
On the Effectiveness of the Remanence Decay
Side-Channel to Clone Memory-based PUFs

Yossef Oren1, Ahmad-Reza Sadeghi2, and Christian Wachsmann3

1 Tel-Aviv University, Israel
yos@eng.tau.ac.il

2 TU Darmstadt/CASED, Germany
ahmad.sadeghi@trust.cased.de

3 Intel CRI-SC at TU Darmstadt, Germany
christian.wachsmann@trust.cased.de

Abstract. We present a side-channel attack based on remanence de-
cay in volatile memory and show how it can be exploited effectively to
launch a non-invasive cloning attack against SRAM PUFs — an impor-
tant class of PUFs typically proposed as lightweight security primitive
with low overhead by using the existing memory of the underlying device.
We validate our approach against two SRAM PUF implementations in
65 nm CMOS ASICs. We discuss countermeasures against our attack
and propose the constructive use of remanence decay to improve the
cloning-resistance of SRAM PUFs.
Moreover, as a further contribution of independent interest, we show how
to use our evaluation results to significantly improve the performance of
the recently proposed TARDIS scheme, which is based on remanence
decay in SRAM and used as a time-keeping mechanism for low-power
clock-less devices.

Keywords: SRAM PUF, fault injection attack, side-channel analysis,
data remanence decay

1 Introduction

Physically Unclonable Functions (PUFs) have become an attractive research
area and are increasingly proposed as building blocks in cryptographic protocols
and security architectures. One major class of PUFs and the focus of this paper
are memory-based PUFs [6,20,28,17,10,18]. These PUFs are commonly proposed
as an alternative to secure non-volatile memory and are used in a variety of
anti-counterfeiting mechanisms and authentication schemes [19,30,6,7,24,25,4].

Memory-based PUFs are arrays of volatile memory elements, such as SRAM
cells [6,10], flip-flops [20,18] or latches [28,17]. These elements typically are bi-
stable circuits with two stable states corresponding to a logical 0 and 1. By
applying an external control voltage to the inputs of the element, it can be
forced to enter either of the two states. Memory-based PUFs exploit the follow-
ing phenomena: When powering up such an element without applying an external



control voltage, its state mainly depends on the physical characteristics of the
underlying transistors. Due to uncontrollable manufacturing variations, these
characteristics are unique for each physical instantiation of the element. Hence,
the state of all memory elements (after powering the memory without applying
a control voltage) can be used as a unique identifier (called the PUF response)
for the device containing the memory. However, since the PUF response could be
read out completely and copied to another device, a fundamental requirement on
the implementation of memory-based PUFs is to prevent unintended/unautho-
rized access to the PUF response. This requirement is indeed debatable, since it
implies the underlying memory to be tamper-evident and the presence of some
security mechanism protecting the PUF response against unintended access.

Memory-based PUFs are considered as very cost-effective by using the exist-
ing memory of the device they are integrated in [30,6,25,5,13,16,15]. However,
in this case the memory is also used to store the data of some other component
in the device and will at some point be overwritten with the data of this com-
ponent. In particular, volatile memory is typically initialized, i.e., overwritten
with a known bit pattern (usually all zeros or ones), before it is used as a data
storage. Further, although volatile memory loses the data it stores when it is
powered off, the data is not immediately lost but decays slowly over time [8,23].
Hence, it is very likely that any data written to the memory of a memory-based
PUF may affect the PUF’s response when the power has been removed only for
a short amount of time. Although this effect has been discussed in the litera-
ture [29,26,10,27,11], it has never been used to attack memory-based PUFs.

Contribution. We present the first fault injection attack based on remanence
decay in volatile memory, and show how it can be exploited for a non-invasive
cloning attack against SRAM-based PUFs. To the best of our knowledge this is
the first cloning attack on memory-based PUFs based on remanence decay. In
particular, our contribution is as follows:

First cloning attack on SRAM PUFs using remanence decay side channels. Our
attack recovers the secret response of a memory-based PUF in applications where
the underlying memory is overwritten with a known value after the PUF response
has been read. This attack can be applied but is not limited to all memory-PUF
based systems that share the PUF memory with some other functionality, which
is often suggested [30,6,25,5,13,16,15] to allow for cost-effective PUF implemen-
tations. We show that the attack is successful against small memory-based PUFs
even when using common lab equipment. The only requirements of the attack
are that the adversary can control the supply voltage of the device containing
the PUF and that the PUF memory is initialized with a known value before it
is used as a data storage, which typically is the case.

Experimental validation of the attack. We validated the feasibility of our attack
using two SRAM PUF implementations in two 65 nm ASICs and suggest several
improvements to the test setup to increase the performance of our attack.

2



Constructive use of remanence decay. We propose using remanence decay as a
source of side-channel information to enhance the cloning-resistance of SRAM
PUFs. Cloning such a PUF would require emulating the remanence decay behav-
ior, which increases the costs of a clone and may render cloning uneconomical.

Improved TARDIS time-keeping mechanism. As a contribution of independent
interest, we propose a time-memory tradeoff to dramatically reduce the complex-
ity of the recently proposed TARDIS [23] time-keeping mechanism for clock-less
devices from linear to logarithmic time, enhancing its applicability to many prac-
tical scenarios.

Outline. We introduce our notation and the system and adversary model in
Section 2. The attack is described in Section 3 and its experimental validation
is presented in Section 4. A practical instantiation of our attack is shown in
Section 5. We discuss the impact and improvements of the attack in Section 6
and make suggestions on the constructive use of remanence decay, including the
improved TARDIS algorithm, in Section 7. We give an overview of the related
work in Section 8 and finally conclude in Section 9.

2 Model and Preliminaries

We consider devices that contain a memory-based PUF and overwrite the under-
lying memory with a known value after the PUF response has been read. This
typically happens when the PUF memory is also used as a data storage for some
other functionality in the device, which is a common approach [30,6,25,5,13,16,15]
to cost-effective implementations of memory-based PUFs.

Initial State. Volatile memory is typically initialized, i.e., overwritten with a
specific bit pattern (usually all zeroes or ones), before it is used as a data storage.
We denote this pattern as the initial state of the memory.

Definition 1 (Initial State). The initial state of the memory is the matrix
M Init representing the data that is written to the memory before it is used as a
data storage, i.e., after the memory has been used as a PUF.

Start-up State. Observe that the data stored in volatile memory is typically
not immediately lost when the power to the memory is removed but decays slowly
over time [8,23]. Hence, when powered off only for a short time, the memory may
still hold some of the data that has been written to it before the power-cycle.
We capture this aspect by introducing the notion of the start-up state.

Definition 2 (Start-up State). Let vnom be the nominal supply voltage of the
memory. Consider the following experiment:

1. Set the supply voltage of the memory to 0 V for time t

3



2. Set the supply voltage of the memory to vnom
3. Read the states of all memory elements and store them in a matrix M t

We say that M t is the start-up state of the memory with respect to the time t.

PUF State. The response of a memory-based PUF corresponds to the start-up
state of the underlying memory, where the memory has been powered off long
enough that any data previously stored in it has decayed. We capture this aspect
by introducing the notion of the PUF state of a memory.

Definition 3 (PUF State). Let t∞ be the time the memory must be without
power for any data previously stored in it to be decayed. We denote the start-up
state M t∞ as the PUF state M PUF of the memory, i.e., M PUF := M t∞ .

Observe that, in case the memory has been powered off only for a short time
before it is used as a PUF, the PUF response may be distorted by the data
previously stored in the memory.

Device Behavior. At some point while the device is running, it reads the start-
up state of its memory and uses it as the PUF response in some computation. In
many applications the result of this computation can be observed from outside
the device. For instance, in PUF-based (authentication) protocols [30,25,4], the
device receives some query Q and responds with a message X that depends on
the PUF response. In these schemes, the response of the memory-based PUF
is typically used to derive a cryptographic secret that is used to compute X .
However, the device behavior is not limited to challenge-response protocols. In
the extreme case X could be only one single bit of information, e.g., indicating
whether the correct PUF response was extracted from the memory or not. For
instance, in PUF-based IP protection schemes [6,7,24], the device refuses to boot
in case the PUF response is incorrect, which can be observed by the adversary.
We capture this aspect by introducing the notion of device behavior.

Definition 4 (Device Behavior). Let M t be the start-up state (Definition 2)
of the device memory with respect to some time t. Further, let Q be some query
that can be sent to the device. We denote with X = Dev(M t ,Q) the response
to Q of the device using the start-up state M t. The algorithm Dev describes the
behavior of the device with respect to Q and M t.

Assumptions and Adversary Model. Following the common adversary model
of memory-PUFs [30,6,25,5,13,16,15], we assume that the adversary cannot sim-
ply read the plain PUF response from the underlying memory. This means that
the adversary does not know the start-up state M t (Definition 2) with respect
to any time t and, in particular, he does not know the PUF state M PUF (Defi-
nition 3). Further, we assume that all algorithms implemented in the device are
known to the adversary (Kerckhoffs’ principle). This means that the adversary
could compute X = Dev(M t ,Q) if he knew M t and Q. Moreover, the adversary

4



knows the initial state M Init (Definition 1) that is part of the algorithms used
by the device. Furthermore, we assume that the adversary can observe the de-
vice behavior (Definition 4) and that he can control the time t the memory is
powered off before it is used as a PUF. That is, the adversary can send some
query Q to the device and observe its reaction/answer X that depends on the
device’s start-up state M t .

3 Cloning SRAM PUFs Using Remanence Decay

The high level idea and approach of our attack is to recover the PUF response
in a device that overwrites the SRAM of the PUF with some data that is known
to the adversary (cf. Section 2). The attack principle is similar to the attack by
Biham and Shamir [2] (which we call Biham-Shamir attack in the following) to
extract a secret key stored in some device (e.g., a smart card).

The Biham-Shamir attack consists of two phases: In the first phase, the
adversary collects a sequence of ciphertexts, each encrypting the same plaintext
with a slightly different key. More detailed, the adversary requests the device
to encrypt the plaintext and, after he receives the corresponding ciphertext, he
injects a fault into the device that sets one bit of the key to a known value. The
adversary repeats this step until he set all the bits in the key to a known value. In
the second phase of the attack, the adversary iteratively recovers the secret key of
the device. More detailed, starting from the ciphertext that has been generated
by the device using the known key, the adversary performs an exhaustive search
for the key used by the device to generate each ciphertext collected in the first
phase. Since the keys of two consecutive ciphertexts differ in at most one single
bit and the value of this bit is known to the adversary, this exhaustive search is
linear in the bit-length of the key. This way, the adversary can recover the secret
key of the device with a total effort quadratic in the bit-length of the key.

Similarly we aim at extracting the secret PUF state from a device containing
an SRAM PUF. Similar to the Biham-Shamir attack, we iteratively collect a
series of device responses to the same query, each generated using a different
start-up state. In each iteration, we send the query to the device, record its
response (that depends on the start-up state), and then inject a fault to change
some bits in the start-up state. The fault injection is performed by carefully
controlling the amount of remanence decay undergone by the SRAM, e.g., by
increasing the time the SRAM is powered off between two iterations. This has
the effect that, due to the different decay times of the SRAM cells, some cells lose
the known value of the initial state and revert back to their unknown PUF state,
while others still keep their initial state. Further, the cells do not immediately
revert to their PUF state but there is a short transition phase where the memory
cell is metastable and takes a random state. Hence, in contrast to the Biham-
Shamir attack, the number of bits k that are different in the start-up states used
in two consecutive iterations is typically larger than one bit. However, as we
show in Section 4, k has an upper bound that highly depends on the method
and the accuracy of the equipment used to control the remanence decay.

5



In the second phase of the attack, we iteratively recover the unknown PUF
state starting from the known initial state. A trivial approach would be to per-
form a simple exhaustive search for all cells that have reverted to their PUF
state in the start-up states of two consecutive iterations of phase one. However,
while this approach works for small values of k, it is inefficient for large values
of k. In Section 6.2, we discuss several approaches to reduce the value of k by
improving the test setup and to reduce the complexity of the search for the
changed bit positions. Before we describe our attack in detail, we first explain
the underlying requirements and building blocks.

3.1 Controlling the Remanence Decay

An essential requirement for our attack is that the adversary can precisely control
the remanence decay in the SRAM. There are two approaches how this can be
achieved. The voltage-based approach directly changes the supply voltage to the
chip for a certain amount of time, while the time-based approach sets the supply
voltage of the chip to 0 V for a precisely-measured amount of time. In general,
the time-based approach is easier to use since it only requires a precise timer to
trigger the voltage drop, while the voltage-based approach requires an expensive
and precise digital-to-analog converter. For this reason, we focus on the time-
based approach.

3.2 Data Remanence Experiment

One major building block of our attack is the data remanence experiment where
the adversary observes how the remanence decay affects the behavior of the
device containing the PUF.

Definition 5 (Data Remanence Experiment). Consider a device that over-
writes the memory used by the PUF with some known data. Let vnom be the
nominal supply voltage of the device. Let M PUF be the PUF state (Definition 3)
and M Init be the initial state of the device memory. Further, let Dev be the algo-
rithm describing the device behavior (Definition 4) with respect to some start-up
state M t (Definition 2). The data remanence experiment X = DRE (M Init, t,Q)
is as follows:

1. Set the memory content of the device to M Init
2. Temporarily set the supply voltage of the device to 0 V for time t and then

set it back to vnom
3. Send the query Q to the device and observe its response X = Dev (M t ,Q)

3.3 Finder Algorithm

Another building block of our attack is the finder algorithm, which recovers the
PUF state based on the device behavior observed in a series of data remanence
experiments.

6



Definition 6 (Finder Algorithm). Let M ti+1 and M ti
be two start-up states

that consist of n bits and that differ in at most k < n bits, i.e., the Hamming
distance dist

(
M ti ,M ti+1

)
≤ k. Further, let Xi+1 = Dev

(
M ti+1 ,Q

)
for some

arbitrary device query Q. A finder algorithm is a probabilistic polynomial time
algorithm Finder (M ti

,Q,Xi+1) that returns M ti+1 .

The finder is most efficient when dist
(
M ti ,M ti+1

)
is minimal, ideally one. In

this case, Finder can recover an unknown n-bit start-up state M ti+1 from M ti

and Xi+1 by performing a simple exhaustive search with linear complexity in
n. However, dist

(
M ti

,M ti+1

)
is typically larger than one since multiple SRAM

cells may have similar remanence decay times or may be metastable (i.e., take
a random value) [9,23,1,14]. In the worst case, where up to k bits have changed
in a start-up state with n bits, a trivial finder performing an exhaustive search
may require up to

∏k
`=1
(

n
`

)
steps. Observe that n typically is a fixed system

parameter while k strongly depends on the quality of the equipment used for
controlling the remanence decay in the SRAM. As we discuss in Section 6, the
adversary can reduce k significantly by using more accurate equipment and he
may also use a Finder algorithm that is more efficient than the trivial approach.

3.4 Details of the Attack

The attack is detailed in Algorithm 1 and works as follows: The adversary chooses
an arbitrary device query Q (Step 1) and records the response XPUF generated by
the device using the PUF state M PUF (Step 2). Then, the adversary performs a
series of DRE experiments (Definition 5) where he slightly increases the power-off
time ti used in each experiment (Steps 3 and 4).4 This way, he obtains a sequence
of device responses X1, . . . ,Xf to the same query Q generated by the device using
the start-up states M t1 , . . . ,M tf

, respectively, where dist
(
M ti

,M ti+1

)
for all

1 ≤ i ≤ (f −1) is upper bounded by some value k. Observe that M t0 = M Init is
the initial state (Definition 1) and M tf

= M PUF is the PUF state (Definition 3)
of the SRAM. Next, the adversary uses the Finder algorithm (Definition 6) to
iteratively recover M PUF from the device responses observed in Steps 3 to 4.
Specifically, starting from the known initial state M t0 = M Init, the adversary
iteratively recovers each M ti+1 from M ti

and Xi+1 until he arrives at the PUF
state M tf

= M PUF (Step 6).

Theorem 1 (Success of the Attack). The attack in Algorithm 1 successfully
recovers the PUF state M PUF. The worst case complexity of the attack when
using a trivial Finder algorithm (Definition 6) is f ·

∏k
`=1
(

n
`

)
, where f is the

number of DRE experiments (cf. Definition 5), n is the size of the SRAM and k
is the maximum Hamming distance of the start-up states M ti

and M ti+1 used
by the device in two consecutive DRE experiments for all 1 ≤ i ≤ (f − 1).

Note that the complexity of the attack strongly depends on the value of k, which
highly depends on the accuracy of the equipment and the method used to control
4 An adversary using the voltage-based approach would gradually lower the supply
voltage (for a fixed amount of time) instead of increasing the power-off time.

7



Algorithm 1 Extracting the PUF State of an SRAM PUF-Enabled Device
Consider a device that writes a known initial state M Init (Definition 1) to the SRAM
after it has been used as a PUF. Let t∞ be the decay time (cf. Definition 3) of the
SRAM and let ∆t be the difference between the power-off times used in two consecutive
DRE experiments (cf. Definition 5). Let i, f ∈ N be indices. The attack works as follows:

1. Fix an arbitrary device query Q
2. Record XPUF = DRE (M Init, t∞,Q)
3. Set i← 0 and t0 = 0
4. Repeat:

(a) Set i← i+ 1
(b) Set ti = ti−1 +∆t
(c) Record Xi = DRE (M Init, ti,Q)
(d) Stop when Xi = XPUF and set f = i

5. Set i← 0 and M t0 = M Init
6. Repeat:

(a) Set i← i+ 1
(b) Compute M ti = Finder

(
M ti−1 ,Q,Xi

)
(c) Stop when i = f

7. Return Mtf

the remanence decay in the SRAM. Typical values are k = 0.0485 ·n for the time-
based approach and k = 0.0285 ·n for the voltage-based approach (cf. Section 4).
Moreover, in our experiments we observed a decay time of t∞ = 2, 000 µs and
used ∆t = 1 µs, resulting in f = d2, 000 µs/1 µse = 2, 000.

Proof (Theorem 1). It follows from Definition 5 that XPUF = Dev
(
M t∞ ,Q

)
and

from Definition 3 that M t∞ = M PUF. Hence, in Step 2, XPUF is the response
of the device using the PUF state. Furthermore, it follows from Definition 5
that Xi = Dev (M ti

,Q) in Step 4(c). Hence, after Step 5 we have obtained a
sequence of device responses X0, . . . ,Xf that correspond to the memory states
M t0 , . . . ,M tf

. Due to the different decay times of the individual SRAM cells and
the metastability in the SRAM, two memory states M ti and M ti+1 differ in at
most k < n bits. Hence, dist

(
M ti ,M ti+1

)
≤ k and it follows from Definition 6

that Finder
(
M ti−1 ,Q,Xi−1

)
= M ti

in Step 6(b). By definition it holds that
M t0 = M Init and by induction over i it follows that M tf

= M PUF in Step 7.
It remains to show the complexity of the attack. In the worst case, Finder

performs an exhaustive search over all
∏k

`=1
(

n
`

)
possible positions of the up to

k bits in which the n-bit state M ti+1 may differ from M ti . This means that in
the worst case Finder must verify

∏k
`=1
(

n
`

)
guesses to find the correct memory

state M ti in each of the f iterations of Step 6(b). This leads to an overall attack
complexity of f ·

∏k
`=1
(

n
`

)
, which finishes the proof. ut

8



Workstation 

FPGA 
Evaluation Board 

with PUF ASIC 

Pulse Generator ASIC 
Supply 
Voltage 

Control and PUF Data 

Control 

Fig. 1: Test setup with Xilinx Virtex 5 FPGA, ASIC evaluation board with one
PUF ASIC, Agilent 81150 pulse generator and workstation.

4 Experimental Validation of the Attack

Our attack requires that only a small number of SRAM cells transition from
the known (initial) state to the PUF state in two consecutive DRE experiments.
This number is mainly affected by two factors: (1) the accuracy of the equipment
used to control the remanence decay in the SRAM during the attack and (2) the
number of SRAM cells that are metastable, i.e., that take a random state. In this
section, we investigate the impact of both factors on the remanence decay in the
SRAM PUFs implemented in two 65 nm CMOS ASICs. Our evaluation focuses
on the time-based approach to control the remanence decay and concludes with
some preliminary results on the voltage-based approach.

4.1 Test Setup

Our analysis is based on data obtained from two ASICs that have been manufac-
tured in TSMC 65 nm CMOS technology within an Europractice multi-project
wafer run. Each ASIC implements four different SRAM PUF instances, each
using 8 kBytes of SRAM. The test setup consists of an ASIC evaluation board,
a Xilinx Virtex 5 FPGA, an Agilent 81150 pulse/function/arbitrary pulse gener-
ator and a workstation (Figure 1). The evaluation board allows controlling the
ASIC supply voltage using an external power supply. In each experiment, we
wrote a pre-determined bit pattern (i.e., all ones) to the SRAM, used the pulse
generator to deliver a temporary voltage drop with precisely controlled width
and amplitude and finally read back the memory contents of the SRAM. The
rated accuracy of the pulse generator is a temporal resolution of 5 ns and an
amplitude resolution of 25 mV. To accelerate the remanence decay process, we
did not place any coupling capacitors between the pulse generator’s output and

9



Fig. 2: A Chip-Scale View of Time-based Remanence Decay

the ASIC’s supply voltage input. The interaction with the evaluation board and
the ASICs is performed by the FPGA, which is connected to a workstation that
controls the PUF evaluation and the pulse generator. Further, the workstation is
used to process and store the data obtained from the ASICs. All tests have been
performed at room temperature (approx. 25◦C) in an air conditioned laboratory.

4.2 Chip-Scale Modeling
The purpose of this experiment was to observe and to reproduce the decay
behaviour reported in [23] and gauge its stability and reproducibility for the
SRAM PUF. A series of data remanence experiments with an initial state M Init
consisting of only ones was performed. Each experiment was repeated 10 times
with 1,000 different power-off times t between 300 µs and 2, 000 µs. During the
power-off time the supply voltage was set to 0 V. After each experiment we
measured for each SRAM cell the probability that it still stores the value we
wrote to it before the power cycle. We call this probability the bias of the cell.

Our results are depicted in Figure 2. The graph on the right represents a
zoomed-in portion of the graph on the left. In both graphs, the x-axis corresponds
to the total time the ASIC was without power, while the y-axis corresponds to
the mean bias over all SRAM cells. Each cross in the graph corresponds to a
single experiment. As shown in the left graph, the average bias over all SRAM
cells decays very reliably from 1 to the expected 0.5 [1,14] during the course
of 2 ms. As the detailed view in the graph on the right shows, there was a
small variation in the measured bias between identical experiments, which was
either due to the physical limitations of our test setup or due to the inherent
metastability of some of the SRAM cells.

4.3 Bit-Scale Modeling
The next experiment investigates whether the individual SRAM cells have dif-
ferent transition times, which is required in our attack. With the transition time

10



Fig. 3: A Bit-Scale View of Time-based Remanence Decay

200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

S
in
g
le

b
it

b
ia
s

T ime without power (µs)

Fig. 4: A Close-up Look at a Single Bit

of an SRAM cell we mean the point in time where the cell loses the value that
has been written to it and reverts to its PUF state. Based on the results of the
previous experiment, we estimated the bias of each SRAM cell over time.

Figure 3 displays a 2-D contour plot of the cell-level behaviour of the SRAM
PUF. Again, the graph on the right represents a zoomed-in portion of the graph
on the left. Each horizontal row in the graph corresponds to the bias of a single
SRAM cell selected out of 500 representative cells whose final bias was close
to zero.5 For the purpose of legibility, the cells were sorted in the graph by
their transition time. The left and right gray lines on the graph correspond to
times when the bias of each bit is one and zero, respectively, while the black line
corresponds to the time when the bias of each bit is 0.5. A detailed look at the
evolution of the bias of a single bit over time is shown in Figure 4.

As shown in Figure 3, each individual SRAM cell has a different remanence
decay time surrounded by a short period of metastability in which the cell may
enter both states. The median metastability period measured was 56 µs and the
5 We only selected cells with a final bias close to zero since the cells with a final bias
close to one will not show any decay behavior in our experiment where we wrote a
logical one to all memory cells before the power cycle.

11



200 400 600 800 1000 1200 1400 1600 1800 2000
200

400

600

800

1000

1200

1400

1600

1800

2000

Transition time for ASIC 1(µs)

T
ra

n
si
ti
o
n
ti
m
e
fo
r
A
S
IC

2
(µ

s)

Fig. 5: Correlation Between the Transition Time in Two Different Devices

worst-case metastability rate was 4.83 %. In general, the maximum size of a PUF
that can be attacked using our methodology is limited by the metastability, as
we discuss further in Section 6.2.

4.4 Cross-Device Comparison

Next we investigated whether the transition times of the SRAM cells in one
device allow to infer some information on the transition times of the SRAM cells
in another device. A second goal of this experiment was to get a first impression
of whether the transition times in SRAM cells could be used to identify individual
SRAM chips, an idea we discuss in Section 6. In this experiment, we measured
the bias over time and the transition times of each SRAM cell in both ASICs.
Again, we considered only cells whose PUF state is zero.

The results are shown in Figure 5. Each cross in the graph corresponds to the
bias of a single SRAM cell. The x-coordinate of each point is the transition time of
the SRAM cell on the first ASIC, while the y-coordinate is the transition time of
the same SRAM cell on the second ASIC. As Figure 5 shows, the transition times
of the two ASICs are virtually uncorrelated, which we confirmed by computing
the normalized cross correlation ρ of both data sets, which is ρ = −0.053. Our
results are in line with the findings by Holcomb et al. [11] who also suggest using
the remanence decay behaviour as a source of unique information to identify
individual devices.

4.5 Time-Based vs. Voltage-Based Attacks

As discussed in Section 3.1, there are two ways of controlling the remanence
decay in an SRAM: Varying the time for which the device is held without power
and varying the voltage experienced by the device. It has been shown [23] that

12



Table 1: Preliminary Comparison of Voltage-Based and Time-Based Remanence

Remanence control Voltage-based Time-based

Bits stable at 1 79.86 % 79.80 %
Bits stable at 0 17.29 % 15.37 %
Metastability rate (worst case) 2.85 % 4.83 %

the voltage-based approach is less sensitive to temperature variations, making
it potentially more effective in an attack than the time-based approach. While
the pulse generator we used in our experiments had a very sensitive temporal
resolution of 5 ns, it had an amplitude resolution of only 25 mV, which was
not sufficient to carry out a complete attack using the voltage-based approach.
However, we still present preliminary results based on a single stable voltage and
a single time period.

Our results are summarized in Table 1, which shows that using the voltage-
based approach results in a significantly lower metastability rate than using the
time-based approach. This means that a voltage-based attack will potentially
be effective in situations where the time-based attack will fail. An interesting
observation is that the set of metastable SRAM cells in both experiments was
quite different, which indicates that most of the inaccuracies in our experiments
are due to the limitations of our test setup and not due the physical properties
of the SRAM PUF itself.

5 Practical Validation of the Attack

To investigate the effectiveness of our attack in a practical setting, we created a
standard implementation of an SRAM PUF-based authentication scheme. This
scheme uses a standard secret-key-based challenge-response protocol and derives
the underlying key from the PUF response using a basic repetition code [3].6

More detailed, during the enrollment of the device, the memory addresses
of those 128 SRAM bytes whose PUF state is highly biased (i.e., that have a
Hamming weight of 0, 1, 7 or 8) are stored as the public helper data, each
representing one bit of the secret key stored in the PUF. The key is reconstructed
from the PUF as follows: The 128 SRAM bytes whose addresses are stored in the
helper data are read from the SRAM and the value of each bit in the key is set
as the result of a simple majority voting over all bits in the respective byte. The
resulting secret key K is then used in the secret key-based challenge-response
protocol, i.e. X = MACK(Q), where MAC is a message authentication code.

The attack is as in Section 3.4. However, we use an optimized Finder algorithm
(Definition 6) that only searches for key candidates with a Hamming distance less

6 We omit the linear encoding used in [3] and the privacy amplification typically used
in PUF-based key storage since it has no effect on our attack.

13



than 10 bits from the previous key, which significantly improves the performance
of the attack compared to the trivial Finder described in Section 3.3.

The overall running time of the attack is estimated as 253.6 MAC operations.
Considering that modern CPUs can perform 231 AES operations per second, the
total cost of the attack when using an AES-based MAC is 222.6 CPU-seconds,
or approximately two CPU-months. The attack can easily be parallelized by
testing multiple attempts or multiple key candidates simultaneously, making it
even more practical for moderately-funded adversaries.

6 Impact of Our Attack and Countermeasures

6.1 Impact

Our results in Section 4 show that by carefully controlling the power-off times
of the SRAM PUF, one can reliably control the number of metastable bits as
required by the attack described in Section 3. Our current best results show that
the average number of metastable SRAM cells can be limited to about 1 % of the
total memory size. This means that, even if we use the trivial finder algorithm
discussed in Section 3.3, common lab equipment and the less effective time-
based approach to control the remanence decay in the SRAM, we can recover
the PUF response of a 216-bit SRAM PUF by making at most 264 calls to
the Dev algorithm (cf. Definition 4). Using the voltage-based approach with the
same finder algorithm and equipment as in the time-based approach, we can
extract the response of a 315-bit SRAM PUF in the same time. Further, our
results in Section 5 show that, depending on the post-processing of the PUF
responses, our attack can also be applied to systems using larger PUFs. Hence,
it is problematic to overwrite the memory of an SRAM PUF with a known value,
which, however, is required when the PUF memory is also used for other purposes,
as suggested in many prior works [30,6,25,5,13,16,15]. This particularly holds for
resource-constrained devices with only small amounts of SRAM, such as RFIDs
or medical implants [30,25,5], where SRAM PUFs without shared memory are
impractical.

6.2 Improving the Attack

One approach to lower the complexity of our attack is using more accurate
equipment that allows a very precise control of the remanence decay in the
SRAM using the voltage-based approach, which limits the number of metastable
bits and the complexity of the finder algorithm (cf. Section 3.3).

Furthermore, several optimizations of the finder algorithm are possible: The
order in which the individual SRAM cells transition from their initial state to
their PUF state is different for the time-based and the voltage-based approach
(cf. Section 4.5). Further, in some scenarios the adversary may be able to control
the initial state of the SRAM. This results in four different ways to observe the
decay behavior of each SRAM cell and allows the adversary to chose the way

14



with the lowest metastability rate for his attack, which can significantly reduce
the complexity of the naive finder algorithm (cf. Section 3.3).

Another approach to improve the complexity of the finder algorithm is to take
advantage of the algorithms used by the device to process the PUF responses
(cf. Section 5). These algorithms typically include an error correction mecha-
nism [3] to handle errors in the PUF response that come from environmental
variations affecting the underlying physical object. Due to this error correction
the device response changes only when the error correction mechanism fails.
Hence, the finder algorithm needs to consider only one single candidate of each
codeword class. This can either be done explicitly by considering the structure of
the error correcting code or by casting the problem as an optimization problem
and using an optimizer [22].

6.3 Countermeasures

There are several countermeasures that prevent our attack by breaking the un-
derlying assumptions but that are impractical in low-resource scenarios such
as RFIDs and sensors [30,25,5]. One approach to prevent the attack described
in Section 3 is using an additional memory that can only be accessed by the
PUF. However, this contradicts the idea of using the existing memory of the
device and significantly increases the implementation costs. Another approach
is to wait until any value stored in the memory has decayed before reading the
PUF response. However, this requires the device to have some notion of time and
significantly increases the boot time, which is problematic in many applications.
Further, the attack can be prevented by designing the algorithms processing the
PUF response such that the device behavior for different start-up states is indis-
tinguishable by the adversary. However, this seems to imply the use of complex
cryptographic primitives such as anonymous authentication schemes that typ-
ically exceed the capabilities of resource-constrained devices for which SRAM
PUFs with shared memory have been proposed [30,25,5].

7 Constructive Use of Data Remanence Decay

7.1 Device Authentication Based on SRAM Remanence Decay

The remanence decay behavior can be used to authenticate an SRAM to some
verifier. Specifically, using the same approach as in our attack, a verifier could
force the SRAM into a partially reverted state by writing some value to the
SRAM and then powering the device off for a carefully controlled amount of
time. Since the verifier knows the (secret) PUF state of the SRAM and the decay
behavior of the genuine device, he can determine the partially reverted SRAM
state of the device and check whether it matches the expected state of the SRAM
to be authenticated. Care must be taken that this additional functionality does
not expose the device to our attack, for example by requiring that the verifier
successfully authenticates to the device before he can access the SRAM.

15



Note that it is much more difficult to clone such an SRAM PUF since the
clone must emulate the SRAM decay behavior, which requires the clone to con-
tain a time-keeping mechanism, raising its costs. Our results suggest that for an
SRAM of size n bits there are n logn bits of entropy encoded in the order in
which individual SRAM cells revert to their PUF state. However, further eval-
uations are needed to asses the practicality of this approach, in particular the
temperature dependency and the effect of aging on the decay behavior of SRAM
must be investigated.

7.2 Improving the TARDIS Time-Keeping Algorithm

The use of SRAM remanence decay has recently been proposed as a time-keeping
mechanism for clock-less low-power devices, such as passive RFID tags [23]. This
mechanism, called TARDIS, allows a clock-less device to estimate how much time
has passed since its last power-down and aims to impede oracle attacks. TARDIS
consists of two main elements: The Init algorithm which sets all SRAM cells to
a fixed value (all ones) and the Decay algorithm which determines how long the
device has been without power based on the number of ones that are still stored
in the SRAM. Observe that the Init algorithm requires to write a one to each cell
of the SRAM, while the Decay algorithm must read the value of each cell while
the device is booting. These two operations consume a non-negligible amount of
power and add an additional 15.2 ms to the start-up time of the device.

Our observations on the behaviour of remanence decay can be used to dra-
matically improve the performance of the TARDIS system. As our results show,
the transition time of each bit is uniquely determined by its individual data
remanence voltage (DRV). By profiling the SRAM in an offline phase, we can
thus determine the order in which the SRAM cells return to their PUF state
and store this ordering in the non-volatile memory of the device. Now, if we ob-
serve that a certain group of bits has reverted to its PUF state, we immediately
know that all bits which have a shorter transition time have also returned to
their PUF state. Similarly, if we observe that a certain group of bits is still in
its initial state, we immediately know that all bits that have a longer transition
time are also still in their initial state. Knowing this ordering, we can replace the
linear-time Decay algorithm of [23] with the well known binary search algorithm
that takes logarithmic time. To deal with metastability, the algorithm should
sample not only one but a group of bits for each transition time period.

If the device needs to detect only whether or not the entire SRAM has
returned to its PUF state, another improvement is possible that dramatically
decreases the running time of both the Init and the Decay algorithms from linear
time to constant time. In this case, both algorithms need only to access those
SRAM cells that are known to be the last to revert to the PUF state.

Since most of the applications described in [23] can be adapted to use these
improvements, our results enhance the applicability of the TARDIS system to
practical scenarios. We stress that the SRAM used by the TARDIS scheme
cannot be used as an SRAM PUF since its content is well-known in this case.

16



8 Related Work

While the impact of remanence decay on the randomness that can be extracted
from SRAM cells and the reliability of SRAM PUFs has been discussed in the lit-
erature [29,26,10,27,11], it has never been used as a side channel to attack SRAM
PUFs. In fact, there are only a few papers [12,21] discussing side channel attacks
in the context of PUFs. However, these papers mainly focus on the side channel
leakage of the algorithms processing the PUF response and only vaguely discuss
potential side channels of PUFs. The impact of abnormal operating conditions
on the unpredictability and the reliability of memory-based PUFs has been evalu-
ated [1,14] but no results on fault injection attacks on PUFs have been reported.
In contrast, to the best of our knowledge, we present the first cloning attack
that injects faults into the SRAM PUF and uses the data remanence effects in
SRAM as a side channel to recover the (secret) PUF response.

Data remanence in DRAM has been used to extract security-sensitive data
from the random access memory of PCs and workstations [8]. While these attacks
aim to recover some data that has been written to an unprotected memory, the
goal of our attack is to recover the start-up pattern of an SRAM PUF that is
typically protected by some kind of access control mechanism.

9 Conclusion

We demonstrated a simple non-invasive cloning attack on SRAM PUFs using
remanence decay as a side-channel and validated its feasibility against two SRAM
PUF implementations in two 65 nm CMOS ASICs. Our attack and evaluation is
general and can be optimized for concrete systems. Our evaluation results show
that even without optimizations, attacks on small SRAM PUFs are feasible using
common lab equipment. We discussed countermeasures against our attack and
suggest using remanence decay to improve the cloning-resistance of SRAM PUFs.
As a contribution of independent interest, we showed how our evaluation results
can be used to improve the performance of TARDIS [23], a recently proposed
time-keeping mechanism for clock-less devices.

We mainly focused on the time-based approach to control the data remanence
decay in the SRAM. We are currently evaluating the voltage-based approach
that seems to be more promising than the time-based approach and may help
to increase the performance and efficiency of our attack. Other directions for
future work include the design of non-trivial finder algorithms that, e.g., exploit
the properties of the algorithms used by the device processing the PUF response.

Acknowledgements. We thank Ünal Kocabaş for preparing the lab experi-
ments in the first phase of this work. The development and manufacturing of
the PUF ASIC used in this work has been supported by the European Commis-
sion under grant agreement ICT-2007-238811 UNIQUE.

17



References

1. Bhargava, M., Cakir, C., Mai, K.: Comparison of bi-stable and delay-based phys-
ical unclonable functions from measurements in 65nm bulk CMOS. In: Custom
Integrated Circuits Conference (CICC). pp. 1–4. IEEE (2012)

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Advances in Cryptology (CRYPTO). LNCS, vol. 1294, pp. 513–525. Springer
(1997)

3. Bösch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Cryptographic Hardware and Embedded Sys-
tems (CHES). LNCS, vol. 5154, pp. 181–197. Springer (2008)

4. Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-
based secure key storage. In: ACM Workshop on Scalable Trusted Computing
(ACM STC). pp. 59–64. ACM (2011)

5. Guajardo, J., Asim, M., Petković, M.: Towards reliable remote healthcare appli-
cations using combined fuzzy extraction. In: Towards Hardware-Intrinsic Security.
pp. 387–407. Information Security and Cryptography, Springer (2010)

6. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Physical unclonable functions
and public-key crypto for FPGA IP protection. In: Field Programmable Logic and
Applications (FPL). pp. 189–195. IEEE (2007)

7. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Brand and IP protection with
physical unclonable functions. In: IEEE International Symposium on Circuits and
Systems (ISCAS). pp. 3186–3189. IEEE (2008)

8. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold-boot
attacks on encryption keys. Communications of the ACM 52(5), 91–98 (2009)

9. Holcomb, D., Burleson, W., Fu, K.: Initial SRAM state as a fingerprint and source
of true random numbers for RFID tags. In: Workshop on RFID Security (RFIDSec)
(2007)

10. Holcomb, D., Burleson, W.P., Fu, K.: Power-Up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Transactions on Computers
58(9), 1198–1210 (2009)

11. Holcomb, D.E., Rahmati, A., Salajegheh, M., Burleson, W.P., Fu, K.: DRV-
fingerprinting: Using data retention voltage of SRAM cells for chip identification.
In: Hoepman, J.H., Verbauwhede, I. (eds.) Radio Frequency Identification. Security
and Privacy Issues. LNCS, vol. 7739, pp. 165–179. Springer (2013)

12. Karakoyunlu, D., Sunar, B.: Differential template attacks on PUF enabled crypto-
graphic devices. In: Workshop on Information Forensics and Security (WIFS). pp.
1–6. IEEE (2010)

13. Kardas, S., Kiraz, M.S., Bingol, M.A., Demirci, H.: A novel RFID distance bound-
ing protocol based on physically unclonable functions. In: Radio Frequency Identi-
fication: Security and Privacy Issues (RFIDSec). LNCS, Springer (2011)

14. Katzenbeisser, S., Kocabaş, U., Rožić, V., Sadeghi, A.R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Cryptographic Hardware and Embedded
Systems (CHES). LNCS, vol. 7428, pp. 283–301. Springer (2012)

15. Koeberl, P., Li, J., Maes, R., Rajan, A., Vishik, C., Wójcik, M.: Evaluation of
a PUF device authentication scheme on a discrete 0.13µm SRAM. In: Interna-
tional Conference on Trusted Systems (INTRUST). LNCS, vol. 7222, pp. 271–288.
Springer (2012)

18



16. Koeberl, P., Li, J., Rajan, A., Vishik, C., Wu, W.: A practical device authentication
scheme using SRAM PUFs. In: Conference on Trust and Trustworthy Computing
(TRUST). LNCS, vol. 6740, pp. 63–77. Springer (2011)

17. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract:
The butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-
Oriented Security (HOST). pp. 67–70. IEEE (2008)

18. van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing
(ACM STC). pp. 53–62. ACM (2010)

19. Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extract-
ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13(10), 1200–1205 (2005)

20. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: Benelux Workshop on Information and System Security (2008)

21. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Side-channel analysis of PUFs and
fuzzy extractors. In: Trust and Trustworthy Computing (TRUST). LNCS, vol. 6740,
pp. 33–47. Springer (2011)

22. Oren, Y., Renauld, M., Standaert, F.X., Wool, A.: Algebraic Side-Channel attacks
beyond the Hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
Cryptographic Hardware and Embedded Systems (CHES). LNCS, vol. 7428, pp.
140–154. Springer (2012)

23. Rahmati, A., Salajegheh, M., Holcomb, D., Sorber, J., Burleson, W.P., Fu, K.:
TARDIS: Time and remanence decay in SRAM to implement secure protocols on
embedded devices without clocks. In: USENIX Security Symposium. pp. 36–52.
USENIX Association (2012)

24. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: ending piracy of integrated circuits.
Computer 43(10), 30–38 (2010)

25. Sadeghi, A.R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy
by physically unclonable functions. In: Towards Hardware-Intrinsic Security. pp.
281–305. Information Security and Cryptography, Springer (2010)

26. Saxena, N., Voris, J.: We can remember it for you wholesale: Implications of data
remanence on the use of RAM for true random number generation on RFID tags
(RFIDSec 2009) (2009)

27. Selimis, G., Konijnenburg, M., Ashouei, M., Huisken, J., de Groot, H., van der
Leest, V., Schrijen, G.J., van Hulst, M., Tuyls, P.: Evaluation of 90nm 6T-SRAM
as physical unclonable function for secure key generation in wireless sensor nodes.
In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on. pp.
567–570. IEEE (2011)

28. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit
using process variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)

29. Tokunaga, C., Blaauw, D., Mudge, T.: True random number generator with a
metastability-based quality control. IEEE Journal of Solid-State Circuits 43(1),
78–85 (2008)

30. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Topics in Cryptology
(CT-RSA). LNCS, vol. 3860, pp. 115–131. Springer (2006)

19


	On the Effectiveness of the Remanence Decay Side-Channel to Clone Memory-based PUFs
	1 Introduction
	2 Model and Preliminaries
	3 Cloning SRAM PUFs Using Remanence Decay
	3.1 Controlling the Remanence Decay
	3.2 Data Remanence Experiment
	3.3 Finder Algorithm
	3.4 Details of the Attack

	4 Experimental Validation of the Attack
	4.1 Test Setup
	4.2 Chip-Scale Modeling
	4.3 Bit-Scale Modeling
	4.4 Cross-Device Comparison
	4.5 Time-Based vs. Voltage-Based Attacks

	5 Practical Validation of the Attack
	6 Impact of Our Attack and Countermeasures
	6.1 Impact
	6.2 Improving the Attack
	6.3 Countermeasures

	7 Constructive Use of Data Remanence Decay
	7.1 Device Authentication Based on SRAM Remanence Decay
	7.2 Improving the TARDIS Time-Keeping Algorithm

	8 Related Work
	9 Conclusion


