and a total of 2904 multiplications and squarings modulo n, which matches the
computational effort of stage 1 with B1 = 256. Although gcd(u,w) = 1 already
avoids easy composites, the product can be restricted to those u, v for which one

of vw ± u is prime if storage for about B2−B1

w × ϕ(w)
2 bits is available. With w

and tabulated baby-step values as above, this increases B2 to 8925 for a similar
computational effort, but requires about 125 bytes of storage. A more substantial
improvement is to define

yv =
(∏

ṽ∈V−{v}

t(ṽwQ)
)(∏

ũ∈U
t(ũQ)

)
y(vwQ)

and
yu =

(∏
ũ∈U−{u}

t(ũQ)
)(∏

ṽ∈V
t(ṽwQ)

)
y(uQ),

and to replace m by
∏

v∈V
∏

u∈U (yv − yu). This saves 2|V ||U | of the 3|V ||U |
multiplications in the calculation of m at a cost that is linear in |U | + |V | to

tabulate the yv and yu values. For instance, it allows usage of B2 = 16 384 at an
effort of 3368 modular multiplications.

4 GPU Implementation Details

In this section we outline our approach to implement the algorithms from Sec-
tion 3 with a focus on the many-core GPU architecture. We used a quad-core
Intel i7-3770K CPU running at 3.5 GHz with 16 GB of memory and an NVIDIA
GeForce GTX 580 GPU, with 512 CUDA cores running at 1544 MHz and 1.5
GB of global memory, as further described below.

4.1 Compute unified device architecture

We focus on the GeForce x-series families for x ∈ {8, 9, 100, 200, 400, 500, 600, 700},
of the NVIDIA GPU architecture with the compute unified device architecture
(CUDA) [42]. Our NVIDIA GeForce GTX 580 GPU belongs to the GeForce
400- and 500-series ([41]) of the Fermi architecture family. These GPUs sup-
port 32 × 32 → 32-bit multiplication instructions, for both the least and most
significant 32 bits of the result.

Each GPU contains a number of streaming multiprocessors (SMs), with each
SM consisting of multiple scalar processor cores (SP). On a Fermi architecture
GPU there are typically about 16 SMs and 32 SPs per SM, but numbers vary per
model. C for CUDA is an extension to the C language that employs the single-
instruction multiple-thread (SIMT) model of massively parallel programming.
The programmer defines kernel functions, which are compiled for and executed
in parallel on the SPs such that each light-weight thread executes the same
instructions but on its own data. A number of threads is grouped into a thread
block which is scheduled on a single SM, the threads of which time-share the SPs.

Threads inside a thread block are executed in groups of 32 called warps. On
Fermi architecture GPUs each SM has two warp schedulers and two instruction
dispatch units. This means that two instructions, from separate warps, can be
scheduled and dispatched at the same time. Switching between warps, filling
the pipeline as much as possible, a high throughput rate can be sustained. The
distinct possibilities of a conditional branch are executed serially by the threads
inside a warp, with threads active only when their branch is executed. Multiple
execution paths within a warp are thus best avoided.

Threads in the same block can communicate via on-chip shared memory and
may synchronize their execution using barriers (a synchronization method which
makes threads wait until all reach a certain point). There is a large but relatively
slow amount of global memory that is accessible to all threads. Fermi architecture
GPUs have an L1-cache for each SM, and a unified L2-cache together with fast
constant (read-only) memory initialized by the CPU.

4.2 Modular arithmetic on GPUs

We used the parallel thread execution (PTX) instruction set and inline assembly
wherever possible to simplify (cf. carry-handling) and speed-up (cf. multiply-and-
add) our code; Table 7 in the Appendix lists the arithmetic assembly routines
used. “Warp divergent” code was reduced to a minimum by converting most
branches into straight line code to avoid different execution paths within a warp:
branch-free code that executes both branches and uses a bit-mask to select the
correct value was often found to be more efficient than “if-else” statements.

Practical performance. Our decision not to use parallel integer arithmetic
dictates the use of algorithms with minimal register usage. For Montgomery
multiplication, the most critical operation, we therefore preferred the plain inter-
leaved schoolbook method to Karatsuba [25]; the CUDA pseudo-code for moduli
of at least 96 bits is given in the full version of this paper [34].

Table 1 compares our results both with the state-of-the-art implementation
from [29] benchmarked on an NVIDIA GTX 480 card (480 cores, 1401Mhz) and
with the ideal peak throughput attainable on our GTX 580 GPU. Compared
to [29] our throughput is up to twice better, especially for smaller (128-bit)
moduli, even after the figures from [29] are scaled by a factor of 512

480 ·
1544
1401 to

account for our larger number of cores (512) and higher frequency (1544 MHz).
For 32`-bit moduli, with ` ∈ [3, 12] (i.e. moduli ranging from 96 to 384 bits), we
counted the total number of multiplication and multiply-and-add instructions
required by Montgomery multiplication. The throughput of those instructions
on our GPU is 0.5 per clock cycle per core, whereas the throughput of the addi-
tion instructions is 1 per clock cycle per core. Since we use fewer addition than
multiplication instructions, our throughput count considers only the latter. In
our benchmarks we transfer to the GPU two (distinct) operands and a modulus
for each thread, and then compute one million Montgomery multiplications (us-
ing each output as one of the next inputs) before transferring the results back
to the CPU. Our throughput turns out to be very close to the peak value.

4.3 Elliptic curve arithmetic on GPUs

When running stage 1 of ECM on memory constrained devices like GPUs, the
large number of precomputed points required for windowing methods cannot be
stored in fast memory. Thus, one is forced to settle for a (much) smaller win-
dow size, thereby reducing the advantage of using twisted Edwards curves. For
example, in [7] windowing is not used at all because, citing [7], “Besides the
base point, we cannot cache any other points”. Memory is also a problem in [5],
where the faster curve arithmetic from Hisil et al. [23] is not used since this
requires storing a fourth coordinate per point. These concerns were the motiva-
tion behind [10], the approach we adopted for stage 1 of ECM (as indicated in
Section 3). For stage 2 we use the baby-step giant-step approach, optimized as
described at the end of Section 3 for B2 ≤ 32768. Using bounds that balance
the number of stage 1 and 2 multiplications does not necessarily balance the

Table 1. Benchmark results for the NVIDIA GTX 580 GPU for numbers of Mont-
gomery multiplications and ECM trials per second for various modulus sizes, with the
results from [29] scaled as explained in the text. The estimated peak throughput based
on an instruction count is also included together with the total number of dispatched
threads. ECM used bounds B1 = 256 and B2 = 16384 (for a total of 2844+3368 = 6212
Montgomery multiplications per trial).

Leboeuf [29] this work
Montgomery muls ECM (8192 threads for all sizes)

moduli measured measured peak #threads trials Montgomery muls
bitsize (scaled, 106) (106) (103) measured (106)

96 10119 10135 16384 1078 6697
128 2799 5805 5813 16384 674 4187
160 2261 3760 3764 16384 453 2814
192 1837 2631 2635 16384 309 1920
224 1507 1943 1947 15360 243 1510
256 1212 1493 1497 10240 180 1118
320 828 962 964 10240 107 665
384 600 671 672 9216 86 534

GPU running time of the two stages (this varies with the modulus size), but it
is a good starting point for further optimization.

Table 1 lists the resulting performance figures, in terms of thousands of trials
per second for various modulus sizes. Two jobs each consisting of 8192 threads
were launched simultaneously, with each job per thread doing an ECM trial with
the bounds as indicated, and with at the start a unique modulus per thread
transferred to the GPU. The relatively high register usage of ECM reduces the
number of threads that can be launched per SM before running out of registers.
Nevertheless, and despite its large number of modular additions and subtrac-
tions, ECM manages to sustain a high Montgomery multiplication throughput.
Except for the comparison to the work reported in [29], we have not been able
to put our results in further perspective because we did not have access to other
multiplication or ECM results or implementations in a comparable context.

5 Cofactorization on GPUs

This section describes our GPU approach to cofactoring, i.e., recognizing among
the pairs (a, b) resulting from NFS sieving those pairs for which bfr(a/b) is
Br-smooth and bdfa(a/b) is Ba-smooth. Approaches common on regular cores
(resieving followed by sequential processing of the remaining candidates) allow
pair-by-pair optimization with respect to the highest overall yield or yield per
second while exploiting the available memory, but are incompatible with the
memory and SIMT restrictions of current GPUs.

5.1 Cofactorization overview

Given our application, where throughput is important but latency almost irrele-
vant, it is a natural choice to process each pair in a single thread, eliminating the
need for inter-thread communication, minimizing synchronization overhead, and
allowing the scheduler to maximize pipelining by interleaving instructions from
different warps. On the negative side, the large memory footprint per thread
reduces the number of simultaneously active threads per SM.

The cofactorization stage is split into two GPU kernel functions that receive
pairs (a, b) as input: the rational kernel outputs pairs for which bfr(a/b) is Br-
smooth to the algebraic kernel that outputs those pairs for which bdfa(a/b) is
Ba-smooth as well. The two kernels have the same code structure: all that dis-
tinguishes them is that the algebraic one usually has to handle larger values and
a higher degree polynomial. To make our implementation flexible with respect to
the polynomial selection, the maximum size of the polynomial values is a kernel
parameter that is fixed at compile time and that can easily be changed together
with the polynomial degree and coefficient size and the size of the inputs.

Kernel structure. Given a pair (a, b), a kernel-thread first evaluates the rele-
vant polynomial, storing the odd part n of the resulting value along with iden-
tifying information i as a pair (i, n); if applicable the special prime is removed
from n. The value n is then updated in the following sequence of steps, with all
parameters set at run-time using a configuration file. First trial division may be
applied up to a small bound. The resulting pairs (i, n) are regrouped depending
on their radix-232 sizes. The cost of the resulting inter-thread communication
and synchronization is outweighed by the advantage of being able to run size-
specific versions of the other steps. All threads in a warp then grab a pair (i, n)
of the same size and each thread attempts to factor its n-value using Pollard’s
p− 1 method or ECM. If the resulting n is at most the smoothness bound, the
kernel outputs the ith pair (a, b). If n’s compositeness cannot be established or
if n is larger than some user-defined threshold, the ith pair (a, b) is discarded.
Pairs (i, n) with small enough composite n are regrouped and reprocessed.

This approach treats every pair (i, n) in the same group in the same way,
which makes it attractive for GPUs. However, unnecessary computations may be
performed: for instance, if a factoring attempt fails, compositeness does not need
to be reascertained. Avoiding this requires divergent code which, as it turned
out, degrades the performance. Also, factoring attempts may chance upon a
factor larger than the smoothness bound, an event that goes by unnoticed as
only the unfactored part is reported back. We have verified that the CPU easily
discards such mishaps at negligible overhead.

Interaction between CPU and GPU. The CPU uses two programs to in-
teract with the GPU. The first one adds batches of (a, b) pairs produced by
the siever (which may be running on the CPU too) to a FIFO buffer and keeps
track of special primes. The second program controls the GPU by iterating the
following steps (where the roles of the kernels may be reversed and the batch
sizes depend on the GPU memory constraints and the kernel):

Table 2. Time in seconds to process a single special prime on all cores of a quad-core
Intel i7-3770K CPU.

large number of pairs relations sieving cofactoring total % of time spent relations
primes after sieving found time time time on cofactoring per second

3 ≈ 5 · 105 125 25.6 4.0 29.6 13.5 4.22
4 ≈ 106 137 25.9 6.1 32.0 19.1 4.28

Table 3. Parameters choices for cofactoring. Later ECM attempts use larger bounds
in the specified ranges.

desired
algorithm

rational kernel algebraic kernel
yield attempts B1 B2 attempts B1 B2

95%
Pollard p− 1 1 [28, 211] [213, 214] 1 [28, 212] [214, 215]

ECM [5, 10] 28 [212, 213] 10 [28, 29] [212, 215]

99%
Pollard p− 1 1 [210, 212] [213, 215] 1 [28, 211] [213, 214]

ECM [10, 12] [28, 29] [212, 215] [10, 20] [28, 29] [212, 215]

1. copy a batch from the FIFO buffer to the GPU;
2. launch the rational kernel on the GPU;
3. store the pairs output by the rational kernel in an intermediate buffer;
4. if the intermediate buffer does not contain enough pairs, return to Step 1;
5. copy a batch from the intermediate buffer to the GPU;
6. launch the algebraic kernel on the GPU (providing it with the proper special

primes);
7. store the pairs output by the algebraic kernel in a file and return to Step 1.

Exploiting the GPU memory hierarchy. GPU performance strongly de-
pends on where intermediate values are stored. We use constant memory for
fixed data precomputed by the CPU and accessed by all threads at the same
time: primes for trial division, polynomial coefficients, and baby-step giant-step
table-indices for the second stages of factoring attempts. To lower register pres-
sure, the fast shared memory per SM acts as a “user-defined cache” for the values
most frequently accessed, such as the moduli n to be factored and the values
−n−1 mod 232. The slower but much larger global memory stores the batch of
(a, b) pairs along with their current n-values. To reduce memory overhead, the
n-values are moved back and forth to shared memory after regrouping.

5.2 Parameter selection

For our experiments we applied the CPU NFS siever from [16] (obviously, with
multi-threading enabled) to produce relations for the 768-bit number from [27].
Except for the special prime, three so-called large primes (i.e., primes not used
for sieving but bounded by the applicable smoothness bound) are allowed in the
rational polynomial value, whereas on the algebraic side the number of large
primes is limited to three or four. Table 2 lists typical figures obtained when

 0

 500

 1000

 1500

 2000

 2500

 3000 0
 5000

 10000
 15000

 20000
 25000

 30000
 35000

 40000

TIME, B1 B2 POLLARD P-1 RATIONAL SIDE (95% YIELD)

B1 B2

 5.8

 5.9

 6

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 7.1

S
e
c
o
n
d
s

Fig. 1. Rational kernel cofactoring run times as a function of the Pollard p− 1 bounds
with desired yield 95%.

processing a single special prime in either setting; the percentages are indicative
for NFS factorizations in general. The relatively small amount of time spent by
the CPU on cofactoring suggests various ways to select optimal GPU parameters.
One approach is aiming for as many relations per second as possible. Another
approach is to aim for a certain fixed percentage of the relations among the pairs
produced by NFS sieving, and then to select parameters that minimize the GPU
time (thus maximizing the number of CPUs that can be served by a GPU).
Although in general a fixed percentage cannot be ascertained, it can be done for
experimental runs covering a fixed set of special prime ranges, and the resulting
parameters can be used for production runs covering all special primes. Here we
report on this latter approach in two settings: aiming for all (denoted by “99%”)
or for 95% of all relations.

Experiments. For a fixed set of special prime ranges and both large prime
settings we determined all (a, b) pairs generated by NFS sieving and counted
all relations resulting from those (a, b) pairs. Next, we processed the (a, b) pairs
for either setting using our GPU cofactoring program, while widely varying all
possible choices and aiming for 95% or 99% of all relations. This led to the
observations below. Although other input numbers (than our 768-bit modulus)
may lead to other choices our results are indicative for generic large composites.

We found that the rational kernel should be executed first, that it is best to
skip trial division in the rational kernel, and that a small trial division bound
(say, 200) in the algebraic kernel leads to a slight speed-up compared to not
using algebraic trial division. For all other steps the two kernels behave similarly,
though with somewhat different parameters that also depend on the desired yield
(but not on the large prime setting). The details are listed in Table 3. Not shown
there are the discarding thresholds that slightly decrease with the number of

Table 4. Approximate timings in seconds of cofactoring steps to process approximately
50 million (a, b) pairs, measured using the CUDA clock64 instruction. The wall clock
time (measured with the unix time utility) includes the kernel launch overhead the
CPU/GPU memory transfer and all CPU book-keeping operations. We measured both
kernels (K): algebraic (a) and rational (r).

of large desired
K

polynomial trial Pollard
ECM regrouping total

wall
primes yield evaluation division p− 1 clock

3
95%

r 0.05 - 56.42 149.49 5.97 211.94
263

a 0.10 0.36 6.21 39.05 0.44 46.16

99%
r 0.05 - 79.19 213.15 7.75 300.16

367
a 0.10 0.36 10.84 48.93 0.68 60.91

4
95%

r 0.06 - 57.50 122.66 7.22 187.45
324

a 0.18 0.88 15.75 110.75 1.11 128.68

99%
r 0.06 - 57.48 158.49 8.53 224.57

479
a 0.18 0.89 27.47 212.47 1.79 242.80

ECM attempts. Actual run times of the cofactoring steps are given in Table 4.
Rational batches contain 3.5 times more pairs than algebraic ones (because the
algebraic kernel has to handle larger values). For 3 large primes the rational
kernel is called 5 times more often than the algebraic one, for 4 large primes 2.2
times more often.

Varying the bounds of the Pollard p − 1 factoring attempt on the rational
side within reasonable ranges does not noticeably affect the yield because almost
all missed prime factors are found by the subsequent ECM attempts. However,
early removal of small primes may reduce the sizes, thus reducing the ECM run
time and, if not too much time is spent on Pollard p−1, also the overall run time.
This is depicted in Figure 1. Note that in record breaking ECM work the number
of trials is much larger; however, according to [56] the empirically determined
numbers reported in Table 3 are in the theoretically optimal range.

5.3 Performance results

Table 5 summarizes the results when the same special prime as in Table 2 is
processed, but now with GPU-assistance. The figures clearly show that farm-

Table 5. GPU cofactoring for a single special prime. The number of quad-core CPUs
that can be served by a single GPU is given in the second to last column.

large number of pairs desired
seconds

CPU/GPU relations
primes after sieving yield ratio found

3 ≈ 5 · 105 95% 2.6 9.8 132
99% 3.7 6.9 136

4 ≈ 106 95% 6.5 4.0 159
99% 9.6 2.7 165

Table 6. Processing multiple special primes with desired yield 99%.

large special number of pairs
setting

total relations relations
primes primes after sieving seconds found per second

3 100 ≈ 5 · 107 CPU only 2961 12523 4.23
CPU and GPU 2564 13761 5.37

4 50 ≈ 5 · 107 CPU only 1602 6855 4.28
CPU and GPU 1300 8302 6.39

ing out cofactoring to a GPU is advantageous from an overall run time point
of view and that, depending on the yield desired, a single GPU can keep up
with multiple quad-core CPUs. Remarkably, more relations may be found given
the same collection of (a, b) pairs: with an adequate number of GPUs each spe-
cial prime can be processed faster and produces more relations. Based on more
extensive experiments the overall performance gain measured in “relations per
second” found with and without GPU assistance is 27% in the 3 large primes
case and 50% in the 4 large primes case (cf. Table 6).

Including equipment and power expenses in the analysis is much harder,
as illustrated by (unrelated) experiments in [44]. Relative power and purchase
costs vary constantly, and the power consumption of a GPU running CUDA
applications depends on the configuration and the operations performed [13].
For instance, global memory accesses account for a large fraction of the power
consumption and the effect on the power consumption of arithmetic instructions
depends more on their throughput than on their type. We have not carried out
actual power consumption measurements comparing the settings from Table 6.

6 Conclusion

It was shown that modern GPUs can be used to accelerate a compute-intensive
part of the relation collection step of the number field sieve integer factorization
method. Strategies were outlined to perform the entire cofactorization stage on
a GPU. Integration with state-of-the-art lattice siever software indicates that a
performance gain of up to 50% can be expected for the relation collection step
of factorization of numbers in the current range of interest, if a single GPU can
assist a regular multi-core CPU. Because relation collection for such numbers is
responsible for about 90% of the total factoring effort the overall gain may be
close to 45%; we have no experience with other sizes yet.

It is a subject of further research if a speed-up can be obtained using other
types of graphic cards (to which we did not have access). In particular it would
be interesting to explore if and how lower-end CUDA enabled GPUs can still be
used for the present application and if the larger memory of more recent cards
such as the GeForce GTX 780 Ti or GeForce GTX Titan can be exploited. Given
our results we consider it unlikely that it would be advantageous to combine
multiple GPUs using NVIDIA’s scalable link interface.

Acknowledgements. This work was supported by the Swiss National Science
Foundation under grant number 200020-132160. We gratefully acknowledge com-
ments by the anonymous referees.

References

1. S. Antao, J.-C. Bajard, and L. Sousa. Elliptic curve point multiplication on GPUs.
In Application-specific Systems Architectures and Processors (ASAP), 2010 21st
IEEE International Conference on, pages 192–199, 2010.

2. R. Barbulescu, J. W. Bos, C. Bouvier, T. Kleinjung, and P. L. Montgomery. Find-
ing ECM-friendly curves through a study of Galois properties. In E. W. Howe and
K. S. Kedlaya, editors, Algorithmic Number Theory Symposium – ANTS 2012, vol-
ume 1 of The Open Book Series, pages 63–86. Mathematical Sciences Publishers,
2013.

3. D. J. Bernstein, P. Birkner, and T. Lange. Starfish on strike. In M. Abdalla and
P. S. L. M. Barreto, editors, Latincrypt, volume 6212 of Lecture Notes in Computer
Science, pages 61–80. Springer, Heidelberg, 2010.

4. D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using Edwards curves.
Mathematics of Computation, 82(282):1139–1179, 2013.

5. D. J. Bernstein, H.-C. Chen, M.-S. Chen, C.-M. Cheng, C.-H. Hsiao, T. Lange,
Z.-C. Lin, and B.-Y. Yang. The billion-mulmod-per-second PC. In Special-purpose
Hardware for Attacking Cryptographic Systems – SHARCS 2009, pages 131–144,
2009.

6. D. J. Bernstein, H.-C. Chen, C.-M. Cheng, T. Lange, R. Niederhagen, P. Schwabe,
and B.-Y. Yang. ECC2K-130 on NVIDIA GPUs. In G. Gong and K. C. Gupta,
editors, Progress in Cryptology – INDOCRYPT 2010, volume 6498 of Lecture Notes
in Computer Science, pages 328–346. Springer-Verlag Berlin Heidelberg, 2010.

7. D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM on
graphics cards. In A. Joux, editor, Eurocrypt 2009, volume 5479 of Lecture Notes
in Computer Science, pages 483–501. Springer, Heidelberg, 2009.

8. M. Bevand. MD5 Chosen-Prefix Collisions on GPUs. Black Hat, 2009. Whitepaper.
9. J. W. Bos. Low-latency elliptic curve scalar multiplication. International Journal

of Parallel Programming, 40(5):532–550, 2012.
10. J. W. Bos and T. Kleinjung. ECM at work. In X. Wang and K. Sako, editors,

Asiacrypt 2012, volume 7658 of Lecture Notes in Computer Science, pages 467–484.
Springer Berlin Heidelberg, 2012.

11. J. W. Bos and D. Stefan. Performance analysis of the SHA-3 candidates on exotic
multi-core architectures. In S. Mangard and F.-X. Standaert, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture
Notes in Computer Science, pages 279–293. Springer, Heidelberg, 2010.

12. R. P. Brent. Some integer factorization algorithms using elliptic curves. Australian
Computer Science Communications, 8:149–163, 1986.

13. S. Collange, D. Defour, and A. Tisserand. Power consumption of GPUs from
a software perspective. In Proceedings of the 9th International Conference on
Computational Science: Part I, ICCS ’09, pages 914–923, Berlin, Heidelberg, 2009.
Springer-Verlag.

14. G. de Meulenaer, F. Gosset, G. M. de Dormale, and J.-J. Quisquater. Integer
factorization based on elliptic curve method: Towards better exploitation of recon-
figurable hardware. In Field-Programmable Custom Computing Machines – FCCM
2007, pages 197–206. IEEE Computer Society, 2007.

15. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44:393–422, July 2007.

16. J. Franke and T. Kleinjung. GNFS for linux. Software, 2012.

17. K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M. Khaleeluddin, and R. Bachi-
manchi. Implementing the elliptic curve method of factoring in reconfigurable
hardware. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2006, volume 4249 of Lecture Notes in Computer Science,
pages 119–133. Springer, Heidelberg, 2006.

18. J. Gilger, J. Barnickel, and U. Meyer. GPU-acceleration of block ciphers in the
OpenSSL cryptographic library. In D. Gollmann and F. Freiling, editors, Informa-
tion Security, volume 7483 of Lecture Notes in Computer Science, pages 338–353.
Springer Berlin Heidelberg, 2012.

19. T. Güneysu, T. Kasper, M. Novotny, C. Paar, and A. Rupp. Cryptanalysis with
COPACOBANA. IEEE Transactions on Computers, 57:1498–1513, 2008.

20. O. Harrison and J. Waldron. AES encryption implementation and analysis on
commodity graphics processing units. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 209–226. Springer, Heidelberg, 2007.

21. O. Harrison and J. Waldron. Practical symmetric key cryptography on modern
graphics hardware. In Proceedings of the 17th conference on Security symposium,
pages 195–209. USENIX Association, 2008.

22. O. Harrison and J. Waldron. Efficient acceleration of asymmetric cryptography on
graphics hardware. In B. Preneel, editor, Africacrypt 2009, volume 5580 of Lecture
Notes in Computer Science, pages 350–367. Springer, Heidelberg, 2009.

23. H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In J. Pieprzyk, editor, Asiacrypt 2008, volume 5350 of Lecture Notes in
Computer Science, pages 326–343. Springer, Heidelberg, 2008.

24. T. Jebelean. An algorithm for exact division. Journal of Symbolic Computation,
15(2):169–180, 1993.

25. A. A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by auto-
matic computers. Number 145 in Proceedings of the USSR Academy of Science,
pages 293–294, 1962.

26. T. Kleinjung. Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024-bit integers. In Special-purpose Hardware
for Attacking Cryptographic Systems – SHARCS 2006, 2006.

27. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zim-
mermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor, Crypto
2010, volume 6223 of Lecture Notes in Computer Science, pages 333–350. Springer,
Heidelberg, 2010.

28. A. Kruppa. A software implementation of ECM for NFS. Research Report RR-
7041, INRIA, 2009. http://hal.inria.fr/inria-00419094/PDF/RR-7041.pdf.

29. K. Leboeuf, R. Muscedere, and M. Ahmadi. A GPU implementation of the Mont-
gomery multiplication algorithm for elliptic curve cryptography. In IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 2593–2596, 2013.

30. A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number Field Sieve,
volume 1554 of Lecture Notes in Mathematics. Springer-Verslag, 1993.

31. H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987.

32. D. Loebenberger and J. Putzka. Optimization strategies for hardware-based cofac-
torization. In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors, Selected
Areas in Cryptography – SAC, volume 5867 of Lecture Notes in Computer Science,
pages 170–181. Springer, Heidelberg, 2009.

33. S. Manavski. CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In Signal Processing and Communications, 2007. ICSPC 2007.
IEEE International Conference on, pages 65–68, 2007.

34. A. Miele, J. W. Bos, T. Kleinjung, and A. K. Lenstra. Cofactorization on graphics
processing units. Cryptology ePrint Archive, Report 2014/397, 2014. http://

eprint.iacr.org/.
35. G. L. Miller. Riemann’s hypothesis and tests for primality. In Proceedings of

seventh annual ACM symposium on Theory of computing, STOC ’75, pages 234–
239. ACM, 1975.

36. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

37. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, 1987.

38. P. L. Montgomery. An FFT extension of the elliptic curve method of factorization.
PhD thesis, University of California, 1992.

39. P. L. Montgomery and R. D. Silverman. An FFT extension to the p-1 factoring
algorithm. Mathematics of Computation, 54(190):839–854, 1990.

40. A. Moss, D. Page, and N. P. Smart. Toward acceleration of RSA using 3D graphics
hardware. In S. D. Galbraith, editor, Proceedings of the 11th IMA international
conference on Cryptography and coding, Cryptography and Coding 2007, pages
364–383. Springer-Verlag, 2007.

41. NVIDIA. Fermi architecture whitepaper. http://www.nvidia.com/content/PDF/
fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf,
2010.

42. NVIDIA. Cuda programming guide 5. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html, 2013.
43. NVIDIA. Parallel thread execution isa version 3.2. http://docs.nvidia.com/

cuda/parallel-thread-execution/index.html, 2013.
44. NVIDIA Developer Zone. https://devtalk.nvidia.com/default/topic/491799/gtx-

590-cuda-power-tests/. 2011.
45. D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software AES encryption.

In S. Hong and T. Iwata, editors, Fast Software Encryption – FSE 2010, volume
6147 of Lecture Notes in Computer Science, pages 75–93. Springer, Heidelberg,
2010.

46. J. Pelzl, M. Šimka, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-
tarovský, V. Fischer, and C. Paar. Area-time efficient hardware architecture for
factoring integers with the elliptic curve method. Information Security, IEE Pro-
ceedings on, 152(1):67–78, 2005.

47. J. M. Pollard. The lattice sieve. pages 43–49 in [30].
48. J. M. Pollard. Theorems on factorization and primality testing. Proceedings of the

Cambridge Philosophical Society, 76:521–528, 1974.
49. J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathe-

matics, 15(3):331–334, 1975.
50. C. Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and

I. Ingemarsson, editors, Eurocrypt 1984, volume 209 of Lecture Notes in Computer
Science, pages 169–182. Springer, Heidelberg, 1985.

51. C. Pomerance. A tale of two sieves. Biscuits of Number Theory, 85, 2008.
52. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number

Theory, 12(1):128–138, 1980.
53. D. Shanks. Class number, a theory of factorization, and genera. In D. J. Lewis,

editor, Symposia in Pure Mathematics, volume 20, pages 415–440. American Math-
ematical Society, 1971.

54. M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Dru-
tarovský, and V. Fischer. Hardware factorization based on elliptic curve method.
In Field-Programmable Custom Computing Machines – FCCM 2005, pages 107–
116. IEEE Computer Society, 2005.

55. R. Szerwinski and T. Güneysu. Exploiting the power of GPUs for asymmetric
cryptography. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and
Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in Computer Sci-
ence, pages 79–99. Springer, Heidelberg, 2008.

56. G. Xin. Fast smoothness test. Semester project report, June 2013.
57. J. Yang and J. Goodman. Symmetric key cryptography on modern graphics hard-

ware. In K. Kurosawa, editor, Asiacrypt, volume 4833 of Lecture Notes in Computer
Science, pages 249–264. Springer, Heidelberg, 2007.

58. P. Zimmermann and B. Dodson. 20 years of ECM. In F. Hess, S. Pauli, and M. E.
Pohst, editors, Algorithmic Number Theory – ANTS-VII, volume 4076 of Lecture
Notes in Computer Science, pages 525–542. Springer, Heidelberg, 2006.

59. R. Zimmermann, T. Güneysu, and C. Paar. High-performance integer factoring
with reconfigurable devices. In Field Programmable Logic and Applications – FPL
2010, pages 83–88. IEEE, 2010.

Appendix

Let r = 232.

Table 7. Pseudo-code notation for CUDA PTX assembly instructions [43] used in our
implementation. Function parameters are 32-bit unsigned integers and the suffixes are
analogous to the actual CUDA PTX suffixes. We denote by f the single-bit carry flag
set by instructions with suffix “.cc”.

Pseudo-code notation Operation Carry flag effect

addc(c, a, b) c← a + b + f mod r
addc.cc(c, a, b) c← a + b + f mod r f ← b(a + b + f)/rc

subc(c, a, b) c← a− b− f mod r
subc.cc(c, a, b) c← a− b− f mod r f ← b(a− b− f)/rc
mul.lo(c, a, b) c← a · b mod r
mul.hi(c, a, b) c← b(a · b)/rc

mad.lo.cc(d, a, b, c) d← a · b + c mod r f ← b((a · b) mod r + c)/rc
madc.lo.cc(d, a, b, c) d← a · b + c + f mod r f ← b((a · b) mod r + c + f)/rc
mad.hi.cc(d, a, b, c) d← (b(a · b)/rc+ c) mod r f ← b(b(a · b)/rc+ c)/rc

madc.hi.cc(d, a, b, c) d← (b(a · b)/rc+ c + f) mod r f ← b(b(a · b)/rc+ c + f)/rc

