
Fides: Lightweight Authenticated Cipher with
Side-Channel Resistance for Constrained Hardware

Begül Bilgin1,2, Andrey Bogdanov3, Miroslav Knežević4,
Florian Mendel5, and Qingju Wang1,6

1 KU Leuven, ESAT/COSIC and iMinds, Belgium
2 University of Twente, EEMCS-DIES, The Netherlands

3 Technical University of Denmark, Department of Mathematics, Denmark
4 NXP Semiconductors, Belgium

5 Graz University of Technology, IAIK, Austria
6 Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

Abstract. In this paper, we present a novel lightweight authenticated cipher optimized for
hardware implementations called Fides. It is an online nonce-based authenticated encryption
scheme with authenticated data whose area requirements are as low as 793 GE and 1001 GE
for 80-bit and 96-bit security, respectively. This is at least two times smaller than its closest
competitors Hummingbird-2 and Grain-128a. While being extremely compact, Fides is both
throughput and latency efficient, even in its most serial implementations. This is attained by our
novel sponge-like design approach. Moreover, cryptographically optimal 5-bit and 6-bit S-boxes
are used as basic nonlinear components while paying a special attention on the simplicity of
providing first order side-channel resistance with threshold implementation.

Keywords. Lightweight cryptography, authenticated encryption, keyed sponge, glitch-free mask-
ing, APN permutation, almost bent permutation

1 Introduction

Motivation. Lightweight cryptography is a rapidly growing field, being motivated by real-
world applications with limited budget to spend on cryptographic mechanisms but rather
essential demands for security. Though numerous lightweight ciphers have been proposed (in-
cluding the ISO/IEC standard present as well as more recent designs such as KATAN [14],
LED [20], Piccolo [30]), extended security functionalities are being addressed much more
rarely in the lightweight context. Indeed, apart from the cryptographic hash functions (with
the domain quite densely covered by the notable designs of Quark [2], Photon [19] and
spongent [7]), almost no other security functionalities have been intensively analyzed for
lightweight applications7.

This situation is rather surprising though, since non-encryption security functionalities are
often of much higher value than secrecy, authenticity and authenticated encryption ranking
highest among them — emphasized by the recently announced NIST-funded CAESAR com-
petition for authenticated encryption [10]. Cryptographically speaking, it is rather straight-
forward to deploy a lightweight block cipher in a mode of operation to implement an authen-
ticated encryption scheme. However, this usually requires multiple additional memory states,
additional operations on top of a single block cipher call, or both.

Yet, the landscape of dedicated authenticated encryption targeting lightweight scenarios
remains unexplored to a large extent. While ALE [8] has been recently proposed to address
7 All these successful and sound lightweight primitives mentioned here – with the sole exception for Photon

– have been proposed at CHES from 2007 to 2011.

the issue of more lightweight authenticated encryption across various platforms, it is based on
the AES round operation and the AES-128 key schedule that per se confines its lightweight
properties in hardware, though facilitating a high performance in parallel software implemen-
tations, especially with the Intel AES instruction set. At the same time, Grain-128a [1] and
Hummingbird-2 [17] are among the very small number of truly dedicated designs aimed at
attaining the traditional lightweight design goals such as low area and low power, yielding
estimated area requirements of 2770 GE and 2159 GE, respectively. Though Hummingbird-2
has been recently broken in the related-key model [29], Grain-128a remains unaffected so far.
However, Grain-128a leaves a lot of room for improvement in terms of area consumption,
being comparable to software-optimized AES-based ALE in this crucial parameter.

In this paper, we aim to address this lack of dedicated lightweight-optimized authenticated
ciphers.

Our contributions. We propose Fides — an online single-pass nonce-based authenticated
encryption algorithm with either 80-bit or 96-bit key, Fides-80 and Fides-96. We report the
area consumption of 793 GE and 1001 GE correspondingly, which is about 2 times smaller
than Hummingbird-2 and about 3 times more compact than Grain-128a, though for a slightly
different security level. Fides has a highly competitive throughput, even in most serial im-
plementations. It comes with a built-in efficient dedicated masking scheme to thwart basic
side-channel attacks. The gate count for the protected ASIC implementation of Fides-80 and
Fides-96 is 2876 and 4792, respectively, which is comparable to the plain implementation of
AES-based authenticated encryption schemes such as ALE.

While basing upon well-established security principles to account for security, Fides at-
tains its efficiency by a bunch of innovative means including:

– Novel design approach: Like SHA-3, Fides alternates message input and unkeyed per-
mutations. However, unlike sponge, it inputs message chunks in every round. As opposed
to ASC-1 and ALE though, the rounds in our construction are not keyed. The original
sponge construction is rather redundant which is needed for the so called hermetic sponge
claim. So we employ an automated technique for lower-bounding the number of active
S-boxes which allows us to choose the positions and number of message injections in a
way being both efficient and secure, by taking exactly as many security as we need.

– Usage of optimal S-boxes with respect to differential and linear cryptanalysis: Fides is the
first symmetric-key design — to the best of our knowledge — to use S-boxes optimal with
respect to differential and linear cryptanalysis. Namely, in two variants of our design, we
use the 5-bit AB (almost bent) and the 6-bit APN (almost perfect nonlinear) invertible
S-boxes. The AB permutations have the optimal differential and linear properties for S-
boxes and exist only in odd dimensions. The 6-bit APN permutation is optimal towards
differential properties in even dimensions. The permutation we use is the only (up to
extended affine equivalence) permutation in even dimension known to be APN and is due
to Dillon [15].

– Off-the-shelf glitch-free side-channel masking: Fides offers off-the-shelf glitch-free secret-
sharing based masking. This is also the first effort as regards the side-channel resistant
sharing of optimal S-boxes. Moreover, we offer the first systematic treatment of shared S-
box implementations in dimensions larger than 4-bit. In fact, we searched in the class of 5-
bit AB and 6-bit APN permutation for the S-box instances with lowest area requirements.
So the efficient side-channel resistance is offered by the very design of our construction.

Thus, following these approaches, we are able to construct Fides — an authenticated
encryption scheme particularly suitable for constrained hardware implementations. It is the
authenticated encryption design with the smallest footprint at both around 80 and 100 bits
of security level available. At the same time, more in the spirit of the recent low-latency
considerations [22,9], we have made every effort to ensure its time efficiency at the same time.
It is the advantage of our novel design approach that allows us to attain both – a highly
competitive footprint and a time-efficient implementation – simultaneously.

Organization. Section 2 specifies the design of Fides and provide some basic design ra-
tionale. Section 3 provides a more detailed security analysis of Fides. In Section 4, both
lightweight and protected threshold implementations of Fides are elaborated and a detailed
comparison to the existing designs is given.

2 The design

Fides is an online single-pass nonce-based authenticated encryption algorithm. Its structure is
similar to the duplex sponge construction [4] and follows the design principles of the Rijndael
block cipher [13]. As Rijndael-256, Fides is designed according to the wide trail strategy and
operates on 4×8 internal state. We propose two variants of Fides with two different security
levels:

b k n t r security(bit)
(bit) (bit) (bit) (bit) (bit) key recovery state recovery forgery

Fides-80 160 80 80 80 10 80 80 80
Fides-96 192 96 96 96 12 96 96 96

The encryption/authentication procedure of Fides accepts a key K with k bits, a message
m, associated data a and a nonce N with n bits. The encryption/authentication procedure
outputs the ciphertext c of exactly the same bit length as the message m and the authentica-
tion tag T of t bits for both the message m and associated data a. Its decryption/verification
procedure accepts key K, ciphertext c, associated data a, nonce N and tag T . It returns the
decrypted message m if the tag is correct or ⊥ otherwise.

16
R

K||N 1R

K||0

1R
 . . .

1R

1R

A1 A2 Av

1R
 . . .

1R

C1

16
R

Cu Mu

T

M1

a

Fig. 1: The encryption/authentication operation of Fides.

The encryption/authentication operation of Fides is given in Figure 1 and can be de-
scribed in five steps:

Padding: The padding of Fides is very simple. It appends a single “1” and the smallest
number of zeroes to the message m such that the length of the result is a multiple of
the required block length. The resulting padded message is split into u blocks of r bits
each, M1‖ . . . ‖Mu. Note that for associated data the same padding method is used and
the padded associated data is split into v blocks of again r bits each, A1|| . . . ||Av.

Initialization: The initialization of Fides is based on the Even-Mansour construction [18].
The 4× 8 internal state is initialized with the key K and the nonce N . Then the internal
state of b = k + n bits is updated by applying the Fides round transformation 16 times.
Finally, the key K is xored to the internal state again. Now the internal state is initialized.

Processing associated data: If there is only one padded associated data block, then A1

is xored to the internal state in row 3 at positions 0, 2 and one proceeds with processing
the padded message immediately. Otherwise, if there are at least two padded associated
data blocks, associated is processed block by block: The internal state is updated using
the Fides round transformation and then the next block is xored to the internal state in
row 3 at positions 0 and 2.

Processing message: The padded message is processed block by block: The internal state
is updated using the Fides round transformation. Then two elements of the internal state
in row 3 at positions 0 and 2 are xored to the current block of the message to produce the
according ciphertext block. Finally, the current block of the message is also xored to the
internal state at the same positions.

a3,0

a2,0

a1,0

a0,0

a3,1

a2,1

a1,1

a0,1

a3,2

a2,2

a1,2

a0,2

a3,3

a2,3

a1,3

a0,3

a3,4

a2,4

a1,4

a0,4

a3,5

a2,5

a1,5

a0,5

a3,6

a2,6

a1,6

a0,6

a3,7

a2,7

a1,7

a0,7

a3,2a3,0

Fig. 2: The injection layer of Fides.

Finalization: The internal state is updated by applying the Fides round transformation 16
times. The output is truncated to 80 (resp. 96) bits and returned as the authentication
tag T for the message and associated data.

The decryption/verification procedure is defined correspondingly. The only two differences
are that one works with the ciphertext c = C1|| . . . ||Cu instead of the message m while xoring
with the stream and that the supplied tag value T is compared to the one computed by the
algorithm. We want to stress that only if the tag is correct the decrypted message is returned.

2.1 The Round Transformations of Fides

In the following, we briefly describe the round transformations of Fides. It is designed ac-
cording to the wide trail strategy [12] and its structure is very similar to the Rijndael block

cipher [13]. It operates on a 4 × 8 state of 5 (resp. 6) bits and updates the internal state by
means of the sequence of transformations

CA ◦MC ◦ SR ◦ SB .

SubBytes (SB). The SubBytes step is the only non-linear transformation of the algorithm.
It is a permutation consisting of an S-box applied to each element of the 4 × 8 state. This
permutation is an almost bent (AB) permutation (Table 2) in Fides-80 and almost perfect
nonlinear (APN) permutation (Table 1) in Fides-96.

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,j bi,jS-box

AB permutations which are a subset of APN permutations provide optimum security
against linear and differential cryptanalysis [11]. Unfortunately, they only exist if the size
of the S-box is odd and there are only four 5-bit vectorial AB function known so far. On
the other hand, APN permutations exist even if the size is even but they provide optimum
security only against differential cryptanalysis and there is only one vectorial function known
so far. For both S-boxes the differential and linear probability is 2−4, which is optimal.

Table 1: 6-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 54 0 48 13 15 18 35 53 63 25 45 52 3 20 33 41

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 8 10 57 37 59 36 34 2 26 50 58 24 60 19 14 42

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
S(x) 46 61 5 49 31 11 28 4 12 30 55 22 9 6 32 23

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
S(x) 27 39 21 17 16 29 62 1 40 47 51 56 7 43 38 44

Table 2: 5-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

For this work, we exhaustively searched through the affine equivalent class of quadratic
AB and APN permutations paying a special attention to fix points. We synthesized possible

candidates with and without threshold implementation to see their area requirements. We
chose FidesS-boxes so that the area of both plain and shared implementation provide a good
tradeoff.

ShiftRows (SR). The ShiftRows step is a byte transposition that cyclically shifts the rows
of the state over different offsets. Row i is shifted left by si = {0, 1, 2, 7} positions. Since
ShiftRows is only wiring in hardware, its overall cost is negligible.

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,0 ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 bi,0 bi,1 bi,2 bi,3 bi,4 bi,5 bi,6 bi,7≪ si

MixColumns (MC). The MixColumns step is operating on the state column by column. To
be more precise, it is a left-multiplication by a 4 × 4 matrix over F25 (resp. F26). The main
design goal of the MixColumns transformation is to follow the wide trail strategy and that it
can be implemented efficiently. On one hand by restricting the coefficients of the matrix to
0 and 1 MixColumns can be implemented with only a few XOR operations, but on the other
hand there does not exist a matrix of this form that is also MDS. Therefore, we use in Fides
a matrix that is almost-MDS and has a branch number (the smallest nonzero sum of active
inputs and outputs of each column) of 4.

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7a0,j

a1,j

a2,j

a3,j

b0,j

b1,j

b2,j

b3,j

⊗

2664
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3775

ConstantAddition (CA). In this transformation the state is modified by combining it with
a predefined constant by a bitwise xor operation. The purpose of adding round constants
is to make each round different and to break the symmetry of the other transformations.
Furthermore, it provides a natural opportunity to make the parts for processing associated
data and message different from each other. The hardware implementation of ConstantAddition
is in fact very cheap since it consists of wires and invertors only.

2.2 Security assumptions and claims

The security analysis of the algorithm starts from the following assumptions.

Assumption 1 (Nonce-respecting adversary) A nonce value is only used once with the
same master key for encryption.

This assumption is quite common among nonce-based designs. Note that on most platforms,
this assumption can be easily satisfied by implementing the nonce as a counter.

Assumption 2 (Abort on verification failure) If the verification step of the algorithm
reveals that the ciphertext has been tampered with, then the algorithm returns no information
beyond the verification failure. In particular, no plaintext blocks are returned.

This assumption significantly reduces the impact of chosen-ciphertext attacks, since the ad-
versary obtains very little information from a chosen-ciphertext query. We feel that this as-
sumption is quite natural for authenticated encryption modes. After all, when the verification
fails, we know that the integrity of the plaintext has been jeopardized, and there is no reason
to output it.

Under these assumptions, the security claims for the Fides are as follows.

Claim 1 (Resistance against key recovery) Any key recovery with complexity equivalent
to processing Z data blocks has a success probability at most Z2−k, even if the internal state
has been recovered.

Claim 2 (Resistance against state recovery) Any internal state recovery with complex-
ity equivalent to processing Z data blocks not involving key recovery has a success probability
at most Z2−t.

Claim 3 (Resistance against forgery w/o state recovery) Any forgery attack not in-
volving key recovery/internal state recovery has a success probability at most 2−t.

3 Security analysis

3.1 Differential and Linear Cryptanalysis

Bounds for the Initialization and Finalization. The round transformation of Fides
has diffusion properties according to the wide trail design strategy. Since the MixColumns
transformation has branch number 4, and ShiftRows is diffusion optimal (moves the elements
in each column to four different columns), it is guaranteed that there are at least 42 = 16 active
S-boxes in any four-round differential trail (see the left side of Table 3). Note that this bound
is tight. To obtain better bounds for Fides we adopt the mixed-integer linear programming
(MILP) technique proposed in [6] and [24] to find the minimum number of differentially
and linearly active S-boxes of the target ciphers. Using this technique and the optimizer
CPLEX [21], we obtained the differentially and linear bound up to 8 rounds Initialization and
Finalization of Fides. The results are listed in the left part of Table 3.

As shown in the table, there are at least 48 active S-boxes for eight-round differential and
linear trail, therefore for sixteen-round of Initialization and Finalization, there are at least
2 · 48 = 96 active S-boxes. This, combined with the maximum differential and linear prob-
ability of the S-box of 2−4 for both Fides-80 and Fides-96, means that the probabilities of
any differential and linear trail (assuming independent rounds) is 2−384 for any sixteen-round
differential (and linear) trail. Therefore, there is only a very small chance that a standard dif-
ferential or linear attack would lead to a successful attack on the Initialization or Finalization
of Fides.

Table 3: Bounds for differential and linear trails in Fides. On the left side the bounds are
shown for trails in the Initialization/Finalization and on the right side the bounds are shown
for collision producing trails in the message processing part.

Round Active S-box

1 0

2 4

3 7

4 16

5 22

6 32

7 42

8 48

Round Active S-box

1 -

2 -

3 -

4 -

5 -

6 52

7 49

8 48

Bounds for Collision Producing Trails. Assume we have a certain difference for the
message that may result in a zero difference in the state with a high probability after the
difference has been injected. Then this can be used in a forgery attack on Fides. Note that
a linear trail of a similar shape might be used for a distinguish attack on the keystream of
Fides.

However, the simple design of Fides allows to prove also good bounds against this kind of
differential and linear attacks. In more detail, using again the mixed-integer linear program-
ming (MILP) technique and the optimizer CPLEX we could show that any collision producing
differential or linear trail for Fides has at least 48 active S-boxes. In more detail, we found
that for 5 and less rounds, there does not exist such trails. For 6, 7 rounds, only trails with at
least 52 respectively 49 active S-boxes can result in a collision. For 8 and more rounds, only
trails with at least 48 active S-boxes can result into a collision, resulting in an upper bound
for the differential probability of 2−384.

Note that these bounds depends on the choice of the injection layer. For the design of
Fides we have tested several different injection layers and choose the one that resulted in the
best bound.

3.2 Impossible Differential Cryptanalysis

In this section, we will discuss the application of impossible differential cryptanalysis to Fides.
However, first we will introduce some properties of the matrix M used in MixColumns we need
in the analysis. In the following let “∗” denote the nonzero element (difference) and “0” denote
a zero element.

Property 1. If there is only one nonzero element in the input vector X, then after the
MixColumns operation there will be three nonzero elements in the output vector Y = MX.
Additionally, the positions of the nonzero elements are determined by the matrix M .

Assume that the input vector is X = (∗, 0, 0, 0)T , the output vector is determined as Y =
(0, ∗, ∗, ∗)T . Similarly, we get M(0, ∗, 0, 0)T → (∗, 0, ∗, ∗)T , M(0, 0, ∗, 0)T → (∗, ∗, 0, ∗)T and
M(0, 0, 0, ∗)T → (∗, ∗, ∗, 0)T .

Property 2. If there are two nonzero elements in the input vector X, then the number of the
nonzero elements in the output vector Y will be 2 or 4, and the positions of the nonzero
elements are again fixed by the matrix M .

Assume the input vector is X = (∗, ∗, 0, 0)T , then the output vector Y can be (∗, ∗, 0, 0)T or
(∗, ∗, ∗, ∗)T . The other five patterns can also result in the outputs in a similar way.

Property 3. If there are three nonzero elements in the input vector X, then the number of the
nonzero elements in the output vector Y might be 1, 3 or 4, and the positions of the nonzero
elements are fixed by the matrix M in some cases.

Assume the input vector is X = (∗, ∗, ∗, 0)T , and if there is only one nonzero element in the
output, from Property 1, we already know the output vector Y is (0, 0, 0, ∗)T . If the value is
3, then any three of the elements in the output are possible. The case for 4 is obvious.

Property 4. If all the four elements in the input vector X are nonzero, then the number of
the nonzero elements in the output vector Y might be 2, 3 or 4 at arbitrary positions.

SB SR

MC

SR−1

SB SR MC

SB SR MC

SB SR MC

SB MC

2R

8R

6R

9R

7R

5R

4R

3R

SR

?

?

1R

?

?

?

?

?

?

?

?

?

SR−1

SR−1

SR−1 MC−1

MC−1

MC−1

SB−1

SB−1

SB−1

SB−1 MC−1

CA

CA

CA

CA

CA

CA

CA

CA

CA

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ?

? ? ?

? ? ?

? ? ? ??

?

?

?? ? ? ?

? ? ?

? ? ?

? ? ? ??

?

?

??

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ?

? ? ?

? ? ?

? ? ? ??

?

?

? ?

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ??? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ?

? ? ? ?

? ?

?

?
? ? ? ??

Fig. 3: 9 Rounds Impossible Differential

Note that the number of nonzero elements before and after the MixColumns operation
can never be five. Based on these properties, we constructed an impossible differential for
9 rounds of Fides, which is depicted in Figure 3. Assume we start from the first round, if
the difference is at position (0,0) of the state, then after 4.5 rounds transformation of Fides

encryption, the vector in column 1 before the MixColumns operation in the fifth round is
(∗, ∗, 0, ?)T , whereas “?” denotes an indeterminate difference. Given the difference at position
(3,2) at the bottom of the distinguisher, decrypt 4.5 rounds of the transformation of Fides
the output vector in column 1 after MixColumns in the fifth round is (0, 0, 0, ?)T . This means
that M(∗, ∗, 0, ?)T → (0, 0, 0, ?)T , from Property 3 in the above, there is an contradiction
before and after the MixColumns operation. Therefore, a 9-round impossible differential has
been constructed.

Therefore, for Fides-80 and Fides-96, based on Claim 1, it should be difficult to recover
the key using these impossible differentials even if the internal state (right after the state
initialization) has been recovered.

4 Hardware Implementations and Comparison

In this section, we describe four different architectures of Fides-80 and Fides-96. Firstly, we
explore a round-based implementation, which completes one round in a single clock cycle.
This architecture is straightforward for implementation and its area is mainly occupied by
the 32 instances of S-box, 4 instances of MixColumns and the state register file.

S30
MC3

SB

S20
MC2

S30

S10
MC1

S20

S10

MC0

MC0 MC1 MC2 MC3

SB

S00 d_in

d_in S00

SBOX

S00 S10 S20 S30

CONTROL LOGIC

DATAPATH

CLOCK GATING

0

1

2

3

S00 S01 S02 S03 S04 S05 S06 S07

S10

S20

S30

S11 S12 S13 S14 S15 S16 S17

S21 S22 S23 S24 S25 S26 S27

S31 S32 S33 S34 S35 S36 S37

MC

Fig. 4: Serial architecture.

The second architecture is implemented in a serial fashion (see Figure 4). Its control logic
comprises a simple finite state machine, which orchestrates the data flow within the datapath.
The state is stored inside a fully-serial register file and its 32 elements are wired in a single shift
register. When SubBytes operation is performed, the output from SBOX is through MUX3 fed
into S37 and inputs S30, S20, and S10 are active in MUX2, MUX1, and MUX0, respectively. After
32 clock cycles the finite state machine enters the ShiftRows operation, which consumes 7 clock
cycles in total. The inputs S30, S20, and S10 are active in MUX3, MUX2, MUX1, respectively.
Except the first one, other rows of the register file are shifted simultaneously, while the glitch-
free clock gating logic ensures the correct schedule. Namely, when the registers in a single row

need to keep their value, the clock gating logic disables their clock, which is a considerably
cheaper solution than the usage of additional feedback multiplexers or scan registers. Finally,
when performing MixColumns, our architecture receives an input column-wise which is, from
the MC block, injected into the state through S07, S17, S27, and S37. Including 8 cycles of the
MixColumns operation, one round of Fides consumes 47 clock cycles in total.

S1
00

S1
10

S1
20

S1
30

State Reg.

1st share

S2
00

S2
10

S2
20

S2
30

State Reg.

2nd share

S3
00

S3
10

S3
20

S3
30

State Reg.

3rd share

S4
00

S4
10

S4
20

S4
30

State Reg.

4th share

MC

MC

MC

MC

S1
00

S1
10

S1
20

S1
30

S2
00

S2
10

S2
20

S2
30

S3
00

S3
10

S3
20

S3
30

S4
00

S4
10

S4
20

S4
30

S1
00 d in1

S1
00 ⊕ d in1

S2
00 d in2

S2
00 ⊕ d in2

S3
00 d in3

S3
00 ⊕ d in3

S4
00 d in4

S4
00 ⊕ d in4

S-Box with 4 shares

mask

SB1 SB2 SB3 SB4 mask xor

SB1

SB2

SB3

SB4

mask xor

Fig. 5: Threshold implementation.

To have a more complete overview of the overall hardware performance, we also implement
an architecture with 4 S-boxes. The only difference from the fully serial version is the SubBytes
operation which now is performed within 8 clock cycles only. At the expense of some additional
hardware, this way we manage to reduce the latency for more than two times.

Finally, the fourth explored architecture is a threshold implementation (TI) [26], which is
depicted in Fig. 5. It benefits from a secret-sharing based masking countermeasure against first
order side-channel analysis. Being secure even against the leakage caused by the presence of
the glitches, TI provides a relatively cheap countermeasure. While protecting linear functions
is trivial [27], it becomes a challenging task to properly address the security of non-linear
functions such as S-boxes [5,23]. As mentioned in Section 2.1, we pay special attention while
choosing the S-box such that it can be securely implemented in a single clock cycle, yet having
a small area footprint. In order to have a threshold sharing of a 5-bit S-box, fulfilling all the
properties, it is sufficient to use 4 shares.

We further observe that for any 6-bit optimal S-box, which is affine equivalent of our
selection, uniformity property is satisfied with more than 5 shares which contradicts with the
lightweight philosophy of Fides. Therefore, we aim to use re-masking over 6-bits as suggested
in [23] in order to achieve uniformity at the output of the S-box. Details of the re-masking
are shown in Fig. 6 as well as in Fig. 5 (dotted lines). We are given 4 uniform shares where
a simple XOR provides the unshared value and we store each share in a different storage
element. The threshold implementation of MixColumns or ShiftRows can be simply seen as 4
instances of those functions working in parallel, each using one share only. The S-box absorbs

m1

a1

a2

a3

b2

b1

a4 b4

b3

∑
mi

m2

m3

Fig. 6: Re-masking of 4 shares.

all shares and outputs 4 shares such that the each output share is independent of one input
share.

Table 4 gives a complete overview of our results. The smallest amongst all is a serial
architecture of Fides-80 (denoted as Fides-80-S), which consumes only 793 GE in 90 nm
CMOS library. We furthermore implement a round based architecture, which at the cost
of 3.5 times larger area achieves 47 times higher throughput. Note here that due to the
initialization phase, the additional latency per message is 16 clock cycles for round-based and
752 clock cycles for serial implementation, respectively. TI consumes roughly 3.5− 4.5 times
more area than the ordinary serial implementation.

The RTL code of our architectures has been written in Verilog and the synthesis carried
out in Cadence RTL Compiler version 11.10-p005. For that purpose, we used three different
libraries, including an open-cell 45 nm NANGATE [25] library, version PDKv1 3 v2010 12.
The power consumption has been measured using a High-Speed UMC 130 nm CMOS generic
process provided by Faraday Technology Corporation. Note that the power estimates are
obtained after synthesis and as such are not accurate enough to be used for comparison with
other designs available in the literature. Their purpose is rather to have a relative comparison
of our own implementations. Finally, we provide additional hardware figures using an advanced
NXP 90 nm CMOS process, outlining the performance of our design when implemented using
an industry compliant technology.

For the purpose of comparison, at the bottom of Table 4, we add figures of the recent
designs of ALE, c-Quark, ASC-1 and Hummingbird-2. Note that the performance of ALE
is given for the frequency of 20 MHz using a low-power 65 nm advanced CMOS library.
Additionally, although not providing the exact hardware figures, the authors of Grain-128a
estimate that the smallest implementation of their design consumes 2770 GE. For the sake of
completeness, we also include the figures of the AES-CCM mode. Note that the performance
of designs reported in [31] is actually the performance of unrolled architectures and as such is
not directly comparable to our implementations. We further note here that the security level
of all the designs we compare Fides to is different and needs to be taken into account when
considering the possible trade-offs between security, area, and speed.

What can be observed further from Table 4 is a substantial influence of the technology
choice on the overall hardware performance. A difference in the relative size of designs syn-
thesized in the advanced NXP 90 nm technology and the open-cell NANGATE library, for
instance, spans between 35 % and 65 %. This affirms the difficulty of such one-to-one compar-
ison, which is often seen in the literature. We therefore opt for making future comparisons to
our designs easier by including hardware figures obtained using the freely available open-cell
technology [25].

Table 4: Hardware performance of the implemented Fides architectures (synthesis results).
Latency is defined as the number of clock cycles per round while the throughput is observed
at 100 kHz assuming very long messages.

Design
Security Area Frequency Latency Throughput Power
(bits) (GE) (kHz) (kb/s) (µW)

Advanced NXP 90 nm CMOS process, typical case PVT (25◦ C, 1.2 V)

Fides-80-S 80 793 100 47 10.64 N/A
Fides-80-4S 80 1178 100 23 21.74 N/A
Fides-80-R 80 2922 100 1 500 N/A
Fides-80-T 80 2876 100 47 10.64 N/A
Fides-96-S 96 1001 100 47 12.77 N/A
Fides-96-4S 96 1305 100 23 26.09 N/A
Fides-96-R 96 6673 100 1 600 N/A
Fides-96-T 96 4792 100 47 12.77 N/A

NANGATE 45 nm CMOS process, typical case PVT (25◦ C, 1.1 V)

Fides-80-S 80 1244 100 47 10.64 N/A
Fides-80-4S 80 1819 100 23 21.74 N/A
Fides-80-R 80 4023 100 1 500 N/A
Fides-80-T 80 4696 100 47 10.64 N/A
Fides-96-S 96 1584 100 47 12.77 N/A
Fides-96-4S 96 2023 100 23 26.09 N/A
Fides-96-R 96 9180 100 1 600 N/A
Fides-96-T 96 7541 100 47 12.77 N/A

UMC 130 nm CMOS process, typical case PVT (25◦ C, 1.2 V)

Fides-80-S 80 1153 100 47 10.64 1.97
Fides-80-4S 80 1682 100 23 21.74 2.82
Fides-80-R 80 4175 100 1 500 7.90
Fides-80-T 80 4267 100 47 10.64 7.47
Fides-96-S 96 1453 100 47 12.77 2.49
Fides-96-4S 96 1870 100 23 26.09 3.12
Fides-96-R 96 8340 100 1 600 14.82
Fides-96-T 96 6812 100 47 12.77 11.84

[8] ST 65 nm CMOS LP-HVT process, typical case PVT conditions.

ALE 128 2579 20×103 105 121.9 94.87
ALE e/d 128 2700 20×103 105 121.9 102.32
ASC-1 A 128 4793 20×103 370 34.59 169.11
ASC-1 A e/d 128 4964 20×103 370 34.59 193.71
ASC-1 B 128 5517 20×103 235 54.47 199.02
ASC-1 B e/d 128 5632 20×103 235 54.47 207.13
AES-CCM 128 3472 20×103 452 28.32 128.31
AES-CCM e/d 128 3765 20×103 452 28.32 162.15

[3] TSMC 90 nm CMOS process, typical case PVT conditions.

c-Quark 128 3125 100 768 8.33 N/A
c-Quark 128 7100 100 24 266.67 N/A

[31] NANGATE 45 nm CMOS process, typical case PVT conditions.

Keccak-200-MD 80 7400 50×103 18 200 N/A
Photon–196-MD 80 11000 50×103 N/A N/A N/A
Quark-176-MD 80 5900 50×103 N/A N/A N/A
Spongent-176-MD 80 6500 50×103 N/A N/A N/A

[16] TSMC 180 nm CMOS process, unknown PVT conditions.

HB2-ee4c 128 3220 100 4 400 5.10
HB2-ee16c 128 2332 100 16 100 4.70
HB2-ee20c 128 2159 100 20 80 4.36

Fides-xy-S – Serial architecture (1 S-box).
Fides-xy-4S – Architecture with 4 S-boxes.
Fides-xy-R – Round-based architecture (32 S-boxes).
Fides-xy-T – Threshold implementation (1 S-box).

ABC-xyz-MD – MonkeyDuplex scheme (area is estimated from the graphs reported in [31]).

5 Conclusion

We have presented Fides, a very lightweight authenticated cipher especially suitable for con-
strained hardware environments. The results achieved in this work, including amongst others
a compact implementation of only 793 GE for 80-bit and 1001 GE for 96-bit security, signifi-
cantly outperform any previous design known by the authors. Based on the cryptographically
optimal 5-bit and 6-bit S-boxes, we have built a very compact threshold implementation whose
area requirements are as low as 2876 GE for a design attaining an 80-bit security level.

Acknowledgments. This work has been supported in part by the Austrian Government
through the research program COMET, project SeCoS (project number 836628) and by the
Austrian Science Fund (FWF), project TRP 251-N23, and is funded by the Major State
Basic Research Development Program of China (973 Plan) (No. 2013CB338004), National
Natural Science Foundation of China (No. 61073150), and Chinese Major Program of National
Cryptography Development Foundation (No. MMJJ20110201).

References

1. M. Ågren, M. Hell, T. Johansson, and W. Meier. Grain-128a: a new version of Grain-128 with optional
authentication. IJWMC, 5(1):48–59, 2011.

2. J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. Quark: A Lightweight Hash. In S. Mangard
and F.-X. Standaert, editors, CHES, volume 6225 of LNCS, pages 1–15. Springer, 2010.

3. J. P. Aumasson, S. Knellwolf, and W. Meier. Heavy Quark for secure AEAD. In DIAC - Directions in
Authenticated Ciphers, 2012.

4. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Duplexing the Sponge: Single-Pass Authenticated
Encryption and Other Applications. In A. Miri and S. Vaudenay, editors, Selected Areas in Cryptography,
volume 7118 of LNCS, pages 320–337. Springer, 2011.

5. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold implementations of all 3× 3 and 4× 4
s-boxes. In CHES, volume 7428 of LNCS, pages 76–91. Springer, 2012.

6. A. Bogdanov. On unbalanced feistel networks with contracting mds diffusion. Des. Codes Cryptography,
59(1-3):35–58, 2011.

7. A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. Spongent: A Lightweight
Hash Function. In Preneel and Takagi [28], pages 312–325.

8. A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser. ALE: AES-Based Lightweight
Authenticated Encryption. In 20th International Workshop on Fast Software Encryption – FSE, 2013.

9. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G. Leander, V. Nikov,
C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalçin. PRINCE - A Low-Latency Block
Cipher for Pervasive Computing Applications - Extended Abstract. In X. Wang and K. Sako, editors,
ASIACRYPT, volume 7658 of LNCS, pages 208–225. Springer, 2012.

10. CAESAR. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html.

11. C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations suitable for des-
likecryptosystems. Des. Codes Cryptography, 15(2):125–156, Nov. 1998.

12. J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In B. Honary, editor, IMA Int. Conf., volume
2260 of LNCS, pages 222–238. Springer, 2001.

13. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,
2002.

14. C. De Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - A Family of Small and
Efficient Hardware-Oriented Block Ciphers. In C. Clavier and K. Gaj, editors, CHES, volume 5747 of
LNCS, pages 272–288. Springer, 2009.

15. J. F. Dillon. APN polynomials: an update. In International Conference on Finite fields and applications
- Fq9, 2009.

16. D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith. The hummingbird-2 lightweight authen-
ticated encryption algorithm. In Proceedings of the 7th international conference on RFID Security and
Privacy, RFIDSec’11, pages 19–31, Berlin, Heidelberg, 2012. Springer-Verlag.

17. D. W. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith. The Hummingbird-2 Lightweight
Authenticated Encryption Algorithm. In A. Juels and C. Paar, editors, RFIDSec, volume 7055 of LNCS,
pages 19–31. Springer, 2011.

18. S. Even and Y. Mansour. A Construction of a Cioher From a Single Pseudorandom Permutation. In
H. Imai, R. L. Rivest, and T. Matsumoto, editors, ASIACRYPT, volume 739 of LNCS, pages 210–224.
Springer, 1991.

19. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash Functions. In P. Rog-
away, editor, CRYPTO, volume 6841 of LNCS, pages 222–239. Springer, 2011.

20. J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The LED Block Cipher. In Preneel and Takagi [28],
pages 326–341.

21. IBM. IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/integration/optimization/

cplex-optimizer/.
22. M. Knezevic, V. Nikov, and P. Rombouts. Low-latency encryption – is lightweight = light + wait?

In E. Prouff and P. Schaumont, editors, Cryptographic Hardware and Embedded Systems – CHES 2012,
volume 7428 of Lecture Notes in Computer Science, pages 426–446. Springer Berlin Heidelberg, 2012.

23. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A Very Compact and
a Threshold Implementation of AES. In K. G. Paterson, editor, EUROCRYPT, volume 6632 of LNCS,
pages 69–88. Springer, 2011.

24. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and linear cryptanalysis using mixed-integer
linear programming. In C. Wu, M. Yung, and D. Lin, editors, Inscrypt, volume 7537 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2011.

25. NANGATE. The NanGate 45nm Open Cell Library. Available at http://www.nangate.com.
26. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-channel attacks and

glitches. In Proceedings of Information and Communications Security, 8th International Conference, ICICS
2006, number 4307 in Lecture Notes in Computer Science, pages 529–545. Springer-Verlag, 2006.

27. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-channel attacks and
glitches. In ICICS, volume 4307 of LNCS, pages 529–545. Springer, 2006.

28. B. Preneel and T. Takagi, editors. Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of LNCS.
Springer, 2011.

29. M.-J. O. Saarinen. Related-key Attacks Against Full Hummingbird-2. In S. Moriai, editor, Fast Software
Encryption, LNCS. Springer, 2013. To appear.

30. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, , and T. Shirai. Piccolo: An Ultra-Lightweight
Blockcipher. In Preneel and Takagi [28], pages 342–357.

31. T. Yalcin and E. B. Kavun. On the Implementation Aspects of Sponge-based Authenticated Encryption
for Pervasive Devices. In Eleventh Smart Card Research and Advanced Application Conference – CARDIS,
2012.

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.nangate.com

	Fides: Lightweight Authenticated Cipher with Side-Channel Resistance for Constrained Hardware
	Begül Bilgin, Andrey Bogdanov, Miroslav Kneževic, Florian Mendel, and Qingju Wang

