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Abstract. In the last years code-based cryptosystems were established as promising alternatives for
asymmetric cryptography since they base their security on well-known NP-hard problems and still
show decent performance on a wide range of computing platforms. The main drawback of code-based
schemes, including the popular proposals by McEliece and Niederreiter, are the large keys whose size is
inherently determined by the underlying code. In a very recent approach, Misoczki et al. proposed to use
quasi-cyclic MDPC (QC-MDPC) codes that allow for a very compact key representation. In this work,
we investigate novel implementations of the McEliece scheme using such QC-MDPC codes tailored for
embedded devices, namely a Xilinx Virtex-6 FPGA and an 8-bit AVR microcontroller. In particular,
we evaluate and improve different approaches to decode QC-MDPC codes. Besides competitive perfor-
mance for encryption and decryption on the FPGA, we achieved a very compact implementation on
the microcontroller using only 4,800 and 9,600 bits for the public and secret key at 80 bits of equivalent
symmetric security.
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1 Introduction

Nearly all established asymmetric cryptosystems rely on two classes of fundamental problems, namely the
factoring problem and the (elliptic curve) discrete logarithm problem. Due to Shor’s [37] efficient algorithm
which solves both problems on quantum computers, it has become evident that a larger diversification of
public key primitives is urgently required to be prepared in case quantum computers enter the scene. In this
context, IBM announced two improvements in quantum computing [11] and estimates that such systems
might become practical and available within the next 15 years.

The most promising alternatives are currently classified into code-based, lattice-based, multivariate-
quadratic (MQ-), and hash-based cryptography. A major drawback of many proposed cryptosystems within
these classes are their low efficiency and practicability due to large key sizes or complex computations
compared to classical RSA and ECC cryptosystems. This is particularly considered an issue for small and
embedded systems where memory and processing power are a scarce resource. Nevertheless, it was shown
that code-based cryptosystems such as the well-established proposals by McEliece and Niederreiter can sig-
nificantly outperform classical asymmetric cryptosystems on embedded systems [13, 16, 20, 32] – at the cost
of very large keys (often more than 50 kByte). Therefore, current research is targeting alternative codes
that allow more compact key representations but still preserve the security properties of the cryptosystem.
Recently, Misoczki et al. proposed to use quasi-cyclic medium-density parity check (QC-MDPC) codes as
such an alternative [28], claiming that a public key of only 4800 bit can provide a level of 80 bit equivalent
symmetric security.

Contribution In this work, we present implementations of the McEliece cryptosystem using QC-MDPC
codes for Xilinx FPGAs and AVR microcontrollers. Since decoding is usually the most expensive operation in
code-based encryption systems, we particularly focus on evaluations and improvements of different decoders



for QC-MDPC codes and provide implementations for the two embedded platforms under investigation.
We show that QC-MDPC codes provide excellent efficiency in terms of computational complexity and key
sizes for encryption and decryption on the FPGA and a key size of only 4,800 and 9,600 bit for the public
and secret key, respectively. We also show that it is possible to implement QC-MDPC codes with a very
small memory footprint on microcontrollers. The source code is available under http://www.sha.rub.de/

research/projects/code/.

This new McEliece variant has not yet gathered much attention by cryptanalysts. In order to establish
the necessary confidence for its deployment in real-world systems we hope to give as early adopters another
incentive for further cryptanalysis of this scheme by highlighting the excellent properties of QC-MDPC codes
for embedded systems.

Outline This paper is structured as follows: in Section 2 we briefly summarize previous work on code-based
public key cryptosystems. Section 3 provides background on MDPC codes, their decoding algorithms, and
an introduction to McEliece with QC-MDPC codes. In Section 4 we explain our design considerations and
implementations on a Xilinx Virtex-6 FPGA and on a 8-bit AVR microcontroller. Finally, we present and
compare our results of both implementations in Section 5 and draw a conclusion in Section 6.

2 Previous Work

Although proposed more than 30 years ago, code-based encryption schemes are hardly found in any (cost-
driven) real-world applications due to their large secret and public keys. The original proposal by Robert
McEliece for a code-based encryption scheme suggested the use of binary Goppa codes, but in general any
other linear code could be used. While other types of codes may have advantages such as a more compact
representation, most proposals using different codes were proven less secure (cf. [26, 31]). The Niederreiter
cryptosystem is an independently developed variant of McEliece’s proposal which is proven to be equiva-
lent in terms of security [25]. In 2009, a first FPGA-based implementation of McEliece’s cryptosystem was
proposed targeting a Xilinx Spartan-3AN. It encrypts and decrypts data in 1.07 ms and 2.88 ms using secu-
rity parameters that achieve an equivalence of 80-bit symmetric security [13]. The authors of [39] presented
another accelerator for McEliece encryption over binary Goppa codes on a more powerful Virtex5-LX110T,
capable to encrypt and decrypt in 0.5 ms and 1.4 ms providing a similar level of security. The latest publi-
cation [16] based on a hardware/software co-design for the same Virtex5-LX110T FPGA decrypts a block
in 0.5 ms at 190 MHz1 at the same level of security. For x86-based platforms, a recent implementation of
the McEliece scheme over binary Goppa codes is due to Biswas and Sendrier [9] achieving about 83-bit of
equivalent symmetric security according to [8].

Many proposals already tried to address the issue of large keys by replacing the originally used binary
Goppa codes with (secure) codes that allow more compact representations, e.g, [10, 27]. However, many
attempts were broken [14] and for the few survivors hardly any implementations are publicly available [6,
20]. In the context of this work, low density parity check (LDPC) codes [15] have repeatedly been suggested
as candidates for McEliece [1–4, 29]. The use of quasi-cyclic LDPC codes was suggested for McEliece in [1]
but due to the cryptanalytic results of [2] and [29] in [30], McEliece based on LDPC codes is not considered
as a good choice.

Picking up and improving the idea of QC-LDPC codes, medium density parity check (MDPC) codes and
a corresponding quasi cyclic variant (QC-MDPC) are introduced in [28]. In particular, the authors claim
that (QC-)MDPC codes resist known attacks on LDPC codes and suggest to use such codes in the McEliece
public key encryption scheme. To date, neither an attack nor any implementation of cryptography with
QC-MDPC codes have been published.

1 This work does not provide performance results for encryption.
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3 Background on MDPC Codes

In the following we introduce (QC-)MDPC codes, closely following the description given in [28]. (QC-)MDPC
codes are a special variant of linear codes and are defined as follows:

Definition 1 (Linear codes). A binary (n, r)-linear code C of length n, dimension n−r and co-dimension

r, is a (n−r)-dimensional vector subspace of Fn
2 . It is spanned by the rows of a matrix G ∈ F(n−r)×n

2 , called a
generator matrix of C. The generator matrix is the kernel of a matrix H ∈ Fr×n

2 and called the parity-check

matrix of C. The codeword c ∈ C of a vector m ∈ F(n−r)
2 is given by c = mG. Given a vector e ∈ Fn

2 ,
we obtain the syndrome s = HeT ∈ Fr

2. The dual C⊥ of C is the linear code spanned by the rows of any
parity-check matrix of C.

A linear code can be quasi-cyclic according to the following definition:

Definition 2 (Quasi-cyclic code). A (n, r)-linear code is quasi-cyclic (QC) if there is some integer n0
such that every cyclic shift of a codeword by n0 positions is again a codeword. When n = n0p, for some
integer p, it is possible and convenient to have both generator and parity check matrices composed by p × p
circulant blocks. A circulant block is completely described by its first row (or column) and the algebra of p×p
binary circulant matrices is isomorphic to the algebra of polynomials modulo xp − 1 in F2.

On top we can define the MDPC codes:

Definition 3 (MDPC codes). A (n, r, w)-MDPC code is a linear code of length n and co-dimension r
admitting a parity check matrix with constant row weight w.

When MDPC codes are quasi-cyclic, they are called (n, r, w)-QC-MDPC codes. LDPC codes typically
have small constant row weights (usually, less than 10). For MDPC codes, row weights scaling inO(

√
n log(n))

are assumed.

3.1 McEliece Based on QC-MDPC Codes

We now present a variant of the McEliece cryptosystem based on (n, r, w)-QC-MDPC codes with n = n0p
and r = p. To obtain such a code, we first pick a word h ∈ Fn

2 of length n = n0p and weight w at random.
Then, the QC-MDPC code is defined by a quasi-cyclic parity-check matrix H ∈ Fn

2 of first row h and all
other r − 1 rows are obtained from r − 1 quasi-cyclic shifts of h. The parity-check matrix then has the
form H = [H0|H1|...|Hn0−1]. Each block Hi has row weight wi, such that w =

∑n0−1
i=0 wi with a smooth

distribution of wi’s. Finally, the generator matrix G in row reduced echelon form can be easily derived from
the Hi blocks. Assuming that Hn0−1 is non-singular (this particularly implies wn0−1 being odd, otherwise
the rows of Hn0−1 would sum up to 0), we compute G of the form (I|Q), where I is the identiy matrix and

Q =


(H−1n0−1 ·H0)T

(H−1n0−1 ·H1)T

· · ·
(H−1n0−1 ·Hn0−2)T

 .

In the following we detail the key-generation as well as encryption and decryption for McEliece based on
QC-MDPC codes.

– Key-Generation: The public and private keys are generated as follows. First generate a parity-check
matrix H ∈ Fr×n

2 of a t-error-correcting (n, r, w)-QC-MDPC code. Then generate its corresponding gen-

erator matrix G ∈ F(n−r)×n
2 in row reduced echelon form. The public key is G and the private key is

H. Since quasi-cyclic matrices are used, it suffices to store the first rows g and h of the circulant blocks
which significantly reduces storage requirements.
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– Encryption: To encrypt a plaintext m ∈ F(n−r)
2 into x ∈ Fn

2 , first generate an error vector e ∈ Fn
2 of

wt(e) ≤ t at random. Then compute x← mG+ e.

– Decryption: Let ΨH be a t-error-correcting LDPC/MDPC decoding algorithm equipped with the sparse

parity-check matrix H. To decrypt x ∈ Fn
2 into m ∈ F(n−r)

2 compute mG← ΨH(mG+e). Finally extract
the plaintext m from the first (n− r) positions of mG.

3.2 Security of QC-MDPC

The description of McEliece based on QC-MDPC codes in Section 3.1 eliminates the scrambling matrix S and
the permutation matrix P usually used in the McEliece cryptosystem. The use of a CCA2-secure conversion
(e.g., [24]) allows G to be in systematic-form without introducing any security-flaws. Note that [28] states that
a quasi-cyclic structure, by itself, does not imply a significant improvement for an adversary. All previous
attacks on McEliece schemes are based on the combination of a quasi-cyclic/dyadic structure with some
algebraic code information. To resist the best currently known attack of [5] and also the improvements
achieved by the DOOM-attack [36], the authors of [28] suggest parameters as given in Table 1.

Table 1. Parameters for different security levels for McEliece with QC-MDPC codes given by [28].

Security Level n0 n r w t Public key size

80 bit 2 9600 4800 90 84 4800 bit
80 bit 3 10752 3584 153 53 7168 bit
80 bit 4 12288 3072 220 42 9216 bit

128 bit 2 19712 9856 142 134 9856 bit
128 bit 3 22272 7424 243 85 14848 bit
128 bit 4 27200 6800 340 68 20400 bit

256 bit 2 65536 32768 274 264 32768 bit
256 bit 3 67584 22528 465 167 45056 bit
256 bit 4 81920 20480 644 137 61440 bit

3.3 Decoding (QC-)MDPC Codes

For code-based cryptosystems, decoding a codeword (i.e., the syndrome) is usually the most complex task.
Decoding algorithms for LDPC/MDPC codes are mainly divided into two families. The first class (e.g., [7])
offers a better error-correction capability but is computationally more complex than the second family.
Especially when handling large codes, the second family, called bit-flipping algorithms [15], seems to be more
appropriate. In general, they are all based on the following principle:

1. Compute the syndrome s of the received codeword x.
2. Check the number of unsatisfied parity-check-equations #upc associated with each codeword bit.
3. Flip each codeword bit that violates more than b equations.

This process is iterated until either the syndrome becomes zero or a predefined maximum number of iterations
is reached. In that case a decoding error is returned. The main difference of the bit-flipping algorithms is how
the threshold b is computed. In the original algorithm of Gallager [15], a new b is computed at each iteration.
In [22], b is taken as the maximum of the unsatisfied parity-check-equations Maxupc and the authors of the
QC-MDPC scheme propose to use b = Maxupc − δ, for some small δ.
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Since estimating the error-correction capability of LDPC and MDPC codes generally is a hard task and
is also influenced by the choice of threshold b, we derive different versions of the bit-flipping algorithm,
evaluate their error-correcting capability and count how many iterations are required on average to decode a
codeword. Because we are targeting embedded systems, we omit the variant storing n0 counters for #upc for
each ciphertext bit. This would allow to skip the second computation of #upc in some variants, but would
blow up memory consumption to an unacceptable amount. We now introduce the different decoders under
investigation:

Decoder A is given in [28] and computes the syndrome, then checks the number of unsatisfied parity-
check-equations once to compute the maximum Maxupc and afterwards a second time to flip all codeword
bits that violate b ≥Maxupc−δ equations. Afterwards the syndrome is recomputed and compared to zero.

Decoder B is given in [15] and computes the syndrome, then checks the number of unsatisfied parity-
check-equations once per iteration i and directly flips the current codeword bit if #upc is larger than a
precomputed threshold bi. Afterwards the syndrome is recomputed and compared to zero.

We noticed that the previously proposed bit-flipping decoders recompute the syndrome after every itera-
tion. Since this is quite costly we propose an optimization based on the following observation: If the amount
of unsatisfied parity-check-equations exceeds threshold b, the corresponding bit in the codeword is flipped
and the syndrome changes. We would like to stress that the syndrome does not change arbitrarily, but the
new syndrome is equal to the old syndrome accumulated with the row hj of the parity check matrix that
corresponds to the flipped codeword bit j. By keeping track of which codeword bits are flipped and updating
the syndrome accordingly, the syndrome recomputation can be omitted. Hence, we propose and evaluate the
following decoders:

Decoder C1 computes the syndrome, then checks the number of unsatisfied parity-check-equations once
to compute the maximum Maxupc and afterwards a second time to flip all codeword bits that violate
b ≥ Maxupc − δ equations. If a codeword bit j is flipped, the corresponding row hj of the parity check
matrix is added to a temporary syndrome. At the end of each iteration the temporary syndrome is added
to the syndrome, directly resulting in the syndrome of the new codeword without requiring a full recom-
putation.

Decoder C2 computes the syndrome, then checks the number of unsatisfied parity-check-equations once
to compute the maximum Maxupc and afterwards a second time to flip all codeword bits that violate
b ≥ Maxupc − δ equations. If a codeword bit j is flipped, the corresponding row hj of the parity check
matrix is added directly to the current syndrome. Using this method we always work with an up-to-date
syndrome and not with the one from the last iteration.

Decoder D is similar to Decoder B with precomputed thresholds bi, but uses the direct update of the
syndrome as done in Decoder C2.

Decoder E is similar to Decoder C2 but compares the syndrome to zero after each flipped bit and aborts
the current bit-flipping iteration immediately if the syndrome becomes zero.

Decoder F is similar to Decoder D and in addition uses the same early exit trick as Decoder E .

The average number of iterations required to decode a codeword and the decoding failure rate for the
different decoders with different numbers of errors are shown in Table 6 in the appendix for a QC-MDPC
code with parameters n0 = 2, n = 9600, r = 4800, w = 90 (cf. first row of Table 1). All measurements are
taken for 1000 random codes and 100,000 random decoding tries per code on a Intel Xeon E5345 CPU
running at 2.33 GHz. For versions with precomputed thresholds bi we used the formula given in Appendix A
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of [28] to precompute the most suitable bi’s for every iteration. For versions using b = Maxupc− δ, we found
by exhaustive experiments that the smallest number of iterations are required for δ = 52. A decoding failure
is returned when the decoder did not succeed within ten iterations.

The timings given in Table 6 should only be used to compare the decoders among each other. The
evaluation was done in software and is not optimized for speed. It is designed to keep only the generating
polynomial h and not the whole parity check matrix H in memory which would allow for a time/memory
trade-off and faster computations. The corresponding row is derived at runtime by rotating the polynomial.

Our evaluations clearly show the superior error correcting capability of decoders D and F which in
addition require the lowest number of iterations when compared to the other decoders (cf. Table 6). Decoders
A and C1 are least efficient with an average of more than 5 bit-flipping iterations. Our new decoders D and
F on average save 2.9 iterations compared to decoder A and 0.7 iterations compared to B. This directly
relates to the required time for decoding which is up to 4 times faster.

The small timing advantage of decoder F over D is due to the immediate termination if the syndrome
becomes zero. Another interesting observation we made for all decoders is that if a codeword is decodable,
then this is achieved after a small number of iterations. We noticed that if a codeword is not decoded
within 4-6 iterations, a higher number of iterations does not lead to a successful decoding. Therefore, a early
detection of a decoding failure is possible.

4 Implementation

In this section we discuss decoder and parameter selections and reason design choices for our QC-MDPC
McEliece implementations on reconfigurable hardware and microcontrollers. The primary goal for the hard-
ware design is high-performance while the microcontroller implementation aims for a low memory footprint.
Note, the implementations of a CCA2-secure conversion and true random number generation are out of the
scope of this work.

4.1 Decoder and Parameter Selection

Our implementations aim for a security level of 80 bit, comparable to ECC-160 and RSA-1024. Hence, we
select the following QC-MDPC code parameters that provide a 80-bit security level according to Table 1.

n0 = 2, n = 9600, r = 4800, w = 90, t = 84

Using these parameters we have a 4800-bit public key and a 9600-bit sparse secret key with 90 set bits.
Such key sizes are only a fraction of the key sizes of other code-based public-key encryption schemes. During
encryption a 4800-bit plaintext is encoded into a 9600-bit codeword and 84 errors are added to it. It follows
from n0 = 2 that the 9600-bit codeword and secret key consist of two separate 4800-bit codewords/secret
keys, respectively.

As shown in Section 3 our decoders D and F require only one syndrome computation in the beginning
and update the syndrome directly in the bit-flipping step. Furthermore, due to the precomputed thresholds bi
the computation of the maximum number of unsatisfied parity check equations can be omitted. The decoders
only differ in the way they handle the part where they check if the syndrome is zero. While decoder F checks
the syndrome every time the syndrome is change in the bit-flipping step, decoder D tests the syndrome at
the end of each bit-flipping iteration. Note, the decoding behavior of both decoders is the same, i.e., they
require the same amount of bit-flipping iterations with the difference that decoder F exits as soon as the
syndrome is equal to zero.

We base our QC-MDPC McEliece decryption implementation on decoder D in hardware and on decoder
F for the microcontroller. The reason for choosing decoder D to be implemented in hardware is that we
sequentially rotate the codewords and secret keys in every cycle of the bit-flipping iterations. If the syndrome

2 In the latest version of [28] the authors also suggest to use δ ≈ 5 for the given parameters.

6



becomes zero during a bit-flipping iteration and we skip further computations immediately, the secret poly-
nomials and the codewords would be misaligned. To fix this we would have to rotate them manually into
their correct position which would take roughly the same amount of time as just letting the decoder finish
the current iteration.

Both implementations use a maximum of five iterations before returning a decoding error and the cor-
responding precomputed bi are (28, 26, 24, 22, 20), which are computed using the formula in the appendix of
[28].

4.2 FPGA Implementation

For our evaluation of QC-MDPC in reconfigurable hardware we use Xilinx’s Virtex-6 FPGA device family
as target platform. Virtex-6 devices are powerful FPGAs offering thousands of slices, where each slice con-
tains four 6-input lookup tables (LUT), eight flip-flops (FF), and surrounding logic. In addition, embedded
resources such as block memories (BRAM) and digital signal processors (DSP) are available. In the following
we reason our design choices and describe the implementations of the QC-MDPC-based McEliece en- and
decryption.

Design Considerations Because of their relatively small size, the public and secret key do not have to be
stored in external memory as it was necessary in earlier FPGA implementations of McEliece and Niederreiter
using, e.g., Goppa codes. Since we aim for high-speed, we store all operands directly in FPGA logic and
refrain from loading/storing them from/to internal block memories or other external memory as this would
affect performance. Reading a single 4800-bit vector from a 32-bit BRAM interface would consume 150 clock
cycles. However, if maximum performance is not required, the use of BRAMs could certainly reduce resource
consumption significantly.

In contrast to the microcontroller implementation we do not exploit the sparsity of the secret polynomials
in our FPGA design. Using a sparse representation of the secret polynomials would require to implement
w = 90 counters with 13 bits, each indicating the position of a set bit in one of the two secret polynomials.
To generate the next row of the secret key, all counters have to be increased and in case of exceeding 4799
they have be set to 0. If a bit in the codewords x0 or x1 is set we have to build a 4800-bit vector from the
counters belonging to the corresponding secret polynomial and XOR this vector to the current syndrome.
The alternative is to read out the content of each counter belonging to the corresponding secret polynomial
and flip the corresponding bit in the syndrome. These tasks, however, are time and/or resource consuming
in hardware.

Implementation We use a Virtex-6 XC6VLX240T FPGA as target device for a fair comparison with
previous work – although all our implementations would fit smaller devices as well.

The encryption and decryption unit are equipped with a simple I/O interface. Messages and codewords
are send and received bit by bit to keep the I/O overhead of our implementation small and thus get as close
as possible to the actual resource consumptions of the en-/decoder.

QC-MDPC Encryption: In order to implement a QC-MDPC encoder we need a vector matrix multiplication
to multiply message m with the public key matrix G to retrieve a codeword c = mG and then add an error
vector with hw(e) ≤ 84 to get the ciphertext x = c + e. We are given a 4800-bit public key g which is the
first row of matrix G. Rotating g by one bit position yields the next row of G and so forth. Since G is of
systematic form the first half of c is equal to m. The second half, called redundant part, is computed as
follows.

We iterate over the message bit by bit and XOR the current public polynomial to the redundant part
if the current message bit is set. To implement this in hardware we need three 4800-bit registers to hold
the public polynomial, the message, and the redundant part. Since only one bit of the message has to be
accessed in every clock cycle, we store the message in a circulant shift register which can be implemented
using shift register LUTs.
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QC-MDPC Decryption: Decryption is performed by decoding the received ciphertext, the first half of the
decoded codeword is the plaintext. As QC-MDPC decoder we implement the bit-flipping decoder D as
described in Section 3.3. In the first step we need to compute the syndrome s = HxT by multiplying parity
check matrix H = [H0|H1] with the ciphertext x. Given the first 9600-bit row h = [h0|h1] of H and the
9600-bit codeword x = [x0|x1] we compute the syndrome as follows. We sequentially iterate over every bit of
the codewords x0 and x1 in parallel and rotate h by rotating h0 and h1 accordingly. If a bit in x0 and/or x1
is set, we XOR the current h0 and/or h1 to the intermediate syndrome which is set to zero in the beginning.
The syndrome computation is finished after every bit of the ciphertext has been processed.

Next we need to check if the syndrome is zero. We implement this as a logical OR tree. Since the FPGA
offers 6-input LUTs, we split the syndrome into 6-bit chunks and compute their logical OR on the lowest
level of the tree. The results are fed into the next level of 6-bit LUTs which again compute the logical OR of
the inputs. This is repeated until we are left with a single bit that indicates if the syndrome is zero or not.
In addition, we add registers after the second layer of the tree to minimize the critical path.

If the syndrome is zero, the decryption is finished. Otherwise we have to compute the number of unsatisfied
parity check equations for each row h = [h0|h1]. We therefore compute the hamming weight of the logical
AND of the syndrome and h0 and h1, respectively. If the hamming weight exceeds the threshold bi for the
current iteration i, the corresponding bit in the codeword x0 and/or x1 is flipped and the syndrome is directly
updated by XORing the current secret polynomial h0 and/or h1 to it. Then h0 and h1 are rotated by one
bit and the process is repeated until all rows of H have been checked.

Since the computation of the number of unsatisfied parity check equations for h0 and h1 can be performed
independently, we have two options for implementation. Either we compute the parity check violations of the
first and second secret polynomial iteratively or we instantiate two hamming weight computation units and
process the polynomials in parallel. The iterative version will take twice the time but using less resources.
We explore both version to evaluate this time/resource trade-off.

Computing the hamming weight of a 4800-bit vector efficiently is a challenge of its own. Similar to the
zero comparator we split the input into 6-bit chunks and determine their hamming weight. We then compute
the overall hamming weight by building an adder tree with registers on every layer to minimize the critical
path. After all rows of H have been processed, the syndrome is again compared to zero. If the syndrome
is zero, the first 4800-bit of the updated codeword (i.e. x0) are equal to the decoded message m and are
returned. Otherwise the bit-flipping is repeated with the next bi until either the syndrome becomes zero or
the maximum number of iterations is exceeded.

4.3 Microcontroller Implementation

As implementation platform we choose a ATxmega256A3 microcontroller for straightforward comparison
with previous work. The microcontroller provides 16 kByte SRAM and 256 kByte program memory and can
be clocked at up to 32 MHz. The main parts are written in C and we pay careful attention to implement
timing critical routines as, e.g., the polynomial rotation and addition using inline assembly.

The encoding operation is straightforward. Since G is of systematic form, the first r ciphertext bits are
the message itself and are simply copied. For the multiplication with the redundant part Q, the message bits
are parsed and the corresponding rows of G are summed up. Afterwards the current row is rotated by one
bit-position to generate the next row. We implemented two different version of the encoder which differ in
the way the public polynomial rotation is implemented. In one version we use a loop to rotate the byte of
the public polynomial and in the other version we unroll this process.

Usually, smartcard devices communicate over a very slow interface, e.g., 106 kByte/s [40]. In contrast to
cryptosystems such as RSA and ECC, we do not need the message as a whole to start with the encryption.
Therefore, an interesting option is to directly encode a byte of the message as soon as it arrives while the
next message byte is still in transfer. To some extend, this allows to hide the computation time within the
latency required to transfer the message.

For decoding, recall that the n0 = 2 involved secret polynomials are sparse and only 45 out of 4800 bits
are set. Instead of saving 4800 coefficients in 4800

8 = 600 bytes, it is sufficient to save the indices of the
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wi = 45 bits that are set. Each secret polynomial therefore requires only dlog2(4800)/8e · 45 = 2 · 45 = 90
bytes. Additionally, rotating a polynomial by one bit-position means incrementing the 45 indices by one and
handling the overflow from x4800 to x0. We developed a vector-(sparse-matrix) multiplication, which adds
a sparse row to the syndrome by flipping the 45 indexed bits in the 4800 bit syndrome. Also the update
of the syndrome can be handled this way when a ciphertext bit is flipped. In order to keep the memory
consumption low while still achieving good performance we use decoder F , as described in Section 3. Since
we store the bit-position in counters, an early exit of the decoding phase can be implemented – unlike to
our hardware implementation. The complete secret key therefore requires only 2 · (2 · 45) bytes for the secret
polynomials and additionally ten bytes for the precomputed thresholds bi.

Note that the precomputed thresholds bi can be treated as public system parameter. In contrast to the
encoding process, every ciphertext byte is accessed multiple times during decoding so that the ”process-while-
transfer”-method described above is not applicable. Also note that during decoding no additional memory
is required to store the plaintext as the first half of the ciphertext is equal to the plaintext after successful
decoding.

5 Results

In the following we present our QC-MDPC implementation results in reconfigurable hardware and in software
on a 8-bit microcontroller. Afterwards we give an overview of existing public key encryption implementations
for similar platforms and compare them to our results.

5.1 FPGA Results

All our results are obtained post place-and-route (PAR) for a Xilinx Virtex-6 XC6VLX240T FPGA using
Xilinx ISE 14.5. For the throughput figures we assume a fast enough I/O interface is provided.

In hardware, our QC-MDPC encoder runs at 351.3 MHz and encodes a 4800-bit message in 4800 clock
cycles which results in 351.3 Mbit/s. The iterative version of our QC-MDPC decoder runs at 222.5 MHz. Since
the decoder does not run in constant time, we calculate the average required cycles for iterative decoding as
follows. Computing the syndrome for the first time needs 4800 clock cycles and comparing the syndrome to
zero takes another 2 clock cycles. For every following bit-flipping iteration we need 9620 plus again 2 clock
cycles for checking the syndrome. As shown in Table 6, decoder D needs 2.4002 bit-flipping iterations on
average. Thus, the average cycle count for our iterative decoder is 4800 + 2 + 2.4002 · (9620 + 2) = 27896.7
clock cycles.

Our non-iterative decoder processes both secret polynomials in the bit-flipping step in parallel and runs
at 190.6 MHz. We calculate the average cycles as before with the difference that every bit-flipping iteration
now takes 4810 + 2 clock cycles. Thus, the average cycle count for our non-iterative decoder is 4800 + 2 +
2.4002 · (4810 + 2) = 16351.8 clock cycles.

The non-iterative decoder operates 46% faster than the iterative version while occupying 40-65% more
resources. Compared to the decoders, the encoder runs 6-9 times faster and occupies 2-6 times less resources.
Table 2 summarizes our results.

Using the formerly proposed decoders that work without our syndrome computation optimizations (i.e.,
decoders A and B) would result in much slower decryptions. Decoder A would need 4802 + 5.2964 · (2 ·
9620 + 4802) = 132138.0 cycles in an iterative and 4802 + 5.2964 · (2 · 4810 + 4802) = 81186.7 cycles in a
non-iterative implementation. Decoder B saves cycles by skipping the Maxupc computation but would still
need 4802+3.1425 ·(9620+4802) = 50123.1 cycles in an iterative and 4802+3.1425 ·(4810+4802) = 35007.7
cycles in a non-iterative implementation.

Comparison A comparison with previously published FPGA implementations of code-based (McEliece,
Niederreiter), lattice-based (Ring-LWE, NTRU), and standard public key encryption schemes (RSA, ECC)
is given in Table 3. The most relevant metric for comparing the performance of public key encryption schemes
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Table 2. Implementation results of our QC-MDPC implementations with parameters n0 = 2, n = 9600, r = 4800,
w = 90, t = 84 on a Xilinx Virtex-6 XC6VLX240T FPGA.

Aspect Encoder Decoder (iterative) Decoder (non-iterative)

FFs 14,426 (4%) 32,974 (10%) 46,515 (15%)
LUTs 8,856 (5%) 36,554 (24%) 46,249 (30%)
Slices 2,920 (7%) 10,271 (27%) 17,120 (45%)

Frequency 351.3 MHz 222.5 MHz 190.6 MHz
Time/Op 13.66 µs 125.38 µs 85.79µs
Throughput 351.3 Mbit/s 38.3 Mbit/s 55.9 Mbit/s

Encode 4,800 cycles - -
Compute Syndrome - 4,800 cycles 4,800 cycles
Check Zero - 2 cycles 2 cycles
Flip Bits - 9,620 cycles 4,810 cycles

Overall average 4,800 cycles 27,896.7 cycles 16,351.8 cycles

often depends on the application. For key exchange it is the required time per operation, given the symmetric
key size is smaller or equal to the bit size that can be transmitted in one operation. For data encryption
(i.e., much more than one block), throughput in Mbit/s is typically the most interesting metric.

A hardware McEliece implementation based on Goppa codes including CCA2 conversion was presented
for a Virtex5-LX110T FPGA in [38, 39]. Comparing their performance to our implementations shows the
advantage of QC-MDPC McEliece in both time per operation and Mbit/s. The occupied resources are similar
to our resource requirements but in addition 75 block memories are required for storage. Even more important
for real-world applications is the public key size. QC-MDPC McEliece requires 0.59 kByte which is only a
fraction of the 100.5 kByte public key of [38].

A McEliece co-processor was recently proposed for a Virtex5-LX110T FPGA [16]. Their design goal was
to optimize the speed/area ratio while we aim for high performance. With respect to decoding performance,
our implementations outperform their work in both time/operation and Mbit/s. But the co-processor needs
much less resources and can also be implemented on low-cost devices such as Spartan-3 FPGAs. The public
keys in this work have a size of 63.5 kByte which is still much larger than the 0.59 kByte of QC-MDPC
McEliece.

The Niederreiter public key scheme was implemented in [21] for a Virtex6-LX240T FPGA. The work
shows that Niederreiter encryption can provide high performance with a moderate amount of resources.
Decryption is more expensive both in computation time as well as in required resources. The Niederreiter
encryption is the superior choice for a minimum time per operation, but concerning raw throughput QC-
MDPC achieves better results. Furthermore, the public key with 63.5 kByte of the Niederreiter encryption
using binary Goppa codes might be to large for real-world applications.

FPGA implementations of lattice-based public key encryption were proposed in [17] for Ring-LWE and
in [23] for NTRU. The Ring-LWE implementation requires a huge amount of resources (in particular, ex-
ceeding the resources provided by their Virtex6-LX240T FPGA). On the other hand, NTRU as implemented
in [23] shows that lattice-based cryptography can provide high performance at moderate resources require-
ments. Note further that the results are reported for an outdated Virtex-E FPGA which is hardly comparable
to modern Virtex-5/-6 devices.

Efficient ECC hardware implementations for curves over GF (p) and GF (2m) are [12, 18, 34, 35] which all
yield good performance at moderate resource requirements. The most efficient RSA hardware implementation
to date was proposed in [42, 41]. Both the time to encrypt and decrypt one block as well as the throughput
are considerably worse than QC-MDPC McEliece.
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Table 3. Performance comparison of our QC-MDPC FPGA implementations with other public key encryption
schemes. 1Occupied slices and BRAMs are only given for encryption and decryption combined. 2Calculated from
synthesis results of a over-mapped device, post-PAR results are not given and will most likely be much slower.
3Additionally uses 26 DSP48s. 4Additionally uses 17 DSP48s.

Scheme Platform f [MHz] Bits Time/Op Cycles Mbit/s FFs LUTs Slices BRAM

This work (enc) XC6VLX240T 351.3 4,800 13.66µs 4,800 351.3 14,426 8,856 2,920 0
This work (dec) XC6VLX240T 190.6 4,800 85.79µs 16,352 55.9 46,515 46,249 17,120 0
This work (dec iter.) XC6VLX240T 222.5 4,800 125.38 µs 27,897 38.3 32,974 36,554 10,271 0

McEliece (enc) [38] XC5VLX110T 163 512 500µs n/a 1.0 n/a n/a 14,537 751

McEliece (dec) [38] XC5VLX110T 163 512 1,290 µs n/a 0.4 n/a n/a 14,537 751

McEliece (dec) [16] XC5VLX110T 190 1,751 500 µs 94,249 3.5 n/a n/a 1,385 5

Niederreiter (enc) [21] XC6VLX240T 300 192 0.66 µs 200 290.9 875 926 315 17
Niederreiter (dec) [21] XC6VLX240T 250 192 58.78 µs 14,500 3.3 12,861 9,409 3,887 9

Ring-LWE (enc) [17] XC6VLX240T n/a 256 8.10 µs n/a 15.8 143,396 298,016 n/a 02

Ring-LWE (dec) [17] XC6VLX240T n/a 256 8.15 µs n/a 15.7 65,174 124,158 n/a 02

NTRU (enc/dec) [23] XCV1600E 62.3 251 1.54/1.41µs 96/88 163/178 5,160 27,292 14,352 0

ECC-P224 [18] XC4VFX12 487 224 365.10 µs 177,755 0.61 1,892 1,825 1,580 113

ECC-163 [34] XC5VLX85T 167 163 8.60µs 1436 18.9 n/a 10,176 3,446 0
ECC-163 [35] Virtex-4 45.5 163 12.10µs 552 13.4 n/a n/a 12,430 0
ECC-163 [12] Virtex-II 128 163 35.75 µs 4576 4.56 n/a n/a 2251 6

RSA-1024 [42] XC5VLX30T 450 1,024 1,520 µs 684,000 0.67 n/a n/a 3,237 54

5.2 Microcontroller Results

Our QC-MDPC encryption requires 606 byte SRAM and 3,705 byte flash memory for the iterative design
and 606 byte SRAM and 5,496 byte flash memory in the unrolled version. Both versions already include the
public key. The decryption unit requires 198 byte SRAM and 2,218 byte flash memory including the secret
key, which is copied to SRAM at start-up for faster access. The encoder requires 26,767,463 cycles on average
or 0.8 seconds at 32 MHz. Most cycles are consumed when adding a row of G to the ciphertext (∼ 6000 cycles
each) and when rotating a row to generate the next one (∼ 2400 cycles).

The decoder requires 86,874,388 cycles on average or 2.7 seconds at 32 MHz. Rotating a polynomial in
sparse representation takes 720 cycles and adding a sparse polynomial to the syndrome requires 2,285 cycles
which clearly shows the advantage of a sparse representation. Nevertheless, computing a syndrome using the
vector-(sparse-matrix)-multiplication on average requires 10,379,351 cycles. Because syndrome, ciphertext
and the current row of H (even in sparse form) are too large to be held in registers, they have to be stored
in SRAM and are continuously loaded and stored.

Comparison Table 4 compares our results with other implementation of McEliece and with implementations
of the classical cryptosystems RSA and ECC on a similar microcontroller. For the code-based schemes, the
flash memory usage includes the public and secret key, respectively. For RSA and ECC, [19] does not clearly
state if the key size is included.

The main advantage of our implementations compared to other code-based schemes is the small memory
footprint. Especially our decoder requires much less memory than other McEliece decoders because we only
need to store the bit positions of the sparse secret polynomials instead of the full secret key.

We use the cycles/byte metric to compare our results to other implementations that handle different
plaintext/ciphertext sizes. Our iterative encoder outperforms the encoders of [10] and [13]. Our unrolled
version is nearly as fast as [20] with only half the amount of flash memory and six times less SRAM. Solely
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Table 4. Performance comparison of our QC-MDPC microcontroller implementations with other public key encryp-
tion schemes.

Scheme Platform SRAM Flash Cycles/Op Cycles/byte

This work [enc] ATxmega256 606 Byte 3,705 Byte 37,440,137 62,400
This work [enc unrolled] ATxmega256 606 Byte 5,496 Byte 26,767,463 44,612
This work [dec] ATxmega256 198 Byte 2,218 Byte 86,874,388 146,457

McEliece [enc] [13] ATxmega256 512 Byte 438 kByte 14,406,080 65,781
McEliece [dec] [13] ATxmega256 12 kByte 130.4 kByte 19,751,094 90,187

McEliece [enc] [20] ATxmega256 3.5 kByte 11 kByte 6,358,400 39,493
McEliece [dec] [20] ATxmega256 8.6 kByte 156 kByte 33,536,000 208,298

McEliece [enc] [10] ATxmega256 - - 4,171,734 260,733
McEliece [dec] [10] ATxmega256 - - 14,497,587 906,099

ECC-P160 [19] ATmega128 282 Byte 3682 Byte 6,480,000 324,000

RSA-1024 random [19] ATmega128 930 Byte 6292 Byte 87,920,000 686,875

the quasi-dyadic McEliece implementation of [20] outperforms our implementation, however requires much
more SRAM and flash memory.

6 Conclusions

In this work we presented implementations for the McEliece cryptosystem over QC-MDPC codes for Xilinx
Virtex-6 FPGAs and AVR microcontrollers. Our implementations were primarily designed for high through-
put and low memory consumption. Since decoding is generally the most expensive operation in code-based
cryptography, we analyzed existing decoders and proposed several optimized decoders. We evaluated all
decoders and selected the most suitable ones for the corresponding platforms. In addition, we showed that
it is indeed possible to realize alternative public-key cryptosystems with moderate key size requirements
and high performance or low memory on embedded systems. By demonstrating the excellent properties of
this novel construction for embedded applications, we hope to have provided another incentive for further
cryptanalytical investigation of QC-MDPC codes in the context of code-based cryptography.
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Appendix

Table 5. Evaluation of the performance and error correcting capability of the different decoders for a
QC-MDPC code with parameters n0 = 2, n = 9600, r = 4800, w = 90.

Variant #errors time in µs failure rate avg. #iterations

Decoder A 84 26.8 0.00041 5.2964
85 27.3 0.00089 5.3857
86 27.9 0.00221 5.4975
87 28.7 0.00434 5.6261
88 29.3 0.00891 5.7679
89 30.1 0.01802 5.9134
90 31.0 0.03264 6.0677

Decoder B 84 12.6 0.00051 3.1425
85 12.9 0.00163 3.1460
86 13.4 0.00631 3.1607
87 13.9 0.01952 3.2022
88 14.6 0.05195 3.4040
89 15.1 0.11462 3.5009
90 15.7 0.24080 3.8972

Decoder C1 84 22.7 0.00044 5.2862
85 23.2 0.00106 5.3924
86 23.7 0.00172 5.4924
87 24.2 0.00480 5.6260
88 25.1 0.00928 5.7595
89 25.6 0.01762 5.9078
90 26.4 0.03315 6.0685

Decoder C2 84 14.0 0.00018 3.3791
85 14.1 0.00068 3.4180
86 14.2 0.00148 3.4643
87 14.6 0.00378 3.5279
88 14.8 0.00750 3.5942
89 15.1 0.01500 3.6542
90 15.4 0.02877 3.7435

Decoder D 84 7.02 0.00001 2.4002
85 7.04 0.00003 2.4980
86 7.24 0.00004 2.5979
87 7.53 0.00031 2.6958
88 7.78 0.00093 2.7875
89 8.13 0.00234 2.8749
90 8.31 0.00552 2.9670

Decoder E 84 14.15 0.00019 3.3754
85 14.14 0.00073 3.4218
86 14.77 0.00153 3.4673
87 14.63 0.00375 3.5314
88 15.11 0.00728 3.5886
89 15.15 0.01529 3.6563
90 15.68 0.02840 3.7343

Decoder F 84 6.68 0.00000* 2.4047
85 6.92 0.00002 2.5000
86 7.11 0.00008 2.5983
87 7.59 0.00039 2.6939
88 7.68 0.00094 2.7912
89 7.99 0.00209 2.8793
90 8.54 0.00506 2.9630

* Note, this does not mean that Decoder F always succeeds. It is still a probabilistic decoder that simply
did not encounter any decoding failure in our evaluations.


