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Abstract. This paper explores the potential for using genus 2 curves
over quadratic extension fields in cryptography, motivated by the fact
that they allow for an 8-dimensional scalar decomposition when using
a combination of the GLV/GLS algorithms. Besides lowering the num-
ber of doublings required in a scalar multiplication, this approach has
the advantage of performing arithmetic operations in a 64-bit ground
field, making it an attractive candidate for embedded devices. We found
cryptographically secure genus 2 curves which, although susceptible to
index calculus attacks, aim for the standardized 112-bit security level.
Our implementation results on both high-end architectures (Ivy Bridge)
and low-end ARM platforms (Cortex-A8) highlight the practical benefits
of this approach.

1 Introduction

Elliptic curve cryptography [29, 34] is a popular approach to realize public-key
cryptography. One of the main reasons to employ elliptic curves, rather than
using more traditional settings like finite fields, is efficiency. According to [41],
the performance gain when transferring the Diffie-Hellman protocol [13] from
finite fields to elliptic (genus 1) curves at the 128-bit security level is an order of
magnitude. There is an active research area dedicated to enhancing the core oper-
ation in curve-based protocols: the scalar multiplication. A novel approach that
facilitates fast scalar multiplications is the Gallant-Lambert-Vanstone (GLV)
method [18]. If an elliptic curve E(Fq) comes equipped with a non-trivial en-
domorphism, then a scalar k can be decomposed into two “mini-scalars”, both
of which are approximately half the bit-length of k: merging these mini-scalars
means that the number of required point doublings in the scalar multiplication
can be reduced by a factor of two. The GLV method was extended by Galbraith,
Lin and Scott (GLS) [17], who show that regardless of the existence of an endo-
morphism on E(Fq), one can achieve a decomposition by considering the points
E(Fqm) for m > 1. Furthermore, [17] explains that if E already comes equipped
with a useful endomorphism over Fq, then the GLV and GLS endomorphisms
can be combined to achieve higher degree decompositions and increased perfor-
mance. At Asiacrypt 2012, Longa and Sica [33] demonstrated this GLV/GLS
combination to achieve a 4-dimensional scalar decomposition on elliptic curves



over the quadratic extensions of a large prime field (i.e. E(Fp2)), and set the cur-
rent software speed record for computing scalar multiplications over non-binary
fields. The authors of [8] recently showed the practical potential of hyperelliptic
(genus 2) curves in cryptography. One attractive aspect of genus 2 curves is that,
in general, their Jacobian group JacC(Fp) has a larger endomorphism ring than
that of genus 1 curves. This means that over prime fields or over extension fields
of the same degree, the highest possible degree of the GLV/GLS decomposition
is twice as large in genus 2 as it is in genus 1.

In this paper we consider 8-dimensional scalar decompositions by exploring
the use of genus 2 curves over quadratic extension fields. To the best of our
knowledge, this is the first time an 8-dimensional scalar decomposition has been
implemented and studied in detail, addressing two of the open problems posed
in the original GLS paper [17, §9]. Using decompositions of this size leads to
practical performance issues that do not arise in the 2- and 4-dimensional case;
we highlight some pitfalls and present solutions in a variety of scenarios. In
contrast to elliptic curves, “faster-than-generic” attacks are known on genus 2
curves over Fp2 . Namely, one can use the “Weil descent” attack [15] to map
the discrete logarithm problem to a higher dimensional abelian variety over Fp,
where index calculus attacks are possible [2, 19]. We assess the current state-of-
the-art in index calculus attacks [21, 12] to give conservative security estimates,
which present a strong case for the curves we use at the currently standardized
112-bit security level [40].

Since most high-end hardware architectures work with 64-bit words and many
embedded platforms work with 32-bit words (like the ARM), using 64-bit primes
means that our arithmetic in the ground field is respectively performed using
one and two computer words only. We explore different approaches for arithmetic
in Fp, while using lazy reduction techniques from the pairing community [3] to
achieve efficient arithmetic in Fp2 . In addition to the 8-dimensional GLV/GLS
approach, we consider “generic” genus 2 curves (curves which do not exploit
any special properties) and the Kummer surface over Fp2 . Our implementation
results on a 64-bit Ivy Bridge processor and a Cortex-A8 ARM CPU show that
this approach is competitive with the current state-of-the-art in elliptic curve
cryptography, although we reiterate that our work targets the 112-bit security
level, while most of the work we (are able to) compare against targets the 128-
bit security level. Our implementations targeting 64-bit platforms will be made
publicly available through [6].

2 Preliminaries

In this paper we work with “imaginary” hyperelliptic curves of genus 2 over a
quadratic extension of large prime fields. Such curves can be written as C/Fp2 :
y2 = x5 + f3x

3 + f2x
2 + f1x + f0. We use JacC(Fp2) to denote the Jacobian

group and we abbreviate the Mumford representation of general (i.e. weight 2)
divisors on JacC(Fp2) to write (x2 + u1x + u0, v1x + v0) as (u1, u0, v1, v0) in
affine space, or as (U1 : U0 : V1 : V0 : Z) in homogeneous projective space. We



explore three algorithms for computing scalar multiplications on JacC(Fp2): (i)
the generic algorithm which computes the scalar multiplication using a sequence
of divisor doublings and additions only, (ii) the combination of the GLV [18] and
GLS [17] algorithms which both exploit endomorphisms (but in a different way)
to accelerate computations, and (iii) Gaudry’s fast formulas [20] for arithmetic
on a Kummer surface associated to JacC(Fp2).

GLV and GLS algorithms. The Gallant, Lambert and Vanstone (GLV) method
[18] involves using special curves that come equipped with efficiently computable
endomorphisms other than Frobenius. For example, when p ≡ 1 mod ` for an odd
prime `, the curve C/Fp : y2 = x` + a comes equipped with φ : (x, y) 7→ (ξ`x, y),
for ξ` a non-trivial `-th root of unity in Fp. On the other hand, the Galbraith,
Lin and Scott (GLS) method [17] does not rely on curves of a special form,
but rather exploits the fact that, for any curve defined over Fp, the p-power
Frobenius endomorphism πp acts non-trivially on points in extension fields of
Fp. Galbraith et al. [17, §3] further show how the GLV and GLS ideas can be
combined to give more advantageous decompositions. Namely, for curves that
are both defined over extension fields and have additional (non-trivial) endomor-
phisms, they show that this is achieved by taking the isogeny φ (constituting ψ)
to be the twisting isomorphism corresponding to the additional endomorphism(s)
on C. For special Buhler-Koblitz curves [10] of the form C/Fp2 : y2 = x5 + a, we
discuss this combined approach in detail in Section 4.

The Kummer surface. Gaudry [20] showed that scalar multiplications can
be computed more efficiently on a Kummer surface associated to the Jacobian
of genus 2 curves than on the Jacobian itself. Recently, the authors of [8] used
Gaudry’s fast formulas on genus 2 curves over prime fields to set a new speed
record for computing constant-time scalar multiplications. In this work we carry
these techniques across to curves defined over quadratic extension fields, and
since the method of using the Kummer surface essentially remains unchanged,
we refer to [8, §5] for the details.

The CM Method over Quadratic Extension Fields. To obtain crypto-
graphically strong genus 2 curves over Fp2 , where p is a prime suitable for fast
arithmetic as described in Section 5, we use the complex multiplication (CM)
method. To find strong curves over Fp2 instead of over Fp, we search for CM
fields where p decomposes in a different way. The details are explained in [24],
and we use the specific constructions in [24, §3.6.5, Ex. 5 and 6].

3 Curve Choices and Security

Weil Descent and Index Calculus. Attacks which are asymptotically "faster-
than-generic" are known to exist on curves over extension fields, using a combi-
nation of the ideas of Weil descent and index calculus (see for example [15, 2, 19,
22, 16, 11, 23, 21]). In this work we are concerned with the best-known attacks
on the discrete logarithm problem (DLP) in the Jacobian of a genus 2 curve C



defined over a quadratic extension field Fp2 . Following [11, 23], one attack trans-
fers the DLP on Jac(C)(Fp2) to the Jacobian of a higher genus curve C̃ which
lies on the abelian variety over Fp obtained via Weil restriction of scalars from
Jac(C)(Fp2) [16, §7.1 - Ex. 7]. In general it can be hard to find such a curve
C̃, and for the curves we use, the best known technique finds curves C̃ of genus
8 to use in the attack detailed in [11, 23]. Certain cases of genus 2 (imaginary)
hyperelliptic curves C over quadratic extension fields Fp2 have been classified as
“weak” [45, 35, 26], in that their special form makes it easier than usual to find
a suitable curve C̃ on the Weil restriction of Jac(C). None of the curves we use
fall into these weak classifications: we can essentially rule this out by ensuring
that our curves cannot be written as C : y2 = (x− α) · h(x), with h(x) ∈ Fp[x].
Thus, to the best of our knowledge, the fastest attack on our curves is due
to Gaudry [21], with further improvements provided by Nagao [39]. Gaudry’s
attack works directly on the abelian variety obtained as the Weil restriction
of scalars, and solves the discrete logarithm problem on genus g hyperelliptic
curves over Fpn , where both n and g are fixed, in heuristic asymptotic running
time Õ(p2−

2
ng ), i.e. not including the “constants” depending on n and g and the

logarithmic factors in p. For the sake of obtaining a better comparison with the
generic Pollard rho algorithm, we reveal some of the factors that are hidden by
the Õ. One of the constants in the Õ depends exponentially on both g and n
as 23n(n−1)g [39]. Hence, a conservative lower bound on the asymptotic running
time of this attack, expressed in terms of group operations on the genus g curve,
is O(p2−

2
ng · 23n(n−1)g · log(p)r) for some r ≥ 1. To give a modest security es-

timate for our genus 2 curves over quadratic extension fields (g = n = 2), we
take r = 1, ignore other constants involved and keep the O in terms of group
operations on the dimension 4 abelian variety obtained as the Weil restriction of
Jac(C). Hence, we arrive at p3/2 · 212 · log(p) group operations as a conservative
estimate of a lower bound on the complexity of Gaudry’s attack for genus 2
curves over Fp2 .

Generic curves, Buhler-Koblitz curves, and Kummer Surfaces. For each
of the 3 algorithms (generic, Kummer, 8-GLV/GLS) considered in this work,
we used the CM method to find curves over quadratic extension fields with
characteristic less than 264 that fall into 3 different categories: those which use
a Montgomery-friendly prime of the form (231− c1) · 232− 1 to target the 32-bit
(ARM) environment, those which use a NIST-friendly prime of the form 264−c2
to target 64-bit platforms, and those which use the Mersenne prime 261− 1 that
can employ specialized Montgomery- and NIST-like reduction (cf. Section 5). We
note that all our fields3 have p ≡ 3 mod 4, so that the quadratic extension can
always be constructed as Fp2 = Fp[i]/(i2+1). Table 1 summarizes the curves that
we use in this paper together with the arithmetic approach taken (Montgomery,
NIST or special) and the security claims. The curve parameters are given in the

3 We also considered the prime p = 264− 232 +1 ≡ 1 mod 4 which looks attractive for
32-bit platforms using NIST-like reduction, however our experiments showed that
the Montgomery-friendly primes were faster.



Table 1. An overview of our implementations targeting the 112-bit security level. The
security estimate (in bits) resulting from index calculus (i.c.) and Pollard rho (rho)
attack are stated. For each instance, we state the prime p and the bit-lengths of the
cofactor h and prime r where the group order is h · r. For the Kummer instances, we
also show the size of the prime (sub)group order r′ of the twist.

algorithm reduction base field p |h|2 |r|2 |r′|2
security (bits)
rho i.c.

special 261 − 1 38 207 - 103 109
generic Mont. (231 − 307656) · 232 − 1 36 217 - 108 112

NIST 264 − 189 36 221 - 110 113

special 261 − 1 38 207 228 103 109
Kummer Mont. (231 − 307656) · 232 − 1 36 217 245 108 112

NIST 264 − 189 36 221 250 110 113

special 261 − 1 32 213 - 105 109
8-GLV/GLS Mont. (231 − 201) · 232 − 1 31 222 - 109 112

NIST 264 − 2285 33 224 - 111 113

full version of this paper [9]. The security estimate for the Pollard rho attack [43]
is obtained using log2

(√
πr

2#Aut

)
, where #Aut is the size of the automorphism

group of C. In our case all of the GLV/GLS curves have #Aut = 10, while all the
other curves have #Aut = 2. The runtime of the index calculus attack depends
on p, while the complexity of the Pollard rho attack depends on the (sub)group
order r. When searching for curves, we aimed to balance the attack complexity of
both approaches in order to enhance performance: relaxing the size of r does not
decrease the level of claimed security for index-calculus, but results in smaller
scalars (and faster scalar multiplications). This explains why the subgroup orders
r in Table 1 are significantly smaller than 256 bits – our target for the Pollard rho
security was to aim slightly below our estimate for the index calculus algorithms
for the sake of being conservative. Of the 10 isomorphism classes of Buhler-
Koblitz curves over p = 261− 1, we chose the one corresponding to the Jacobian
group with the largest prime factor of size 213 bits.

4 8-dimensional GLV/GLS

4.1 8-GLV/GLS on Buhler-Koblitz Curves over Fp2

Following the description in [17, §5], we use a BK curve of the form C/Fp2 :
y2 = x5 + u10, with p ≡ 1 mod 10 and u10 ∈ Fp2 such that u ∈ Fp20 . Let
C ′/Fp : y2 = x5 + 1. The map φ−1 : C → C ′ defined as φ−1 : (x, y) 7→
(x/u2, y/u5) takes points in C(Fp2) to points in C ′(Fp20), where the p-power
Frobenius map πp : C ′ → C ′ acts non-trivially. Finally, the map φ : C ′ → C
defined as φ : (x′, y′) 7→ (u2x′, u5y′) moves the result of πp back to C(Fp2).
Composing these maps into ψ = φπφ−1 gives ψ : C → C, defined as ψ : (x, y) 7→(
xp · (u−2)p−1, yp · (u−5)p−1

)
; notice that 10 | p−1 and u10 ∈ Fp2 together imply



that this map is defined over Fp2 . Since we use p ≡ 3 mod 4 and construct Fp2
as Fp2 = Fp[i]/(i2 + 1), we have zp = z̄ for all z ∈ Fp2 , where z̄ denotes the
complex conjugate of z. This ψ map on C/Fp2 extends to give an endomorphism
on Jac(C), given (for general divisors) as

ψ : (u1, u0, v1, v0) 7→ (α · ū1, β · ū0, γ · v̄1, δ · v̄0), (1)

where α = u−2(p−1), β = u−4(p−1), γ = u−3(p−1) and δ = u−5(p−1) are all pre-
computed constants in Fp2 . Besides the conjugations which are almost for free, it
follows that the cost of computing ψ on general divisors is 4 Fp2-multiplications,
and it is easily verified that the minimal polynomial of ψ on Jac(C) is Φ20(t) =
t8 − t6 + t4 − t2 + 1 [17, §5].

Remark 1 (Higher powers of ψ). Scalar decompositions of dimension greater
than 2 require the computation of higher powers of ψ on divisors. In all of our
cases, applying ψi with i > 1 costs no more than applying ψ itself: we simply have
a different tuple of 4 precomputed constants (αi, βi, γi, δi) ∈ F4

p2 that allow us to
compute ψi as in Eq. (1). In fact, applying even powers of ψ is always cheaper
than odd powers, since for ψ2j we always have (α2j , β2j , γ2j , δ2j) ∈ F4

p, so the
multiplications required in (1) are now by base field elements. Additionally, for
ψ2j , we also have δ2j = (−1)j which saves one such multiplication, and finally
for even powers of ψ the complex conjugations undo themselves, which saves
us performing negations. For 8-GLV/GLS, we need to apply powers of ψ up to
ψ7, so we bear in mind the following order of preference (from cheapest to most
expensive): (i) ψ4, (ii) {ψ2, ψ6}, and (iii) {ψ,ψ3, ψ5, ψ7}.

4.2 Decomposing the Scalar

Let r be a large prime factor that divides the Jacobian group order of a BK curve
C/Fp2 and let D be a divisor of order r on Jac(C). Since the minimal polynomial
of ψ is Φ20(t) (see Section 4.1), it follows that ψ(D) = [λ]D where λ < r ∈ Z
is a root of t8 − t6 + t4 − t2 + 1 ≡ 0 mod r. Park, Jeong and Lim [42] gave a
simple algorithm that achieves GLV/GLS decompositions through division in
the ring Z[ψ]. The first step in this algorithm is to precompute a short vector
in the GLV lattice L, which (in our 8-dimensional case) involves finding a short
a = (a0, . . . , a7) ∈ Z8 in the lattice whose basis (matrix) has leading diagonal
(r, 1, . . . , 1) ∈ Z8 and first column (r,−λ, . . . ,−λ7) ∈ Z8, and where all other
entries are zero. We then set α =

∑7
i=0 ai ·ψi and compute a quotient/remainder

pair corresponding to the division k/α in Z[ψ], namely we find the quotient
β and the remainder ρ such that k = βα + ρ in Z[ψ]. The first observation
here is that since a ∈ L, we have αD = O for all D of order r, and thus
[k]D = βαD + ρD = ρD. Since ρ is the remainder in the division by α, its
coefficients in Z[ψ] are also small, so we write ρ =

∑7
i=0 ki · ψi, from which our

8 mini-scalars are k0, . . . , k7.
Besides the 8 precomputed “short” constants a0, . . . , a7 that must be input

into the decomposition routine, there are 9 additional precomputed constants



Algorithm 1 8-dimensional decomposition of the scalar k on Buhler-Koblitz
curves over Fp2 (read the algorithm from left to right and from top to bottom).
Input: The scalar k, the small constants a0, . . . , a7 ∈ Z and large constants
b0, . . . , b7, N ∈ Z.

Output: The mini-scalars k0, . . . , k7.
y0 ← b

k·b0
N
e,y1 ← b

k·b1
N
e,y2 ← b

k·b2
N
e,y3 ← b

k·b3
N
e,y4 ← b

k·b4
N
e,y5 ← b

k·b5
N
e,y6 ← b

k·b6
N
e,y7 ← b

k·b7
N
e,

k0 ← k, u ← a0 · y0, k0 ← k − u, u ← a0 · y1, v ← a1 · y0, u ← u + v, k1 ← −u, u ← a2 · y0,
v ← a0 · y2, u ← u + v, v ← a1 · y1, u ← u + v, k2 ← −u, u ← a3 · y0, v ← a0 · y3, u ← u + v,
v ← a1 · y2, u ← u + v, v ← a2 · y1, u ← u + v, k3 ← −u, u ← a0 · y4, v ← a4 · y0, u ← u + v,
v ← a1 · y3, u ← u + v, v ← a3 · y1, u ← u + v, v ← a2 · y2, u ← u + v, k4 ← −u, u ← a0 · y5,
v ← a5 · y0, u ← u + v, v ← a1 · y4, u ← u + v, v ← a4 · y1, u ← u + v, v ← a2 · y3, u ← u + v,
v ← a3 · y2, u ← u + v, k5 ← −u, u ← a0 · y6, v ← a6 · y0, u ← u + v, v ← a1 · y5, u ← u + v,
v ← a5 · y1, u ← u + v, v ← a2 · y4, u ← u + v, v ← a4 · y2, u ← u + v, v ← a3 · y3, u ← u + v,
k6 ← −u, u ← a0 · y7, v ← a7 · y0, u ← u + v, v ← a1 · y6, u ← u + v, v ← a6 · y1, u ← u + v,
v ← a2 · y5, u ← u + v, v ← a5 · y2, u ← u + v, v ← a3 · y4, u ← u + v, v ← a4 · y3, u ← u + v,
k7 ← −u, u ← a1 · y7, v ← a7 · y1, u ← u + v, v ← a2 · y6, u ← u + v, v ← a6 · y2, u ← u + v,
v ← a3 · y5, u ← u + v, v ← a4 · y4, u ← u + v, v ← a5 · y3, u ← u + v, k0 ← k0 + u, k2 ← k2 − u,
k4 ← k4 + u, k6 ← k6 − u, u ← a6 · y3, v ← a7 · y2, u ← u + v, v ← a3 · y6, u ← u + v, v ← a4 · y5,
u ← u + v, v ← a5 · y4, u ← u + v, v ← a2 · y7, u ← u + v, k1 ← k1 + u, k3 ← k3 − u, k5 ← k5 + u,
k7 ← k7 − u, u ← a4 · y6, v ← a5 · y5, u ← u + v, v ← a6 · y4, u ← u + v, v ← a7 · y3, u ← u + v,
v ← a3 · y7, u ← u + v, k0 ← k0 + u, u ← a7 · y4, v ← a6 · y5, u ← u + v, v ← a4 · y7, u ← u + v,
v ← a5 · y6, u ← u + v, k1 ← k1 + u, u ← a7 · y5, v ← a6 · y6, u ← u + v, v ← a5 · y7, u ← u + v,
k2 ← k2 + u, u ← a7 · y6, v ← a6 · y7, u ← u + v, k3 ← k3 + u, u ← a7 · y7, k4 ← k4 + u.

that aid a faster division [42]. Let g(t) ∈ Z[t] be the minimal polynomial of
α ∈ Z[ψ] with constant term N , so that we can write it as g(t) = t · h(t) + N .
We precompute α̂ = −h(α) =

∑7
i=0 biψ

i, which is N/α in Z[ψ]. Along with the
scalar k, we input the 8 values a0, . . . , a7, the 8 values b0, . . . , b7, and N into the
decomposition algorithm from [42, §5.2], which we present in three-operand form
in Algorithm 1. The first line of Algorithm 1 shows the most non-trivial part
of decomposing k on the fly, while the rest of the algorithm is straightforward.
For i = 0, . . . , 7, we compute the rounded division yi = bk·biN e using only integer
operations. We find the smallest b′ such that N < 2bb

′
, where b is the width of the

machine word-size (32 or 64 in practice). We then precompute `i = b 2
bb′ ·bi
N e ≥ 0,

so that the division can now be computed as yi = b `i·k
2bb′
c. The division by 2bb

′

comes for free: it can be implemented by a shift of the machine words of the
results. Depending on the sign of k, the result can be off by one due to the
rounding, but in practice this does not influence the size of the mini-scalars.

4.3 Constructing the Lookup Table

After the scalar k is decomposed into 8 mini-scalars ki < 2m, each corresponding
to the divisor Di = sign(ki) · ψi(D), following the standard approach [17, 33, 8]
(for 2- and 4-dimensional decompositions) would mean computing the scalar mul-
tiplication by first precomputing a lookup table L[i] =

∑7
`=0

(⌊
i
2`

⌋
mod 2

)
·D`,

for 0 ≤ i < 28. When simultaneously processing the jth bit of each of the mini-
scalars, the precomputed multiple L[i] is added to the accumulator of the main
loop, for i =

∑7
`=0 2`

(⌊
k`
2j

⌋
mod 2

)
. The advantage here is that only one dou-

bling and one addition are used for each of the m bits in the mini-scalar. The
precomputation phase, computing the entries of the L[i], is relatively inexpensive
for 2- and 4-dimensional GLV/GLS. In the setting of 8-GLV/GLS however, com-
puting these 28 = 256 entries is computationally significant: roughly speaking,



Table 2. Generating the lookup table in constant time for 8-dimensional GLV/GLS,
where the divisors Di are computed efficiently from D and ki sequentially as follows
(the cost is stated in the table): D0 = D, D1 = φ(D0), Di = φ2(Di−2) for i ∈ {2, 3},
Di = φ4(Di−4) for i ∈ {4, 5, 6, 7}, Di = sign(ki) · Di for 0 ≤ i < 8. The second
argument in the mixed sums is the affine divisor.

operation D3D2D1D0 op.

T1[0]← O 0 0 0 0 -
T1[1]← D0 0 0 0 1 -
T1[2]← D1 0 0 1 0 ψ
T1[3]← T1[1] + T1[2] 0 0 1 1 AFF
T1[4]← D2 0 1 0 0 ψ2

T1[5]← T1[1] + T1[4] 0 1 0 1 AFF
T1[6]← T1[2] + T1[4] 0 1 1 0 AFF
T1[7]← T1[6] + T1[1] 0 1 1 1 MIX
T1[8]← D3 1 0 0 0 ψ2

T1[9]← T1[1] + T1[8] 1 0 0 1 AFF
T1[10]← T1[2] + T1[8] 1 0 1 0 AFF
T1[11]← T1[10] + T1[1] 1 0 1 1 MIX
T1[12]← T1[8] + T1[4] 1 1 0 0 AFF
T1[13]← T1[12] + T1[1] 1 1 0 1 MIX
T1[14]← T1[12] + T1[2] 1 1 1 0 MIX
T1[15]← T1[14] + T1[1] 1 1 1 1 MIX

operation D7D6D5D4 op.

T2[0]← O 0 0 0 0 -
T2[1]← D4 0 0 0 1 ψ4

T2[2]← D5 0 0 1 0 ψ4

T2[3]← T2[1] + T2[2] 0 0 1 1 AFF
T2[4]← D6 0 1 0 0 ψ4

T2[5]← T2[1] + T2[4] 0 1 0 1 AFF
T2[6]← T2[2] + T2[4] 0 1 1 0 AFF
T2[7]← T2[6] + T2[1] 0 1 1 1 MIX
T2[8]← D7 1 0 0 0 ψ4

T2[9]← T2[1] + T2[8] 1 0 0 1 AFF
T2[10]← T2[2] + T2[8] 1 0 1 0 AFF
T2[11]← T2[10] + T2[1] 1 0 1 1 MIX
T2[12]← T2[8] + T2[4] 1 1 0 0 AFF
T2[13]← T2[12] + T2[1] 1 1 0 1 MIX
T2[14]← T2[12] + T2[2] 1 1 1 0 MIX
T2[15]← T2[14] + T2[1] 1 1 1 1 MIX

constructing this full-sized lookup table would be as expensive as computing the
scalar multiplication in the generic way (i.e. not using endomorphisms). An ob-
servation is that in practice m is usually small (m < 34), so that we do not need
to precompute the entire table and we can compute the required entries on-the-
fly. Unfortunately, computing a random table element might require multiple
additions (in the worst case) and no performance gain can be expected when
using this approach.

We present two different approaches that solve this problem (which can both
be seen as an extension to the approach described in [32], but in the special case
of two tables). Both approaches generate two lookup tables consisting of 24 = 16
elements each. So instead of computing the single large table L, one can compute
two significantly smaller tables T1 and T2 such that T1[i] =

∑3
`=0(b i

2`
c mod 2) ·

D` and T2[i] =
∑3
`=0(b i

2`
c mod 2) ·D`+4, for 0 ≤ i < 24. This has the advantage

of significantly lowering the precomputation cost of the tables, but increases the
number of “per bit” curve additions from one to two when processing the mini-
scalars. The two methods we present differ in how the tables are generated: the
first approach is slightly slower than the second, but has the advantage that it
runs in constant time.

The constant-time approach. The straight-forward approach to generate the
two lookup tables T1 and T2 is to first compute Ti[j] for i ∈ {1, 2} and j ∈
{1, 2, 4, 8} using (at most) the ψ map for each computation – we prioritize higher
even powers of ψ following Remark 1. Next, the other elements are computed



Table 3. Summary of costs for a single 8-GLV/GLS scalar multiplication, where
max{|ki|} < 2m. The left side of the table gives the cost and number of occurrences
of the 5 divisor operations used for the table generation (T ) and when computing
the scalar (S), which are combined to give a total cost of 8-GLV/GLS in terms of
m. For each of the implementations in this work, the right side of the table uses the
average value of m to give the average number of multiplications, squarings and ad-
ditions required in 8-GLV/GLS. While the costs reported correspond to the simple,
constant-time precomputation strategy, the final column on the right side gives the
number of additions (both mixed and affine) that are replaced with ψ’s if the faster
precomputation strategy is employed. All averages were taken over 10 million scalar
decompositions.

div formulas cost per.
T S curve av. average cost av.

found in operation m [m, s, a] ψ’s
DBL [8, Alg. 1] 36m+ 6s+ 34a - m p611 26.43 [4039, 490, 3070] 9.15
ADD [8, Alg. 2] 44m+ 4s+ 29a - 2m Mont. (i) 27.53 [4176, 505, 3171] 8.90
MIX [8, Alg. 3] 37m+ 5s+ 29a 12 - Mont. (ii) 31.10 [4618, 555, 3499] 8.41
AFF [9] 29m+ 6s+ 29a 10 - NIST (i) 27.84 [4214, 509, 3199] 9.25
ψ Eq. (1) 4m 7 - NIST (ii) 31.71 [4693, 563, 3554] 8.41
total: (124m+ 762)m+ (14m+ 120)s+ (92m+ 638)a

as Ti[j] = Ti[k] + Ti[j − k] for j > 1 and k < j, and where k is chosen so that
the fastest possible formulas can be applied each time. Namely, elements that
are obtained by using an addition become projective divisors, whilst elements
that are in T1,2[j] for j ∈ {1, 2, 4, 8} (which are computed using the ψ map) are
affine. Adding two affine divisors together to give a projective divisor is faster
than performing a mixed addition between an affine and projective divisor, so we
prioritize this affine-only addition where possible. We modified the formulas for
the mixed-addition operation to formulas for an affine-affine addition operation,
which are given in the full version of this paper [9]. Compared to mixed-additions,
this lowers the required number of multiplications in Fp2 from 37 to 29. We
denote the operations of projective doubling, projective addition, mixed addition
and addition between two affine divisors by DBL, ADD, MIX and AFF respectively.
Table 2 outlines our approach to compute both lookup tables in constant time.
Table 3 summarizes the total cost for both the precomputation of the lookup
tables and the computation of the scalar of the 8-GLV/GLS routine as a function
of the maximum bit-length m of the mini-scalars ki. We use m, s and a to
denote the costs of computing multiplications, squarings and additions in Fp2
respectively.

Using ψ to speed up precomputations. If we are not concerned with imple-
mentations which need to run in constant time and aim to optimize for perfor-
mance only, then the endomorphism ψ can be used to accelerate the computation
of T1 and T2. The reason we can not use ψ in the same way for each scalar is
that its usefulness and applicability depends on the signs of the ki, which change
each time. We use an example to illustrate: define si = sign(ki) ∈ {−1,+1},
and suppose that after computing D0, . . . , D7 (which are negated according



to the signs of k0, . . . , k7), we compute T1[3] ← T1[1] + T1[2] = D0 + D1.
When computing T1[6], which is usually computed using an affine addition as
T1[6] = T1[2] + T1[4] = D1 +D2, we can possibly use ψ to compute D1 +D2. If
the signs s0, s1, s2 are equal then T1[6] = D1 +D2 = ψ(D0 +D1), while if s0 and
s2 are equal and s1 = −s0, then T1[6] = D1 +D2 = −ψ(D0 +D1). Alternatively,
if s0 6= s2, then we still need (at least) one addition on top of ψ(D0 + D1) to
compute D1 +D2 and so using the original addition between T1[2] and T1[4] is
preferred.

In the full version [9] we outline the complete strategy which exhausts each
possibility of using ψ to recycle prior computations before resorting to a di-
visor addition. As in the above example, the usefulness of previous values is
completely dependent on the combinations of the associated signs. As we pro-
ceed further into the algorithm, the chances of reusing previous computations
generally increases. For example, T2[12] would ordinarily require the addition
T2[12] = T2[8] + T2[4] = D7 + D6, but it could also possibly be computed as
any of ψ(D6 +D5), ψ2(D5 +D4), ψ4(D3 +D2), ψ5(D2 +D1) or ψ6(D1 +D0),
depending on whether the associated si align favorably. Again, we prioritize the
possible application of even powers of ψ according to the hierarchy discussed
in Remark 1. We note that anytime ψ is used to recycle previously computed
sums, they are now acting on projective (instead of affine) divisors. This re-
quires an updated description of ψ, which is given as ψ : (U1 : U0 : V1 : V0 : Z) 7→(
α · Ū1 : β · Ū0 : γ · V̄1 : δ · V̄0 : Z̄

)
, for which the only difference from the

affine version in Eq. (1) is that the Z coordinate must also be conjugated. We
point out that Remark 1 applies identically to the projective case. Of the 22
additions that would otherwise be required, the final column in the right part
of Table 3 gives the average number of additions that are replaced by ψ’s in the
six different 8-GLV/GLS scenarios we implemented. In all cases this gives over
a 30% speedup when constructing the lookup table.

5 Arithmetic

In this paper we are concerned with arithmetic modulo quadratic extensions of
primes p < 264 to realize scalar multiplications in JacC(Fp2). We optimize this
arithmetic on two different levels: on the one hand the extension field arithmetic
in Fp2 is optimized in terms of multiplications in Fp, and on the other hand
we aim to optimize the multiplications in Fp by choosing p such that modular
reduction is particularly efficient. On architectures where the 64-bit modulus p
fits in a single machine word, the modular multiplication can be computed by
doing the multiplication first, followed by a NIST-like reduction [44, 46]. Other
popular embedded platforms, like the ARM, have a smaller machine word size of
32 bits. Since representing the prime p requires two such words, other techniques
(besides the NIST-like reduction) might be attractive to explore. Following the
observations from [8], we choose the primes p to be Montgomery-friendly to
accelerate the implementation of the modular arithmetic on such 32-bit plat-
forms. Since the use of Montgomery-friendly primes only makes sense when the



Algorithm 2 This algorithm, including Line 1 and Line 3, computes the radix-2b

interleaved Montgomery multiplication [36] (MontMul(A,B, p) = A · B · 2−bn mod p)
for an n-word modulus p. Excluding Line 1 and Line 3 gives the algorithm for computing
the radix-2b Montgomery reduction only (MontRed(C, p) = C · 2−bn mod p).

Input:


(A =

∑n−1
i=0 ai2

bi, B) or C and p, µ such that 0 ≤ ai < 2b, 0 ≤ A ≤ S0 < 2bn,

0 ≤ B ≤ S1 < 2bn, 0 ≤ C ≤ S1S2 < 22bn, 2b(n−1) ≤ p < 2bn, 2 - p,
µ = −p−1 mod 2b,

Output:
{
(C′ ≡ A ·B · 2−bn mod p) or (C′ ≡ C · 2−bn mod p)
such that 0 ≤ C′ < r(b,n)(S0S1, p)

1: [C ← 0]
2: for i = 0 to n− 1 do
3: [C ← C + ai ·B]
4: q ← µ · C mod 2b, C ← (C + q · p)/2b
5: return C′ ← C

prime can be represented by two or more machine words, our approach for 64-bit
architectures follows the more conventional NIST-like reduction.

5.1 Modular Arithmetic

NIST-like reduction. It is well-known that modular reduction can be com-
puted efficiently, without using any multiplications, when the modulus has a
special form. Typically, the modular multiplication and the modular reduction
are computed sequentially. An example of a family of such primes are general-
ized Mersenne primes, whose adoption usually results in significant performance
gains; this is why NIST has standardized multiple instances of such primes [46].
Let us illustrate the basic idea with p611 = 261 − 1, which belongs to this
class of primes. Computing the modular multiplication c ≡ a · b mod p611 with
0 ≤ a, b < p611 can be done by first computing the multiplication and shifting
this value (note that the result still fits in a 128-bit data-type) as t = (23 · a) · b.
Due to the special form of p611, we have t = t1 ·264+t0 ≡ t1 ·264+t0−t1 ·23 ·p611 ≡
t0+23 ·t1 mod p611, for 0 ≤ t0, t1 < 264, and hence we can compute the reduction
as
(
bt/264c+(t mod 264)/23

)
mod p611. Since 0 ≤ bt/264c, (t mod 264)/23 < 261,

we can use these integers as input to a modular addition to reduce the result
properly to the range [0, p611〉. For numbers of the form 2x − 1, modular ad-
dition is especially efficient, since if c = a + b, where 0 ≤ a, b < 2x − 1, then
c′ = b c2x c + c − 2x ≡ c (mod 2x − 1), where c′ is properly reduced and can be
computed using only a shift, an add and a bit-reset instruction (and possibly
data movements).

Montgomery arithmetic. Montgomery proposed a new way of computing
modular multiplication in the mid 1980s [36]. The idea behind Montgomery
multiplication is to replace the relatively expensive divisions by computationally
inexpensive logical shifts on computers, lowering the computational complexity



by a constant factor compared to the classical method. We present the algo-
rithm for a computer platform which works on b-bit (b > 2) words: i.e. we use
a 2b-radix system. Montgomery multiplication modulo an n-word odd moduli
p, 2(n−1)b ≤ p < 2nb, is computed by transforming each of the operands to its
Montgomery residue Ã = A · 2bn mod p. Montgomery multiplication is defined
as C̃ ≡ Ã · B̃ · 2−bn ≡ C · 2bn mod p. Algorithm 5.1, including the lines in brack-
ets, outlines interleaved Montgomery multiplication, while if the bracketed lines
are excluded this computes the Montgomery reduction only. Note that modular
addition and subtraction can be done in the usual way when working with Mont-
gomery residues since Ã± B̃ ≡ (A±B) ·2bn ≡ Ã±B (mod p). The result of the
Montgomery multiplication of two positive integers Ã ≤ S0 and B̃ ≤ S1 can be
bounded by r(b,n)(S0 · S1, p) = S1S2

2bn
+ p. Hence, if both inputs are bounded by

2bn, then the result is at most r(b,n)(22bn, p) = 2bn+p: a conditional subtraction
with p is required when the output is required to be less than 2bn. It follows that
if both inputs are bounded by 2bn−1 and 2b(n−1) ≤ p < 2bn−2, then this condi-
tional subtraction can be omitted since r(b,n)(22(bn−1), p) = 2bn−2 + p < 2bn−1,
and the output of Montgomery multiplication can be reused as input directly
(this is the idea behind subtraction-less Montgomery multiplication [47]).

Montgomery-friendly arithmetic. The idea behind Montgomery-friendly primes
[31, 28, 1, 25, 8] is to reduce the number of multiplications and registers used by
taking µ = −p−1 mod 2b = ±1; this is achieved when p ≡ ∓1 mod 2b. Note that
all NIST primes, as standardized in [46], have this property for b ≤ 32. The num-
ber of multiplications can be reduced further when the (n− 1) most significant
words of p have a special form, such that multiplication by p can be transformed
into a sequence of shifts and additions or subtractions (just as in the NIST-
like reduction). For b = 32, examples of Montgomery-friendly primes are those
primes of the form (231−c) ·232−1, with 0 ≤ c < 231, as mentioned in Section 3.
Here we intentionally use 63-bit primes (instead of the full double-word length
of 64 bits) to allow accumulation in the Montgomery reduction without using an
additional word. Note that the Mersenne prime used in our NIST-like reduction
example is Montgomery-friendly as well, since p611 = 261 − 1 = 229 · 232 − 1.

5.2 Extension Field Arithmetic

Arithmetic in Fp2 = Fp[i]/(i2 + 1) is realized using arithmetic operations from
Fp. For instance, the result of multiplying two elements a0 + a1i, b0 + b1i ∈ Fp2
is (a0b0 − a1b1) + (a0b1 + a1b0)i ∈ Fp2 . This can be achieved using four Fp-
multiplications, one Fp-subtraction and one Fp-addition or, when using a single
level of Karatsuba, using three Fp-multiplications, two Fp-subtractions and three
Fp-additions. To optimize this further, we follow the lazy-reduction techniques
described in [3], where the idea is to delay the modular reductions until the end
of the computation. This has the advantage of reducing the number of reduc-
tions at the cost of performing the intermediate additions and subtractions on
numbers of twice the bit-length. When using Karatsuba, this approach is out-
lined in Algorithm 3 (where we abbreviate r(b,n) to r), together with the bounds



Algorithm 3 Fp2 multiplication using
Karatsuba and lazy reduction follow-
ing [3].

Input:


(a0 + a1i), (b0 + b1i) ∈ Fp2 , with
0 ≤ a0, a1 < S0, 0 ≤ b0, b1 < S1.
m̃ = m× p such that m̃ ≥ S0S1.

Output: (c0 + c1i) = (a0 + a1i)(b0 + b1i)
1: T0 ← a0 × b0 (< S0S1)
2: T1 ← a1 × b1 (< S0S1)
3: t0 ← a0 + a1 (< 2S0)
4: t1 ← b0 + b1 (< 2S1)
5: T2 ← t0 × t1 (< 4S0S1)
6: T3 ← T2 − (T0 + T1) (< 2S0S1)
7: c1 ← MontRed(T3) (< r(2S0S1, p))
8: T4 ← T0 + m̃− T1 (< S0S1 + m̃)
9: c0 ← MontRed(T4) (< r(S0S1 + m̃, p))

Algorithm 4 Fp2 squaring.

Input:
{
(a0 + a1i) ∈ Fp2 ,
with 0 ≤ a0, a1 < S0.

Output: (c0 + c1i) = (a0 + a1i)
2

1: T0 ← a0 + a1 (< 2S0)
2: T1 ← a0 + p− a1 (< 2S0)
3: c0 ← MontMul(T0, T1) (< r(4S2

0 , p))
4: T3 ← 2a0 (< 2S0)
5: c1 ← MontMul(T3, a1) (< r(2S2

0 , p))

on all intermediate values (given the bounds S0 and S1 on the inputs). In order
to avoid working with negative numbers, we also require an additional precom-
puted input value m̃, which is a multiple of p such that m̃ ≥ S0S1. In practice
the bounds on the input are chosen such that both 2S0 and 2S1 are less 2bn,
to avoid making the multiplication t0 × t1 in Line 5 of Algorithm 3 work on
more computer words. We found that the approach outlined Algorithm 3 (using
Karatsuba and postponing the reductions) to be preferable on the 32-bit ARM
Cortex-A8 platform. However, on our 64-bit Ivy Bridge platform, calculating
the Fp2 multiplication is more efficient using the “naive” schoolbook multipli-
cation (but still using the lazy-reduction techniques to postpone the modular
reductions). This requires one additional modular multiplication compared to
Karatsuba, but lowers the modular additions/subtractions to only two. Due to
the relatively low cost ratio between 64-bit modular multiplications and 64-bit
additions, it is more efficient to use schoolbook on such 64-bit platforms. Note
that due to our representation of Fp2 , squaring can be computed using only two
Fp multiplications, since (a0 +a1i)

2 = (a0 +a1)(a0−a1)+2a0a1i. This approach
(including the bounds on the output) is given in Algorithm 4.

For computations modulo p611 = 261 − 1 on the ARM, we choose to use
Montgomery multiplication in combination with a conditional final subtraction,
since such a subtraction is particularly efficient (see Section 5.1). This has the
advantage of allowing us to add (or subtract) numbers without reducing them
and using them as input, since if S0 = 2(261 − 1) and S1 = (261 − 1), then the
first Montgomery reduction in Algorithm 3 is bounded by r(4,32)(8p2611, p611) −
p611 < p611, so that the result is automatically properly reduced. For the second
reduction, we could choose m̃ = (263 + 1) · p611 such that r(4,32)(2p2611, p611) +
(263 + 1) · p611 − p611 < p611 is also properly reduced. Another possibility is



to choose m̃ = 264 · p611 to avoid adding the least significant 64 bits of m̃,
which reduces the number of required addition instructions. However, in this
case we would need one more conditional subtraction, since r(4,32)(2p2611, p611) +
264 · p611 − k · p611 < p611 holds for k ≥ 2. For the other Montgomery-friendly
primes, we performed a similar analysis to minimize the number of reductions
after additions and subtractions.

Using Mixed Additions As outlined in Table 3, mixed divisor additions are
significantly faster than using regular (projective) divisor additions. It is a com-
mon approach to convert the projective divisors in the lookup table to affine
divisors in order to use these faster formulas when computing the scalar multi-
plication. This can be done efficiently using Montgomery’s simultaneous inver-
sion method [37]. Supposing there are w such projective divisors in our lookup
table(s), the simultaneous inversion method finds the w independent inverses
using a single inversion and 3(w − 1) multiplications. For each of the w projec-
tive divisors of the form (U1 : U0 : V1 : V0 : Z), normalization (given Z−1) costs
four additional multiplications. Hence, the total cost of converting the entire
lookup table to affine coordinates is (7w − 3)m + I, where I is the cost of
an inversion in Fp2 . To compute the inverse in Fp2 = Fp[i]/(i2 + 1), we use
(a0 + a1i)

−1 = a0/(a
2
0 + a21) + (−a1/(a20 + a21))i, which costs, besides the Fp-

inversion, two Fp-squarings, two Fp-multiplications, a single Fp-addition and a
single Fp-negation. Our implementations on both platforms revealed that it was
always preferable to perform this normalization, i.e. that the cost of normaliz-
ing the lookup table is outweighed by the savings achieved when processing the
scalar.

6 Results and Discussion

We implemented the generic, Kummer and 8-dimensional GLV/GLS (see Sec-
tion 4) techniques using the different arithmetic approaches (as outlined in Sec-
tion 5). In this section we use our fastest curves (for comparisons with other
work) in two settings: one aims solely for performance (non-constant time) while
the other provides some side-channel resistance [30] (i.e. runs in constant time).
In Table 4 we summarize all the fastest software scalar multiplication results for
genus g curves over both Fp and Fp2 for both 64-bit processors and 32-bit ARM
architectures.

High-end 64-bit architecture. The 64-bit implementations cover the fastest
overall constant time performance numbers [14], the fastest constant time perfor-
mance numbers for elliptic curves over prime fields by Bernstein [5], the fastest
(non-constant time) implementation for elliptic curves by Longa and Sica [33],
the fastest constant time (Kummer) and non-constant time (4-GLV) perfor-
mance numbers on genus 2 curves over prime fields [8] by Bos et al., and the
fastest implementation of the NIST curve NIST-p224 by Käsper [27]. Note that
all of these curves aim to provide 128-bit security, except the NIST curve which
is designed to provide 112-bit security. We ran all of these implementations on



Table 4. Performance comparison of scalar multiplication on an Intel Core i7-3520M
Ivy Bridge (IB) and various ARM processors (all our code is run on an Cortex-A8).
We state the genus g of the curve, if the implementation runs in constant time (CT)
or not, the underlying field K, the security in bits (bit sec) provided by the curves
and finally the performance number in 103 cycles. The performance numbers for 8-
GLV/GLS (which use the non constant-time method for computing the lookup table)
are in brackets.

reference g CT K bit sec 103 cycles

Ivy-Bridge

[14] 4-GLV/GLS 1 X Fp2 125 92
[5] curve25519 1 X Fp 126 182
[8] Kummer 2 X Fp 125 117
[8] 4-GLV 2 5 Fp 125 156
[27] NISTp-224 1 X Fp 112 302
[33] 2-GLV 1 5 Fp 127 145
new (special, generic) 2 5 Fp2 103 204
new (NIST, generic) 2 5 Fp2 110 333
new (special, Kummer) 2 X Fp2 103 108
new (NIST, Kummer) 2 X Fp2 110 167
new (special, 8-GLV/GLS) 2 5 Fp2 105 100 (92)
new (NIST, 8-GLV/GLS) 2 5 Fp2 111 146 (136)

ARM

[14] 4-GLV/GLS (Cortex-A9) 1 X Fp2 125 417
[7] curve25519 (Cortex-A8/NEON) 1 X Fp 126 527
[25] twisted Edwards (Cortex-A9) 1 X Fp 125 616
[38] NISTp-224 (Cortex-A8) 1 ? Fp 112 7805
new (special, generic) 2 5 Fp2 103 1492
new (Montgomery, generic) 2 5 Fp2 110 1808
new (special, Kummer) 2 X Fp2 103 767
new (Montgomery, Kummer) 2 X Fp2 108 942
new (special, 8-GLV/GLS) 2 5 Fp2 105 617 (576)
new (Montgomery, 8-GLV/GLS) 2 5 Fp2 109 859 (810)

the same CPU: an Intel Core i7-3520M (Ivy Bridge) processor at 2893.484 MHz
with hyperthreading turned off and over-clocking (“turbo boost”) disabled. We
either compiled the code on our machine (for [8, 27, 5]) or used a precompiled
binary provided to us by the authors (for [33, 14]).

Table 4 includes our fastest constant time implementation (Kummer) and
our fastest non-constant time one (8-dimensional GLV/GLS), which will be made
publicly available through [6]. A direct comparison to the state-of-the-art perfor-
mance numbers is difficult; different curves of varying genus defined over different
fields are used and most of the curves in Table 4 aim to provide 128-bit security,
while our curves aim for the 112-bit security level. Nevertheless, it is clear from
our performance numbers that genus 2 curves over quadratic extension fields are
competitive (and often faster) in terms of performance, even when taking the
security into account. For instance, when compared to the fast implementation
of curve NIST-p224 by Käsper [27], also aiming to provide 112-bit security, we
are able to reduce the throughput by roughly a factor three. Interestingly, while
implementations on the Kummer surface proved to be faster than 4-GLV/GLS
implementations on genus 2 curves over 128-bit prime fields [8], our work over



quadratic extension fields of 64-bit primes shows that 8-GLV/GLS overtakes Fp2
Kummer implementations in terms of speed.

Low-end 32-bit architecture. For our low-end platform we consider the 32-bit
ARM platform. More specifically we run our experiments on the BeagleBoard-
xM [4], a low-power open-source hardware single-board computer, which contains
an DM3730 processor (1 GHz Cortex-A8 ARM core). Unlike the setting of the
64-bit platforms, we were unable to run implementations from Table 4 on our
platform since not all implementations were made available; hence, we copied
the performance numbers directly from the papers and mention which ARM
processor is used. We point out that the fast performance result by Bernstein
and Schwabe [7] was obtained using ARM’s NEON instruction set (a combined
64- and 128-bit single instruction, multiple data instruction set), a possibility
which has not been studied in this nor the other ARM papers mentioned in
Table 4. A direct comparison is again difficult in this case because our curves
in Table 1 provide a lower level of security. However, compared to the work
by Morozov et al. [38] which also targets the 112-bit security level using the
standard NIST curves, our numbers are an order of magnitude faster.

7 Conclusions

In this paper we have explored the possibility of using genus 2 curves over
quadratic extension fields in cryptography, where the size of ground field fits
into a single 64-bit word. This setting allows one to use 8-dimensional GLV/GLS
scalar decompositions, which we explored in a variety of scenarios. The downside
of using primes of this size for genus 2 based cryptography is that there exist
faster-than-generic index calculus attacks which affect the security. Nevertheless,
we show how to obtain 112-bit security and present performance numbers for
both high-end 64-bit architectures and low-end 32-bit ARM platforms.
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