
McBits:
fast constant-time code-based cryptography

Daniel J. Bernstein1,2, Tung Chou2, and Peter Schwabe3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the
Netherlands

blueprint@crypto.tw
3 Digital Security Group

Radboud University Nijmegen, Mailbox 47, P.O. Box 9010, 6500 GL Nijmegen, the
Netherlands

peter@cryptojedi.org

Abstract. This paper presents extremely fast algorithms for code-based
public-key cryptography, including full protection against timing attacks.
For example, at a 2128 security level, this paper achieves a reciprocal de-
cryption throughput of just 60493 cycles (plus cipher cost etc.) on a single
Ivy Bridge core. These algorithms rely on an additive FFT for fast root
computation, a transposed additive FFT for fast syndrome computation,
and a sorting network to avoid cache-timing attacks.

Keywords: McEliece, Niederreiter, CFS, bitslicing, software implemen-
tation.

1 Introduction

This paper presents new software speed records for public-key cryptography: for
example, more than 400000 decryptions per second at a 280 security level, or
200000 per second at a 2128 security level, on a $215 4-core 3.4GHz Intel Core
i5-3570 CPU. These speeds are fully protected against simple timing attacks,
cache-timing attacks, branch-prediction attacks, etc.: all load addresses, all store
addresses, and all branch conditions are public.

The public-key cryptosystem used here is a code-based cryptosystem with a
long history, a well-established security track record, and even post-quantum
security: namely, Niederreiter’s dual form [49] of McEliece’s hidden-Goppa-code
cryptosystem [46]. This cryptosystem is well known to provide extremely fast

This work was supported by the Cisco University Research Program, by the National
Science Foundation under grant 1018836, and by the Netherlands Organisation for
Scientific Research (NWO) under grant 639.073.005. Permanent ID of this document:
e801a97c500b3ac879d77bcecf054ce5. Date: 2013.06.11.

2 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

encryption and reasonably fast decryption. Our main contributions are new de-
cryption techniques that are (1) much faster and (2) fully protected against
timing attacks, including the attacks by Strenzke in [63], [64], and [65].

The main disadvantage of this cryptosystem is that public keys are quite large:
for example, 64 kilobytes for the 280 security level mentioned above. In some
applications the benefits of very fast encryption and decryption are outweighed
by the costs of communicating and storing these keys. We comment that our work
allows a tradeoff between key size and decryption time: because decryption is so
fast we can afford “combinatorial list decoding”, using many trial decryptions to
guess a few error positions, which allows the message sender to add a few extra
error positions (as proposed by Bernstein, Lange, and Peters in [15]), which
increases security for the same key size, which allows smaller keys for the same
security level.

We also present new speed records for generating signatures in the CFS code-
based public-key signature system. Our speeds are an order of magnitude faster
than previous work. This system has a much larger public key but is of interest
for its short signatures and fast verification.

We will put all software described in this paper into the public domain.

To bitslice, or not to bitslice. The literature contains several success stories
for bitsliced cryptographic computations, but those stories are for small S-boxes
or large binary fields, while code-based cryptography relies on medium-size fields
and seems to make much more efficient use of table lookups. The fastest previous
software [19] for McEliece/Niederreiter decryption uses input-dependent table
lookups for fast field arithmetic, uses input-dependent branches for fast root-
finding, etc.

Despite this background we use bitslicing for the critical decoding step inside
McEliece/Niederreiter decryption. Our central observation is that this decoding
step is bottlenecked not by separate operations in a medium-size finite field,
but by larger-scale polynomial operations over that finite field; state-of-the-art
approaches to those polynomial operations turn out to interact very well with
bitslicing. Our decoding algorithms end up using a surprisingly small number of
bit operations, and as a result a surprisingly small number of cycles, setting new
speed records for code-based cryptography, in some cases an order of magnitude
faster than previous work.

The most important steps in our decoding algorithm are an “additive FFT”
for fast root computation (Section 3) and a transposed additive FFT for fast
syndrome computation (Section 4). It is reasonable to predict that the additive
FFT will also reduce the energy consumed by hardware implementations of code-
based cryptography. We also use a sorting network to efficiently simulate secret-
index lookups in a large table (Section 5); this technique may be of independent
interest for other computations that need to be protected against timing attacks.

Results: the new speeds. To simpify comparisons we have chosen to report
benchmarks on a very widely available CPU microarchitecture, specifically the
Ivy Bridge microarchitecture from Intel, which carries out one 256-bit vector
arithmetic instruction per cycle. We emphasize, however, that our techniques

McBits: fast constant-time code-based cryptography 3

are not limited to this platform. Older Intel and AMD CPUs perform two or
three 128-bit vector operations per cycle; common tablet/smartphone ARMs
with NEON perform one or two 128-bit vector operations per cycle (exploited
by Bernstein and Schwabe in [16], although not with bitslicing); the same tech-
niques will also provide quite respectable performance using 64-bit registers,
32-bit registers, etc.

Table 1.1 reports our decoding speeds for various code parameters. Decoding
time here is computed as 1/256 of the total latency measured for 256 simultane-
ous decoding operations. Decryption time is slightly larger, because it requires
hashing, checking a MAC, and applying a secret-key cipher; see Section 6. We
comment that the software supports a separate secret key for each decryption
(although many applications do not need this), and that the latency of 256
decryptions is so small as to be unnoticeable in typical applications.

We use the usual parameter notations for code-based cryptography: q = 2m

is the field size, n is the code length, t is the number of errors corrected, and
k = n−mt. “Bytes” is the public-key size dk(n− k)/8e; the rows are sorted by
this column. “Total” is our cycle count (measured by the Ivy Bridge cycle counter
with Turbo Boost and hyperthreading disabled) for decoding, including over-
head beyond vector operations. This cycle count is partitioned into five stages:
“perm” for initial permutation (Section 5), “synd” for syndrome computation
(Section 4), “key eq” for solving the key equation (standard Berlekamp–Massey),
“root” for root-finding (Section 3), and “perm” again for final permutation.

Some of the parameters in this table are taken from [15], which says that these
parameters were designed to optimize security level subject to key sizes of 216,
217, 218, 219, and 220 bytes. Some parameters are from [37]. Some parameters
are from [19], and for comparison we repeat the Core 2 cycle counts reported
in [19]. (We comment that the “cycles/byte” in [19] are cycles divided by (k +⌊
lg
(
n
t

)⌋
)/8.) Our speedups are much larger than any relevant differences between

the Core 2 and the Ivy Bridge that we used for benchmarking; we will report
Core 2 cycle counts for our software in a subsequent online update of this paper.
“Sec” is the approximate security level reported by the https://bitbucket.

org/cbcrypto/isdfq script from Peters [54], rounded to the nearest integer.
Some of the parameter choices from [19] are uninteresting in all of our metrics:

they are beaten by other parameter choices in key size, speed, and security level.
For these parameter choices we mark our cycle count in gray. Note that we
have taken only previously published parameter sets; in particular, we have not
searched for parameters that sacrifice key size to improve speed for the same
security level.

Previous speeds for public-key cryptography. The eBATS benchmarking
system [14] includes seven public-key encryption systems: mceliece, a McEliece
implementation from Biswas and Sendrier (with n = 2048 and t = 32, slightly
above a 280 security level); ntruees787ep1, an NTRU implementation (2256

security) from Mark Etzel; and five sizes of RSA starting from ronald1024

(280 security). None of these implementations claim to be protected against
timing attacks. On h9ivy, an Ivy Bridge CPU (Intel Core i5-3210M), the fastest

https://bitbucket.org/cbcrypto/isdfq
https://bitbucket.org/cbcrypto/isdfq

4 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

Our speeds
q = 2m n t k bytes sec perm synd key eq root perm total [19]

2048 2048 27 1751 65006 81 3333 8414 3120 5986 3199 24051
2048 1744 35 1359 65402 83 3301 9199 5132 6659 3145 27434
2048 2048 32 1696 74624 87 3326 9081 4267 6699 3172 26544 445599
2048 2048 40 1608 88440 95 3357 9412 6510 6852 3299 29429 608172
4096 4096 21 3844 121086 87 8661 17496 2259 11663 8826 48903 288649
4096 2480 45 1940 130950 105 8745 21339 9276 14941 8712 63012
4096 2690 56 2018 169512 119 8733 22898 14199 16383 8789 71000
4096 4096 41 3604 221646 129 8622 20846 7714 14794 8520 60493 693822
8192 8192 18 7958 232772 91 23331 49344 3353 37315 23339 136679 317421
4096 3408 67 2604 261702 146 8983 24308 19950 17790 8686 79715
8192 8192 29 7815 368282 128 22879 56336 7709 44727 22753 154403 540952

16384 16384 15 16174 424568 90 60861 99360 2337 79774 60580 302909 467818
8192 4624 95 3389 523177 187 22693 76050 70696 59409 22992 251838
8192 6624 115 5129 958482 252 23140 83127 102337 65050 22971 296624
8192 6960 119 5413 1046739 263 23020 83735 109805 66453 23091 306102

Table 1.1. Number of cycles for decoding for various code parameters. See text for
description.

encryption (for 59-byte messages) is 46940 cycles for ronald1024 followed by
61440 cycles for mceliece, several more RSA results, and finally 398912 cycles
for ntruees787ep1. The fastest decryption is 700512 cycles for ntruees787ep1,
followed by 1219344 cycles for mceliece and 1340040 cycles for ronald1024.

A followup paper [19] by Biswas and Sendrier reports better decryption per-
formance, 445599 cycles on a Core 2 for n = 2048 and t = 32. Sendrier says
(private communication) that he now has better performance, below 300000 cy-
cles. However, our speed of 26544 cycles for n = 2048 and t = 32 improves upon
this by an order of magnitude, and also includes full protection against timing
attacks.

eBATS also includes many Diffie–Hellman systems. One can trivially use
Diffie–Hellman for public-key encryption; the decryption time is then the Diffie–
Hellman shared-secret time plus some fast secret-key cryptography, and the en-
cryption time is the same plus the Diffie–Hellman key-generation time. When
we submitted this paper the fastest Diffie–Hellman shared-secret time reported
from h9ivy was 182632 cycles (side-channel protected), set by the curve25519

implementation from Bernstein, Duif, Lange, Schwabe, and Yang in [13]. The
fastest time now is 77468 cycles (not side-channel protected), set by gls254 from
Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez; see [50]. Our software takes
just 60493 cycles (side-channel protected) for decryption with n = 4096 and
t = 41 at the same 2128 security level.

We have found many claims that NTRU is orders of magnitude faster than
RSA and ECC, but we have also found no evidence that NTRU can match
our speeds. The fastest NTRU decryption report that we have found is from

McBits: fast constant-time code-based cryptography 5

Hermans, Vercauteren, and Preneel in [36]: namely, 24331 operations per second
on a GTX 280 GPU.

Heyse and Güneysu in [37] report 17012 Niederreiter decryption operations
per second on a Virtex6-LX240T FPGA for n = 2048 and t = 27. The imple-
mentation actually uses only 10% of the FPGA slices, so presumably one can run
several copies of the implementation in parallel without running into place-and-
route difficulties. A direct speed comparison between such different platforms
does not convey much information, but we point out several ways that our de-
cryption algorithm improves upon the algorithm used in [37]: we use an additive
FFT rather than separate evaluations at each point (“Chien search”); we use a
transposed additive FFT rather than applying a syndrome-conversion matrix;
we do not even need to store the syndrome-conversion matrix, the largest part
of the data stored in [37]; and we use a simple hash (see Section 6) rather than
a constant-weight-word-to-bit-string conversion.

2 Field arithmetic

We construct the finite field F2m as F2[x]/f , where f is a degree-m irreducible
polynomial. We use trinomial choices of f when possible. We use pentanomials
for F213 and F216 .

Addition. Addition in F2m is simply a coefficient-wise xor and costs m bit
operations.

Multiplication. A field multiplication is composed of a multiplication in F2[x]
and reduction modulo f . We follow the standard approach of optimizing these
two steps separately, and we use standard techniques for the second step. Note,
however, that this two-step optimization is not necessarily optimal, even if each
of the two steps is optimal.

For the first step we started from Bernstein’s straight-line algorithms from
http://binary.cr.yp.to/m.html. The mth algorithm is a sequence of XORs
and ANDs that multiplies two m-coefficient binary polynomials. The web page
shows algorithms for m as large as 1000; for McEliece/Niederreiter we use m
between 11 and 16, and for CFS (Section 7) we use m = 20. These straight-
line algorithms are obtained by combining different multiplication techniques as
explained in [10]; for 10 ≤ m ≤ 20 the algorithms use somewhat fewer bit opera-
tions than schoolbook multiplication. We applied various scheduling techniques
(in some cases sacrificing some bit operations) to improve cycle counts.

Squaring. Squaring of a polynomial does not require any bit operations. The
square of anm-coefficient polynomial f =

∑m−1
i=0 aix

i is simply f2 =
∑m−1
i=0 aix

2i.
The only bit operations required for squaring in F2m are thus those for reduc-
tion. Note that half of the high coefficients are known to be zero; reduction after
squaring takes only about half the bit operations of reduction after multiplica-
tion.

http://binary.cr.yp.to/m.html

6 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

Inversion. We compute reciprocals in F2m as (2m−2)nd powers. For F220 we use
an addition chain consisting of 19 squarings and 6 multiplications. For smaller
fields we use similar addition chains.

3 Finding roots: the Gao–Mateer additive FFT

This section considers the problem of finding all the roots of a polynomial
over a characteristic-2 finite field. This problem is parametrized by a field size
q = 2m where m is a positive integer. The input is a sequence of coefficients
c0, c1, . . . , ct ∈ Fq of a polynomial f = c0 + c1x+ · · ·+ ctx

t ∈ Fq[x] of degree at
most t. The output is a sequence of q bits bα indexed by elements α ∈ Fq in a
standard order, where bα = 0 if and only if f(α) = 0.

Application to decoding. Standard decoding techniques have two main steps:
finding an “error-locator polynomial” f of degree at most t, and finding all the
roots of the polynomial in a specified finite field Fq. In the McEliece/Niederreiter
context it is traditional to take the field size q as a power of 2 and to take t on
the scale of q/ lg q, typically between 0.1q/ lg q and 0.3q/ lg q; a concrete example
is (q, t) = (2048, 40). In cases of successful decryption this polynomial will in fact
have exactly t roots at the positions of errors added by the message sender.

Multipoint evaluation. In coding theory, and in code-based cryptography,
the most common way to solve the root-finding problem is to simply try each
possible root: for each α ∈ Fq, evaluate f(α) and then OR together the bits of
f(α) in a standard basis, obtaining 0 if and only if f(α) = 0.

The problem of evaluating f(α) for every α ∈ Fq, or more generally for every
α in some set S, is called multipoint evaluation. Separately evaluating f(α) by
Horner’s rule for every α ∈ Fq costs qt multiplications in Fq and qt additions in
Fq; if t is essentially linear in q (e.g., q or q/ lg q) then the total number of field
operations is essentially quadratic in q. “Chien search” is an alternative method
of evaluating each f(α), also using qt field additions and qt field multiplications.

There is an extensive literature on more efficient multipoint-evaluation tech-
niques. Most of these techniques (for example, the “dcmp” method recommended
by Strenzke in [65]) save at most small constant factors. Some of them are much
more scalable: in particular, a 40-year-old FFT-based algorithm [21] by Borodin
and Moenck evaluates an n-coefficient polynomial at any set of n points using
only n1+o(1) field operations. On the other hand, the conventional wisdom is
that FFTs are particularly clumsy for characteristic-2 fields, and in any case are
irrelevant to the input sizes that occur in cryptography.

Additive FFT: overview. For multipoint evaluation we use a characteristic-2
“additive FFT” algorithm introduced in 2010 [32] by Gao and Mateer (improv-
ing upon previous algorithms by Wang and Zhu in [66], Cantor in [24], and
von zur Gathen and Gerhard in [33]), together with some new improvements
described below. This algorithm evaluates a polynomial at every element of Fq,
or more generally every element of an F2-linear subspace of Fq. The algorithm

McBits: fast constant-time code-based cryptography 7

uses an essentially linear number of field operations; most of those operations
are additions, making the algorithm particularly well suited for bitslicing.

The basic idea of the algorithm is to write f in the form f0(x2−x)+xf1(x2−x)
for two half-degree polynomials f0, f1 ∈ Fq[x]; this is handled efficiently by the
“radix conversion” described below. This form of f shows a large overlap between
evaluating f(α) and evaluating f(α+1). Specifically, (α+1)2−(α+1) = α2−α,
so

f(α) = f0(α2 − α) + αf1(α2 − α),

f(α+ 1) = f0(α2 − α) + (α+ 1)f1(α2 − α).

Evaluating both f0 and f1 at α2 − α produces both f(α) and f(α + 1) with
just a few more field operations: multiply the f1 value by α, add the f0 value to
obtain f(α), and add the f1 value to obtain f(α+ 1).

The additive FFT applies this idea recursively. For example, if β2 − β = 1
then evaluating f at α, α + 1, α + β, α + β + 1 reduces to evaluating f0 and f1
at α2 − α and α2 − α+ 1, which in turn reduces to evaluating four polynomials
at α4 − α. One can handle any subspace by “twisting”, as discussed below.

For comparison, a standard multiplicative FFT writes f in the form f0(x2) +
xf1(x2) (a simple matter of copying alternate coefficients of f), reducing the
computation of both f(α) and f(−α) to the computation of f0(α2) and f1(α2).
The problem in characteristic 2 is that α and −α are the same. The standard
workaround is a radix-3 FFT, writing f in the form f0(x3)+xf1(x3)+x2f2(x3),
but this is considerably less efficient.

We comment that the additive FFT, like the multiplicative FFT, is suitable
for small hardware: it can easily be written as a highly structured iterative
algorithm rather than a recursive algorithm, and at a small cost in arithmetic it
can be written to use very few constants.

Additive FFT: detail. Consider the problem of evaluating a 2m-coefficient
polynomial f at all subset sums (F2-linear combinations) of β1, . . . , βm ∈ Fq:
i.e., computing f(0), f(β1), f(β2), f(β1 + β2), etc. Gao and Mateer handle this
problem as follows.

If m = 0 then the output is simply f(0). Assume from now on that m ≥ 1.
If βm = 0 then the output is simply two copies of the output for β1, . . . , βm−1.

(The algorithm stated in [32] is slightly less general: it assumes that β1, . . . , βm
are linearly independent, excluding this case.) Assume from now on that βm 6= 0.

Assume without loss of generality that βm = 1. To handle the general case,
compute g(x) = f(βmx), and observe that the output for f, β1, β2, . . . , βm is the
same as the output for g, β1/βm, β2/βm, . . . , 1. (This is the “twisting” mentioned
above. Obviously the case βm = 1 is most efficient; the extent to which this case
can be achieved depends on how many powers of 2 divide lg q.)

Apply the radix conversion described below to find two 2m−1-coefficient poly-
nomials f0, f1 ∈ Fq[x] such that f = f0(x2−x)+xf1(x2−x). Recursively evaluate
f0 at all subset sums of δ1, . . . , δm−1, where δi = β2

i −βi. Also recursively evaluate
f1 at all subset sums of δ1, . . . , δm−1.

Observe that each subset sum α =
∑
i∈S βi with S ⊆ {1, 2, . . . ,m− 1} has

α2 − α = γ where γ =
∑
i∈S δi. Compute f(α) as f0(γ) + αf1(γ), and compute

8 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

f(α + 1) as f(α) + f1(γ). Note that these evaluation points α and α + 1 cover
all subset sums of β1, β2, . . . , βm, since βm = 1.

The radix-conversion subroutine. Here is how to write a 2m-coefficient poly-
nomial f = c0 + c1x + · · · + c2m−1x

2m−1 in the form f0(x2 − x) + xf1(x2 − x),
where f0 and f1 are 2m−1-coefficient polynomials.

If m = 1, simply take f0 = c0 and f1 = c1. Assume from now on that m ≥ 2.
Abbreviate 2m−2 as n; then f = c0 + c1x + · · · + c4n−1x

4n−1. Divide f by
the power (x2 − x)n = x2n − xn, obtaining a quotient Q and a remainder R:
explicitly,

Q = (c2n + c3n) + · · ·+ (c3n−1 + c4n−1)xn−1 + c3nx
n + · · ·+ c4n−1x

2n−1,

R = (c0) + · · ·+ (cn−1)xn−1

+ (cn + c2n + c3n)xn + · · ·+ (c2n−1 + c3n−1 + c4n−1)x2n−1.

This takes 2n = 2m−1 additions; note that c2n + c3n etc. from Q are reused in
R.

Recursively write Q in the form Q0(x2 − x) + xQ1(x2 − x), and recursively
write R in the form R0(x2−x) +xR1(x2−x). Finally compute f0 = R0 +xnQ0

and f1 = R1 + xnQ1.
This procedure is a special case of a general radix-conversion method credited

to Schönhage in [41, page 638]. The standard method to convert an integer or
polynomial to radix r is to divide it by r, output the remainder, and recursively
handle the quotient. Schönhage’s method is to divide by a power of r and handle
both the quotient and remainder recursively. The division is particularly efficient
when the power of r is sparse, as in the case of (x2 − x)n = x2n − xn.

Improvement: 1-coefficient polynomials. Gao and Mateer show that for
q = 2m this additive-FFT algorithm uses 2q lg q − 2q + 1 multiplications in Fq
and (1/4)q(lg q)2 +(3/4)q lg q− (1/2)q additions in Fq. The βm = 1 optimization
removes many multiplications when it is applicable.

We do better by generalizing from one parameter to two, separating the max-
imum polynomial degree t from the number 2m of evaluation points. Our main
interest is not in the case t+ 1 = 2m, but in the case that t is smaller than 2m

by a logarithmic factor.
The adjustments to the algorithm are straightforward. We begin with a poly-

nomial having t+ 1 coefficients. If t = 0 then the output is simply 2m copies of
f(0), which we return immediately without any additions or multiplications. If
t ≥ 1 then we continue as in the algorithm above; f0 has d(t+ 1)/2e coefficients,
and f1 has b(t+ 1)/2c coefficients. Note that t+ 1 and 2m each drop by a factor
of approximately 2 in the recursive calls.

It is of course possible to zero-pad a (t + 1)-coefficient polynomial to a 2m-
coefficient polynomial and apply the original algorithm, but this wastes consid-
erable time manipulating coefficients that are guaranteed to be 0.

Improvement: 2-coefficient and 3-coefficient polynomials. We further
accelerate the case that t is considerably smaller than 2m, replacing many mul-
tiplications with additions as follows.

McBits: fast constant-time code-based cryptography 9

Recall that the last step of the algorithm involves 2m−1 multiplications of the
form αf1(γ). Here α runs through all subset sums of β1, β2, . . . , βm−1, and γ =
α2−α. The multiplication for α = 0 can be skipped but all other multiplications
seem nontrivial.

Now consider the case that t ∈ {1, 2}. Then f1 has just 1 coefficient, so the
recursive evaluation of f1 produces 2m−1 copies of f1(0), as discussed above.
The products αf1(γ) = αf1(0) are then nothing more than subset sums of
β1f1(0), β2f1(0), . . . , βm−1f1(0). Instead of 2m−1− 1 multiplications we use just
m− 1 multiplications and 2m−1 −m additions.

Results. Table 3.1 displays the speed of the additive FFT, including these
improvements, for an illustrative sample of field sizes q = 2m and degrees t
taken from our applications to decoding.

Other algorithms. We briefly mention a few alternative root-finding algo-
rithms.

In the standard McEliece/Niederreiter context, f is known in advance to
have t distinct roots (for valid ciphertexts). However, in the signing context
of Section 7 and the “combinatorial list decoding” application mentioned in
Section 6, one frequently faces, and wants to discard, polynomials f that do not
have t distinct roots. One can usually save time by checking whether xq−x mod
f = 0 before applying a root-finding algorithm. There are other applications
where one wants all the roots of a polynomial f that has no reason to have as
many as deg f distinct roots; for such applications it is usually helpful to replace
f with gcd {f, xq − x}.

There are other root-finding techniques (and polynomial-factorization tech-
niques) that scale well to very large finite fields Fq when t remains small, such as
Berlekamp’s trace algorithm [6]. If t is as large as q then all of these techniques
are obviously slower than multipoint evaluation with the additive FFT, but our
experiments indicate that the t cutoff is above the range used in code-based
signatures (see Section 7) and possibly within the range used in code-based en-
cryption. Our main reason for not using these methods is that they involve many
data-dependent conditional branches; as far as we can tell, all of these methods
become much slower when the branches are eliminated.

There is a generalization of the additive FFT that replaces x2−x with xt−x
if q is a power of t. Gao and Mateer state this generalization only in the extreme
case that lg q and lg t are powers of 2; we are exploring the question of whether
the generalization produces speedups for other cases.

4 Syndrome computation: transposing the additive FFT

Consider the problem of computing the vector (
∑
α rα,

∑
α rαα, . . . ,

∑
α rαα

d),
given a sequence of q elements rα ∈ Fq indexed by elements α ∈ Fq, where q =
2m. This vector is called a “syndrome”. One can compute

∑
α rαα

i separately
for each i with approximately 2dq field operations. We do better in this section
by merging these computations across all the values of i.

10 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

m = 11 t 27 32 35 40 53 63 69 79
adds 5.41 5.60 5.75 5.99 6.47 6.69 6.84 7.11

mults 1.85 2.12 2.13 2.16 2.40 2.73 2.77 2.82

m = 12 t 21 41 45 56 67 81 89 111 133
adds 5.07 6.01 6.20 6.46 6.69 7.04 7.25 7.59 7.86

mults 1.55 2.09 2.10 2.40 2.64 2.68 2.70 2.99 3.28

m = 13 t 18 29 35 57 95 115 119 189 229 237
adds 4.78 5.45 5.70 6.44 7.33 7.52 7.56 8.45 8.71 8.77

mults 1.52 1.91 2.04 2.38 2.62 2.94 3.01 3.24 3.57 3.64

Table 3.1. Number of field operations/point in the additive FFT for various field sizes
q = 2m and various parameters t. The total number of field additions is q times “adds”;
the total number of field multiplications is q times “mults”. For comparison, Horner’s
rule uses qt additions and qt multiplications; i.e., for Horner’s rule, “adds” and “mults”
are both t. Chien search also uses qt additions and qt multiplications.

Application to decoding. The standard Berlekamp decoding algorithm com-
putes the syndrome shown above, and then solves a “key equation” to compute
the error-locator polynomial mentioned in Section 3. When Berlekamp’s algo-
rithm is applied to decoding Goppa codes using a degree-t polynomial g as
described in Section 6, the inputs rα are a received word divided by g(α)2, and d
is 2t−1. Many other decoding algorithms begin with the same type of syndrome
computation, often with d only half as large.

Note that there are only n ≤ q bits in the received word. The (d+ 1)m = 2tm
syndrome bits are F2-linear functions of these n input bits. Standard practice in
the literature is to precompute the corresponding 2tm× n matrix (or a tm× n
matrix for Patterson’s algorithm), and to multiply this matrix by the n input
bits to obtain the syndrome. These 2tmn bits are by far the largest part of
the McEliece/Niederreiter secret key. Our approach eliminates this precomputed
matrix, and also reduces the number of bit operations once t is reasonably large.

Syndrome computation as the transpose of multipoint evaluation. No-
tice that the syndrome (c0, c1, . . . , cd) is an Fq-linear function of the inputs rα.
The syndrome-computation matrix is a “transposed Vandermonde matrix”: the
coefficient of rα in ci is αi.

For comparison, consider the multipoint-evaluation problem stated in the
previous section, producing f(α) for every α ∈ Fq given a polynomial f =
c0 + c1x+ · · ·+ cdx

d. The multipoint-evaluation matrix is a “Vandermonde ma-
trix”: the coefficient of ci in f(α) is αi.

To summarize, the syndrome-computation matrix is exactly the transpose of
the multipoint-evaluation matrix. We show below how to exploit this fact to
obtain a fast algorithm for syndrome computation.

Transposing linear algorithms. A linear algorithm expresses a linear compu-
tation as a labeled acyclic directed graph. Each edge in the graph is labeled by
a constant (by default 1 if no label is shown), multiplies its incoming vertex by
that constant, and adds the product into its outgoing vertex; some vertices with-

McBits: fast constant-time code-based cryptography 11

in1 = a

$$

out1 = a + 4b in1 = a0

$$

b0 // a0b0

$$

// out1 = a0b0

a + 4b

::

10

$$

a0 + a1
b0+b1 // out2 = a0b1 + a1b0

in2 = b

4
::

// out2 = 10a + 41b in2 = a1

::

b1 // a1b1

::

// out3 = a1b1

Fig. 4.1. An R-linear algorithm to compute a, b 7→ a + 4b, 10a + 41b using constants
4, 10, and an F2m -linear algorithm to compute a0, a1 7→ a0b0, a0b1 + a1b0, a1b1 using
constants b0, b0 + b1, b1.

out1 = c + 10d in1 = c

zz

out1 = b0c0 + b1c1 c0 + c1
b0

oo in1 = c0oo

c + 10d

dd

4zz

(b0 + b1)c1

dd

zz

in2 = c1
b0+b1

oo

dd

zz
out2 = 4c + 41d in2 = d

10

dd

oo out2 = b0c1 + b1c2 c1 + c2
b1

oo in3 = c2oo

Fig. 4.2. Transposing the algorithms in Figure 4.1.

out incoming edges are labeled as inputs, and some vertices without outgoing
edges are labeled as outputs. Figure 4.1 displays two examples: a computation
of a + 4b, 10a + 41b given a, b, using constants 4 and 10; and a computation of
a0b0, a0b1 + a1b0, a1b1 given a0, a1, using constants b0, b0 + b1, b1.

The transposition principle states that if a linear algorithm computes a ma-
trix M (i.e., M is the matrix of coefficients of the inputs in the outputs) then
reversing the edges of the linear algorithm, and exchanging inputs with outputs,
computes the transpose of M . This principle was introduced by Bordewijk in
[20], and independently by Lupanov in [45] for the special case of Boolean ma-
trices. This reversal preserves the number of multiplications (and the constants
used in those multiplications), and preserves the number of additions plus the
number of nontrivial outputs, as shown by Fiduccia in [29, Theorems 4 and 5]
after preliminary work in [28].

For example, Figure 4.2 displays the reversals of the linear algorithms in
Figure 4.1. The first reversal computes c + 10d, 4c + 41d given c, d. The second
reversal computes b0c0 + b1c1, b0c1 + b1c2 given c0, c1, c2.

Transposing the additive FFT. In particular, since syndrome computation
is the transpose of multipoint evaluation, reversing a fast linear algorithm for
multipoint evaluation produces a fast linear algorithm for syndrome computa-
tion.

We started with our software for the additive FFT, including the improve-
ments discussed in Section 3. This software is expressed as a sequence of additions

12 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

in Fq and multiplications by various constants in Fq. We compiled this sequence
into a directed acyclic graph, automatically renaming variables to avoid cycles.
We then reversed the edges in the graph and converted the resulting graph back
into software expressed as a sequence of operations in Fq, specifically C code
with vector intrinsics.

This procedure produced exactly the desired number of operations in Fq but
was unsatisfactory for two reasons. First, there were a huge number of nodes in
the graph, producing a huge number of variables in the final software. Second,
this procedure eliminated all of the loops and functions in the original software,
producing a huge number of lines of code in the final software. Consequently
the C compiler, gcc, became very slow as m increased and ran out of memory
around m = 13 or m = 14, depending on the machine we used for compilation.

We then tried the qhasm register allocator [8], which was able to produce
working code for larger values of m using the expected number of variables
(essentially q), eliminating the first problem. We then wrote our own faster
straight-line register allocator. We reduced code size by designing a compact
format for the sequence of Fq operations and interpreting the sequence at run
time. There was, however, still some performance overhead for this interpreter.

We considered more advanced compilation techniques to reduce code size: the
language introduced in [26], for example, and automatic compression techniques
to recognize repeated subgraphs of the reversed graph. In the end we eliminated
the compiler, analyzed the interaction of transposition with the structure of the
additive FFT, and designed a compact transposed additive FFT algorithm.

The original additive FFT algorithm A has steps of the form B,A1, A2, C,
where A1 and A2 are recursive calls. The transpose Aᵀ has steps Cᵀ, Aᵀ

2 , A
ᵀ
1 , B

ᵀ,
preserving the recursions. The main loop in the additive FFT takes a pair of
variables v, w (containing f0(α2 − α) and f1(α2 − α) respectively), operates in
place on those variables (producing f(α) and f(α + 1) respectively), and then
moves on to the next pair of variables; transposition preserves this loop structure
and simply transposes each operation. This operation replaces v by v+w ·α and
then replaces w by w+v; the transposed operation replaces v by v+w and then
replaces w by w + v · α.

Improvement: transposed additive FFT on scaled bits. Recall that, in
the decoding context, the inputs are not arbitrary field elements: rα is a received
bit divided by g(α)2. We take advantage of this restriction to reduce the number
of bit operations in syndrome computation.

The first step of the transposed additive FFT operates on each successive pair
of inputs v, w as described above: it replaces v by v+w and then replaces w by
w + v · α. Assume that before this v, w are computed as scaled bits bv · sv, bw ·
sw, where bv, bw ∈ F2 are variables and sv, sw ∈ Fq are constants. Computing
bv · sv and bw · sw takes 2m bit operations; computing w · α takes one field
multiplication; computing v + w · α takes m bit operations; computing w + v
takes m bit operations.

If the multiplication by α takes more than 2m bit operations then we do
better by computing the final v and w directly as bv · sv + bw · sw and bv · sv ·α+

McBits: fast constant-time code-based cryptography 13

bw · sw · (α + 1) respectively. This takes just 6m bit operations: we precompute
sv, sw, sv · α, sw · (α+ 1).

The same idea can be used for more levels of recursion, although the number
of required constants grows rapidly. Using this idea for all levels of recursion is
tantamount to the standard approach mentioned earlier, namely precomputing
a 2tm× n matrix.

5 Secret permutations without secret array indices:
odd-even sorting

Section 3 presented an algorithm that, given a polynomial f , outputs bits bα
for all α ∈ Fq in a standard order (for example, lexicographic order using
a standard basis), where bα = 0 if and only if f(α) = 0. However, in the
McEliece/Niederreiter context, one actually has the elements (α1, α2, . . . , αq)
of Fq in a secret order (or, more generally, (α1, . . . , αn) for some n ≤ q), and
one needs to know for each i whether f(αi) = 0, i.e., whether bαi = 0. These
problems are not exactly the same: one must apply a secret permutation to the
q bits output by Section 3. Similar comments apply to Section 4: one must apply
the inverse of the same secret permutation to the q bits input to Section 4.

This section considers the general problem of computing a permuted q-bit
string bπ(0), bπ(1), . . . , bπ(q−1), given a q-bit string b0, b1, . . . , bq−1 and a sequence
of q distinct integers π(0), π(1), . . . , π(q−1) in {0, 1, . . . , q − 1}. Mapping the set
{0, 1, . . . , q − 1} to Fq in a standard order, and viewing αi+1 as either π(i) or
π−1(i), covers the problems stated in the previous paragraph.

The obvious approach is to compute bπ(i) for i = 0, then for i = 1, etc.
We require all load and store addresses to be public, so we cannot simply use
the CPU’s load instruction (with appropriate masking) to pick up the bit bπ(i).
Bitslicing can simulate this load instruction, essentially by imitating the struc-
ture of physical RAM hardware, but this is very slow: it means performing a
computation involving every element of the array. We achieve much better bit-
slicing speeds by batching all of the required loads into a single large operation
as described below.

Sorting networks. A “sorting network” uses a sequence of “comparators” to
sort an input array S. A comparator is a data-independent pair of indices (i, j);
it swaps S[i] with S[j] if S[i] > S[j]. This conditional swap is easily expressed as
a data-independent sequence of bit operations: first some bit operations to com-
pute the condition S[i] > S[j], then some bit operations to overwrite (S[i], S[j])
with (min {S[i], S[j]},max {S[i], S[j]}).

There are many sorting networks in the literature. We use a standard “odd-
even” sorting network by Batcher [3], which uses exactly (m2−m+ 4)2m−2− 1
comparators to sort an array of 2m elements. This is more efficient than other
sorting networks such as Batcher’s bitonic sort [3] or Shell sort [61]. The odd-
even sorting network is known to be suboptimal when m is very large (see [2]),
but we are not aware of noticeably smaller sorting networks for the range of m
used in code-based cryptography.

14 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

Precomputed comparisons. We treat this section’s bπ(i) computation as a
sorting problem: specifically, we use a sorting network to sort the key-value
pairs (π−1(0), b0), (π−1(1), b1), . . . according to the keys. Note that computing
(π−1(0), π−1(1), . . .) from (π(0), π(1), . . .) can be viewed as another sorting prob-
lem, namely sorting the key-value pairs (π(0), 0), (π(1), 1), . . . according to the
keys.

We do better by distinguishing between the b-dependent part of this computa-
tion and the b-independent part of this computation: we precompute everything
b-independent before b is known. In the context of code-based cryptography, the
permutations π and π−1 are known at key-generation time and are the same for
every use of the secret key. The only computations that need to be carried out
for each decryption are computations that depend on b.

Specifically, all of the comparator conditions S[i] > S[j] depend only on π, not
on b; the conditional swaps of π values also depend only on π, not on b. We record
the (m2 − m + 4)2m−2 − 1 comparator conditions obtained by sorting π, and
then apply those conditional swaps to the b array once b is known. Conditionally
swapping b[i] with b[j] according to a bit c uses only 4 bit operations (y ← b[i]⊕
b[j]; y ← cy; b[i]← b[i]⊕y; b[j]← b[j]⊕y), for a total of 4((m2−m+4)2m−2−1)
bit operations. Note that applying the same conditional swaps in reverse order
applies the inverse permutation.

Permutation networks. A “permutation network” (or “rearrangeable permu-
tation network” or “switching network”) uses a sequence of conditional swaps to
apply an arbitrary permutation to an input array S. Here a conditional swap is
a data-independent pair of indices (i, j) together with a permutation-dependent
bit c; it swaps S[i] with S[j] if c = 1.

A sorting network, together with a permutation, produces a limited type
of permutation network in which the condition bits are computed by data-
independent comparators; but there are other types of permutation networks
in which the condition bits are computed in more complicated ways. In particu-
lar, the Beneš permutation network [4] uses only 2m(m−1/2) conditional swaps
to permute 2m elements for m ≥ 1.

The main challenge in using the Beneš permutation network is to compute
the condition bits in constant time; see Section 6 for further discussion of timing-
attack protection for key generation. We have recently completed software for
this condition-bit computation but have not yet integrated it into our decoding
software. We will report the details of this computation, and the resulting speeds,
in an online update of this paper.

Alternative: random condition bits. In code-based cryptography we choose
a permutation at random; we then compute the condition bits for a permutation
network, and later (during each decryption) apply the conditional swaps. An
alternative is to first choose a random sequence of condition bits for a permuta-
tion network, then compute the corresponding permutation, and later apply the
conditional swaps.

This approach reduces secret-key size but raises security questions. By def-
inition a permutation network can reach every permutation, but perhaps it is

McBits: fast constant-time code-based cryptography 15

much more likely to reach some permutations than others. Perhaps this hurts
security. Perhaps not; perhaps a nearly uniform distribution of permutations is
unnecessary; perhaps it is not even necessary to reach all permutations; perhaps
a network half the size of the Beneš network would produce a sufficiently ran-
dom permutation; but these speculations need security analysis. Our goals in
this paper are more conservative, so we avoid this approach: we are trying to
reduce, not increase, the number of questions for cryptanalysts.

6 A complete code-based cryptosystem

Code-based cryptography is often presented as encrypting fixed-length plain-
texts. McEliece encryption multiplies the public key (a matrix) by a k-bit mes-
sage to produce an n-bit codeword and adds t random errors to the codeword
to produce a ciphertext. The Niederreiter variant (which has several well-known
advantages, and which we use) multiplies the public key by a weight-t n-bit
message to produce an (n − k)-bit ciphertext. If the t-error decoding problem
is difficult for the public code then both of these encryption systems are secure
against passive attackers who intercept valid ciphertexts for random plaintexts.

What users want, however, is to be able to encrypt non-random plaintexts
of variable length and to be secure against active attackers who observe the
receiver’s responses to forged ciphertexts. The literature contains several different
ways to convert the McEliece encryption scheme into this more useful type of
encryption scheme, with considerable attention paid to

– the ciphertext overhead (ciphertext length minus plaintext length) and
– the set of attacks that are proven to be as difficult as the t-error decoding

problem (e.g., generic-hash IND-CCA2 attacks in [42]).

However, much less attention has been paid to

– the cost in encryption time,
– the cost in decryption time, and
– security against timing attacks.

The work described in previous sections of this paper, speeding up t-error decod-
ing and protecting it against timing attacks, can easily be ruined by a conversion
that is slow or that adds its own timing leaks. We point out, for example, that
straightforward implementations of any of the decryption procedures presented
in [42] would abort if the “DMcEliece” step fails; the resulting timing leak allows
all of the devastating attacks that [42] claims to eliminate.

This section specifies a fast code-based public-key encryption scheme that
provides high security, including security against timing attacks. This section
also compares the scheme to various alternatives.

Parameters. The system parameters are positive integers m, q, n, t, k such that
n ≤ q = 2m, k = n − mt, and t ≥ 2. For example, one can take m = 12,
n = q = 4096, t = 41, and k = 3604.

16 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

Key generation. The receiver’s secret key has two parts: first, a sequence
(α1, α2, . . . , αn) of distinct elements of Fq; second, a squarefree degree-t poly-
nomial g ∈ Fq[x] such that g(α1)g(α2) · · · g(αn) 6= 0. These can of course be
generated dynamically from a much smaller secret.

The receiver computes the t× n matrix
1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−11 /g(α1) αt−12 /g(α2) · · · αt−1n /g(αn)

over Fq. The receiver then replaces each entry in this matrix by a column of m
bits in a standard basis of Fq over F2, obtaining an mt × n matrix H over F2.
The kernel of H, i.e., the set of c ∈ Fn2 such that Hc = 0, is a vector space of
dimension at least n−mt = k, namely the Goppa code Γ = Γ2(α1, . . . , αn, g).

At this point one can compute the receiver’s public key K by applying Gaus-
sian elimination (with partial pivoting) to H. Specifically, K is the result of
applying a sequence of elementary row operations to H (adding one row to an-
other row), and is the unique result in systematic form, i.e., the unique result
whose left tm× tm submatrix is the identity matrix. One can trivially compress
K to (n −mt)mt = k(n − k) bits by not transmitting the identity matrix; this
compression was introduced by Niederreiter in [49], along with the idea of using
a systematic parity-check matrix for Γ instead of a random parity-check ma-
trix for Γ . If Gaussian elimination fails (i.e., if the left tm × tm submatrix of
H is not invertible) then the receiver starts over, generating a new secret key;
approximately 3 tries are required on average.

The standard approach to Gaussian elimination is to search for a 1 in the
first column (aborting if there is no 1), then swap that row with the first row,
then subtract that row from all other rows having a 1 in the first column, then
continue similarly through the other columns. This approach has several timing
leaks in the success cases. (It also takes variable time in the failure cases, but
those cases are independent of the final secret.) We eliminate the timing leaks in
the success cases as follows, with only a small constant-factor overhead. We add
1− b times the second row to the first row, where b is the first entry in the first
row; and then similarly (with updated b) for the third row etc. We then add b
times the first row to the second row, where b is the first entry in the second row;
and then similarly for the third row etc. We then continue similarly through the
other columns.

An alternate strategy is to first apply a reasonably long sequence of elementary
row operations to H, using a public sequence of rows but secret random multi-
ples. Here “reasonably long” is chosen so that the output is negligibly different
from a uniform random parity-check matrix for the same code. That parity-check
matrix can safely be made public, so one can feed it to any Gaussian-elimination
routine to obtain K, even if the Gaussian-elimination routine leaks information
about its input through timing.

McBits: fast constant-time code-based cryptography 17

One can argue that key generation provides the attacker only a single tim-
ing trace (for the secret key that ends up actually being used), and that this
single trace is not enough information to pinpoint the secret key. However, this
argument relies implicitly on a detailed analysis of how much information the at-
tacker actually obtains through timing. By systematically eliminating all timing
leaks we eliminate the need for such arguments and analyses.

Encryption. To encrypt a variable-length message we generate a random 256-
bit key for a stream cipher and then use the cipher to encrypt the message.
AES-CTR has fast constant-time implementations for some platforms but not
for others, so we instead choose Salsa20 [9] as the stream cipher. To eliminate
malleability we also generate a random 256-bit key for the Poly1305 MAC [7],
which takes time dependent only on the message length, and use this MAC to
authenticate the ciphertext.

To generate these two secret keys we generate a random weight-t vector e ∈ Fn2
and then hash the vector to 512 bits. For the moment we use SHA-512 as the
hash function; according to [17] it is still not yet clear exactly which Keccak
variants will be specified for SHA-3. All of these hash functions take constant
time for fixed n.

To transmit the vector e to the receiver we compute and send w = Ke ∈ Ftm2 .
The ciphertext overhead is tm bits for w, plus 128 bits for the authenticator.

Note that we are following Shoup’s “KEM/DEM” approach (see [62]) rather
than the classic “hybrid” approach. The hybrid approach (see, e.g., [51, Section
5.1]) is to first generate random secret keys, then encode those secret keys (with
appropriate padding) as a weight-t vector e. The KEM/DEM approach is to
first generate a weight-t vector e and then hash that vector to obtain random
secret keys. The main advantage of the KEM/DEM approach is that there is
no need for the sender to encode strings injectively as weight-t vectors, or for
the receiver to decode weight-t vectors into strings. The sender does have to
generate a random weight-t vector, but this is relatively easy since there is no
requirement of injectivity.

A security proof for Niederreiter KEM/DEM appeared very recently in Per-
sichetti’s thesis [53]. The proof assumes that the t-error decoding problem is
hard; it also assumes that a decoding failure for w is indistinguishable from a
subsequent MAC failure. This requires care in the decryption procedure; see
below.

Decryption. A ciphertext has the form (a,w, c) where a ∈ F128
2 , w ∈ Ftm2 , and

c ∈ F∗2. The receiver decodes w (as discussed below) to obtain a weight-t vector
e ∈ Fn2 such that w = Ke, hashes e to obtain a Salsa20 key and a Poly1305
key, verifies that a is the Poly1305 authenticator of c, and finally uses Salsa20
to decrypt c into the original plaintext.

Our decoding procedure is a constant-time sequence of bit operations and
always outputs a vector e, even if w does not actually have the form Ke. With
a small extra cost we also compute, in constant time, an extra bit indicating
whether decoding succeeded. We continue through the hashing and authenticator
verification in all cases, mask the authenticator-valid bit with the decoding-

18 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

succeeded bit, and finally return failure if the result is 0. This procedure rejects all
forgeries with the same sequence of bit operations; there is no visible distinction
between decoding failures and authenticator failures.

Finding a weight-t vector e given w = Ke is the problem of syndrome decoding
for K. We follow one of the standard approaches to syndrome decoding: first
compute some vector v ∈ Fn2 such that w = Kv, and then find a codeword at
distance t from v; this codeword must be v−e, revealing e. We use a particularly
simple choice of v, taking advantage of K having systematic form: namely, v is
w followed by n − mt zeros. (This choice was recommended to us by Nicolas
Sendrier; we do not know where it was first used in code-based cryptography.)
This choice means that the receiver does not need to store K. We also point out
that some of the conditional swaps in Section 5 are guaranteed to take 0, 0 as
input and can therefore be skipped.

There are two standard methods to find a codeword at distance t from v:
Berlekamp’s method [5] and Patterson’s method [52]. To apply Berlekamp’s
method one first observes that Γ = Γ2(α1, . . . , αn, g

2), and then that Γ is the
F2-subfield subcode of the generalized Reed–Solomon code Γq(α1, . . . , αn, g

2).
Berlekamp’s method decodes generalized Reed–Solomon codes by computing a
syndrome (Section 4), then using the Berlekamp–Massey algorithm to compute
an error-locator polynomial, then computing the roots of the error-locator poly-
nomial (Section 3).

Many authors have stated that Patterson’s method is somewhat faster than
Berlekamp’s method. Patterson’s method has some extra steps, such as com-
puting a square root modulo g, but has the advantage of using g instead of
g2, reducing some computations to half size. On the other hand, Berlekamp’s
method has several advantages. First, as mentioned in Section 1, combinatorial
list-decoding algorithms decode more errors, adding security for the same key
size, by guessing a few error positions; in this case most decoding attempts fail
(as in Section 7), and the analysis in [44] suggests that this makes Berlekamp’s
method faster than Patterson’s method. Second, Berlekamp’s method generalizes
to algebraic list-decoding algorithms more easily than Patterson’s method; see,
e.g., [11]. Third, Berlekamp’s method is of interest in a wider range of applica-
tions. Fourth, Berlekamp’s method saves code size. Finally, Berlekamp’s method
is easier to protect against timing attacks.

7 New speed records for CFS signatures

CFS is a code-based public-key signature system proposed by Courtois, Finiasz,
and Sendrier in [25]. The main drawbacks of CFS signatures are large public-key
sizes and inefficient signing; the main advantages are short signatures, fast veri-
fication, and post-quantum security. This section summarizes the CFS signature
system and reports our CFS speeds.

Review of CFS. System parameters are m, q, n, t, k as in Section 6, with two
extra requirements: n = q, and g is irreducible. Key generation works as in the
encryption scheme described in Section 6.

McBits: fast constant-time code-based cryptography 19

The basic idea of signing is simple. To sign a message M , first hash this
message to a syndrome. If this syndrome belongs to a word at distance ≤ t from
a codeword, use the secret decoding algorithm to obtain the error positions and
send those positions as the signature. The verifier simply adds the columns of
the public-key matrix indexed by these positions and checks whether the result
is equal to the hash of M .

Unfortunately, a random syndrome has very low chance of being the syn-
drome of a word at distance ≤ t from a codeword. CFS addresses this problem
using combinatorial list decoding: guess δ error positions and then proceed with
decoding. If decoding fails, guess a different set of δ error positions. Finding a
decodable syndrome requires many guesses; as shown in [25] the average num-
ber of decoding attempts is very close to t!. The decoding attempts for different
guesses are independent; we can thus make efficient use of bitslicing in a single
signature computation.

We actually use parallel CFS, a modification of CFS proposed by Finiasz in
[30]. The idea is to compute λ different hashes of the message M and compute a
CFS signature for each of these hashes. This increases the security level of CFS
against a 2004 Bleichenbacher attack; see generally [51] and [30].

Previous CFS speeds. Landais and Sendrier in [44] describe a software im-
plementation of parallel CFS with various parameters that target the 80-bit
security level. Their best performance is for parameters m = 20, t = 8, δ = 2
and λ = 3. With these parameters they compute a signature in 1.32 seconds
on average on an Intel Xeon W3670 (Westmere microarchitecture) running at
3.2GHz, i.e., 4.2 · 109 cycles per signature on average.

New CFS software. Our CFS software uses the same set of parameters. For
most of the computation we also use the same high-level algorithms as the soft-
ware described in [44]: in particular, we use the Berlekamp–Massey algorithm
to compute the error-locator polynomial f , and we test whether this polynomial
splits into linear factors by checking whether x2

m ≡ x (mod f).
The most important difference in our implementation is the bitsliced field

arithmetic. This has two advantages: it is faster and it does not leak timing
information. Some parts of the computation are performed on only one stream
of data (since we sign one message at a time), but even in those parts we con-
tinue using constant-time field arithmetic rather than the lookup-table-based
arithmetic used in [44].

We do not insist on the entire signing procedure taking constant time, but
we do guarantee that the signing time (and all lower-level timing information) is
independent of all secret data. Specifically, to guarantee that an attacker has no
information about the guessed error positions that did not allow successful de-
coding, we choose δ = 2 random elements of F2m and compute the corresponding
public-key columns, rather than running through guesses in a predictable order.
These columns are at some positions in the public key; we compute these posi-
tions (in constant time) if decoding is successful.

There are three main bottlenecks in generating a signature:

20 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

– pick e1, e2 ∈ F2m at random and compute the corresponding public-key
columns;

– use Berlekamp–Massey to obtain an error-locator polynomial f ;
– test whether x2

m ≡ x (mod f).

Once such a polynomial f has been found, we multiply it by (x− e1)(x− e2) to
obtain a degree-10 error-locator polynomial. We then find all roots of this polyno-
mial and output the set of corresponding support positions as the signature. We
split the root-finding problem into 256 separate 212-point evaluation problems,
again allowing fast constant-time bitsliced arithmetic for a single signature.

New CFS speeds. Our software signs in than 0.425 · 109 Ivy Bridge cycles on
average; the median is 0.391·109 Ivy Bridge cycles. This cycle count is an order of
magnitude smaller than the cycle count in [44]. We measured this performance
across 100000 signature computations on random 59-byte messages on one core
of an otherwise idle Intel Core i5-3210M with Turbo Boost and hyperthreading
disabled.

It is common to filter out variations in cycle counts by reporting the median
cycle count for many computations. Note, however, that the average is noticeably
higher than the median for this type of random process. Similar comments apply
to, e.g., RSA key generation.

Most of the 0.425 · 109 cycles are used by the three steps described above:

– picking e1 and e2 and computing the corresponding columns takes 52792
cycles for a batch of 256 iterations;

– the Berlekamp–Massey step takes 189900 cycles for a batch of 256 iterations;
– testing whether x2

m ≡ x (mod f) takes 436008 cycles for a batch of 256
iterations.

These computations account for (52792 + 189900 + 436008)(t!λ + 128)/256 ≈
0.32 ·109 cycles on average. Root-finding, repeated λ times, accounts for another
0.05 · 109 cycles. A small number of additional cycles are consumed by hashing,
converting to bitsliced form, multiplying the degree-8 error-locator polynomial
f by (x− e1)(x− e2), et al.

We also have extremely fast software for signature verification, taking only
2176 cycles. This count is obtained as the median of 1000 signature verifications
for 59-byte messages. Furthermore we have software for Intel and AMD pro-
cessors that do not feature the AVX instruction set and that instead uses SSE
instructions on 128-bit vectors. This software generates a signature in 0.658 ·109

cycles on average and verifies a signature in only 2790 cycles on one core of an
Intel Core 2 Quad Q6600 CPU.

References

[1] — (no editor), AFIPS conference proceedings, volume 32: 1968 Spring Joint Com-
puter Conference, Reston, Virginia, Thompson Book Company, 1968.

[2] Miklós Ajtai, János Komlós, Endre Szemerédi, An O(n logn) sorting network, in
STOC 1983 [38] (1983), 1–9.

McBits: fast constant-time code-based cryptography 21

[3] Kenneth E. Batcher, Sorting networks and their applications, in [1] (1968), 307–
314.

[4] Václav E. Beneš, Mathematical theory of connecting networks and telephone traf-
fic, Academic Press, 1965.

[5] Elwyn R. Berlekamp, Algebraic coding theory, McGraw-Hill, 1968.
[6] Elwyn R. Berlekamp, Factoring polynomials over large finite fields, Mathematics

of Computation 24 (1970), 713–715.
[7] Daniel J. Bernstein, The Poly1305-AES message-authentication code, in FSE 2005

[34] (2005), 32–49.
[8] Daniel J. Bernstein, qhasm software package (2007). URL: http://cr.yp.to/

qhasm.html.
[9] Daniel J. Bernstein, The Salsa20 family of stream ciphers, in [59] (2008), 84–97.

[10] Daniel J. Bernstein, Batch binary Edwards, in Crypto 2009 [35] (2009), 317–336.
[11] Daniel J. Bernstein, Simplified high-speed high-distance list decoding for alternant

codes, in PQCrypto 2011 [67] (2011), 200–216.
[12] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen (editors), Post-quantum

cryptography, Springer, 2009.
[13] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-

speed high-security signatures, in CHES 2011 [57] (2011).
[14] Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking of

Cryptographic Systems, accessed 10 June 2013 (2013). URL: http://bench.cr.
yp.to.

[15] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the
McEliece cryptosystem, in PQCrypto 2008 [23] (2008), 31–46.

[16] Daniel J. Bernstein, Peter Schwabe, NEON crypto, in CHES 2012 [58] (2012),
320–339.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, Keccak and the
SHA-3 standardization (2013). URL: http://csrc.nist.gov/groups/ST/hash/

sha-3/documents/Keccak-slides-at-NIST.pdf.
[18] Alex Biryukov, Guang Gong, Douglas R. Stinson (editors), Selected areas

in cryptography—17th international workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12–13, 2010, revised selected papers, LNCS, 6544, Springer, 2011.

[19] Bhaskar Biswas, Nicolas Sendrier, McEliece cryptosystem implementation: theory
and practice, in [23] (2008), 47–62.

[20] J. L. Bordewijk, Inter-reciprocity applied to electrical networks, Applied Scientific
Research B: Electrophysics, Acoustics, Optics, Mathematical Methods 6 (1956),
1–74.

[21] Allan Borodin, Robert T. Moenck, Fast modular transforms, Journal of Computer
and System Sciences 8 (1974), 366–386; older version, not a subset, in [48]. ISSN
0022–0000.

[22] Colin Boyd (editor), Advances in cryptology—ASIACRYPT 2001, proceedings of
the 7th international conference on the theory and application of cryptology and
information security held on the Gold Coast, December 9–13, 2001, LNCS, 2248,
Springer, 2001.

[23] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second
international workshop, PQCrypto 2008, Cincinnati, OH, USA, October 17–19,
2008, proceedings, LNCS, 5299, Springer, 2008.

[24] David G. Cantor, On arithmetical algorithms over finite fields, Journal of Com-
binatorial Theory, Series A 50 (1989), 285–300.

[25] Nicolas Courtois, Matthieu Finiasz, Nicolas Sendrier, How to achieve a McEliece-
based digital signature scheme, in Asiacrypt 2001 [22] (2001), 157–174.

http://cr.yp.to/qhasm.html
http://cr.yp.to/qhasm.html
http://bench.cr.yp.to
http://bench.cr.yp.to
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf

22 Daniel J. Bernstein, Tung Chou, and Peter Schwabe

[26] Luca De Feo, Éric Schost, transalpyne: a language for automatic transposition
(2010). URL: http://www.prism.uvsq.fr/~dfl/talks/plmms-08-07-10.pdf.

[27] Erwin Engeler, B. F. Caviness, Yagati N. Lakshman (editors), Proceedings of the
1996 international symposium on symbolic and algebraic computation, ISSAC ’96,
Zurich, Switzerland, July 24–26, 1996, Association for Computing Machinery,
1996.

[28] Charles M. Fiduccia, On obtaining upper bounds on the complexity of matrix
multiplication, in [47] (1972), 31–40.

[29] Charles M. Fiduccia, On the algebraic complexity of matrix multiplication, Ph.D.
thesis, Brown University, 1973.

[30] Matthieu Finiasz, Parallel-CFS—strengthening the CFS McEliece-based signature
scheme, in SAC 2010 [18] (2011), 159–170.

[31] Steven Galbraith, Mridul Nandi (editors), Progress in cryptology—Indocrypt
2012—13th international conference on cryptology in India, Kolkata, India, De-
cember 9–12, 2012, proceedings, LNCS, 7668, Springer, 2012.

[32] Shuhong Gao, Todd Mateer, Additive fast Fourier transforms over finite fields,
IEEE Transactions on Information Theory 56 (2010), 6265–6272.

[33] Joachim von zur Gathen, Jürgen Gerhard, Arithmetic and factorization of poly-
nomials over F2 (extended abstract), in ISSAC ’96 [27] (1996), 1–9.

[34] Henri Gilbert, Helena Handschuh (editors), Fast software encryption: 12th in-
ternational workshop, FSE 2005, Paris, France, February 21–23, 2005, revised
selected papers, LNCS, 3557, Springer, 2005.

[35] Shai Halevi (editor), Advances in cryptology—CRYPTO 2009, 29th annual inter-
national cryptology conference, Santa Barbara, CA, USA, August 16–20, 2009,
proceedings, LNCS, 5677, Springer, 2009.

[36] Jens Hermans, Frederik Vercauteren, Bart Preneel, Speed records for NTRU, in
CT-RSA 2010 [55] (2010), 73–88.

[37] Stefan Heyse, Tim Güneysu, Towards one cycle per bit asymmetric encryption:
code-based cryptography on reconfigurable hardware, in CHES 2012 [58] (2012),
340–355.

[38] David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M.
Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L.
Ruzzo, Joel I. Seiferas (editors), Proceedings of the 15th annual ACM sympo-
sium on theory of computing, 25–27 April, 1983, Boston, Massachusetts, USA,
Association for Computing Machinery, 1983.

[39] Richard M. Karp (chairman), 13th annual symposium on switching and automata
theory, IEEE Computer Society, 1972.

[40] Kwangjo Kim (editor), Public key cryptography: proceedings of the 4th interna-
tional workshop on practice and theory in public key cryptosystems (PKC 2001)
held on Cheju Island, February 13–15, 2001, LNCS, 1992, Springer, 2001.

[41] Donald E. Knuth, The art of computer programming, volume 2: seminumerical
algorithms, 3rd edition, Addison-Wesley, 1997.

[42] Kazukuni Kobara, Hideki Imai, Semantically secure McEliece public-key crypto-
systems—conversions for McEliece PKC, in PKC 2001 [40] (2001), 19–35.

[43] Grégory Landais, Nicolas Sendrier, CFS software implementation (2012); see also
newer version [44].

[44] Grégory Landais, Nicolas Sendrier, Implementing CFS, in Indocrypt 2012 [31]
(2012), 474–488; see also older version [43].

[45] O. B. Lupanov, On rectifier and contact-rectifier circuits, Doklady Akademii Nauk
SSSR 111 (1956), 1171–1174. ISSN 0002–3264.

http://www.prism.uvsq.fr/~dfl/talks/plmms-08-07-10.pdf

McBits: fast constant-time code-based cryptography 23

[46] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116.

[47] Raymond E. Miller, James W. Thatcher (editors), Complexity of computer com-
putations, Plenum Press, 1972.

[48] Robert T. Moenck, Allan Borodin, Fast modular transforms via division, in [39]
(1972), 90–96; newer version, not a superset, in [21].

[49] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166.

[50] Thomaz Oliveira, Juilo López, Diego F. Aranha, Francisco Rodŕıguez-Henŕıquez,
Two is the fastest prime (2013). URL: http://eprint.iacr.org/2013/131.

[51] Raphael Overbeck, Nicolas Sendrier, Code-based cryptography, in [12] (2009), 95–
145.

[52] Nicholas J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions
on Information Theory 21 (1975), 203–207.

[53] Edoardo Persichetti, Improving the efficiency of code-based cryptography, Ph.D.
thesis, University of Auckland, 2012.

[54] Christiane Peters, Information-set decoding for linear codes over Fq, in PQCrypto
2010 [60] (2010), 81–94.

[55] Josef Pieprzyk (editor), Topics in cryptology—CT-RSA 2010, the cryptographers’
track at the RSA Conference 2010, San Francisco, CA, USA, March 1–5, 2010,
proceedings, LNCS, 5985, Springer, 2010.

[56] Josef Pieprzyk, Ahmad-Reza Sadeghi, Mark Manulis (editors), Cryptology and
network security—11th international conference, CANS 2012, Darmstadt, Ger-
many, December 12–14, 2012, proceedings, LNCS, 7712, Springer, 2012.

[57] Bart Preneel, Tsuyoshi Takagi (editors), Cryptographic hardware and embedded
systems—CHES 2011, 13th international workshop, Nara, Japan, September 28–
October 1, 2011, proceedings, LNCS, Springer, 2011.

[58] Emmanuel Prouff, Patrick Schaumont (editors), Cryptographic hardware and em-
bedded systems—CHES 2012—14th international workshop, Leuven, Belgium,
September 9–12, 2012, proceedings, LNCS, 7428, Springer, 2012.

[59] Matthew Robshaw, Olivier Billet (editors), New stream cipher designs, LNCS,
4986, Springer, 2008.

[60] Nicolas Sendrier (editor), Post-quantum cryptography, third international work-
shop, PQCrypto, Darmstadt, Germany, May 25–28, 2010, LNCS, 6061, Springer,
2010.

[61] Donald L. Shell, A high-speed sorting procedure, Communications of the ACM 2
(1959), 30–32.

[62] Victor Shoup, A proposal for an ISO standard for public key encryption (version
2.1) (2001). URL: http://www.shoup.net/papers.

[63] Falko Strenzke, A timing attack against the secret permutation in the McEliece
PKC, in PQCrypto 2010 [60] (2010), 95–107.

[64] Falko Strenzke, Timing attacks against the syndrome inversion in code-based cryp-
tosystems (2011). URL: http://eprint.iacr.org/2011/683.pdf.

[65] Falko Strenzke, Fast and secure root finding for code-based cryptosystems, in
CANS 2012 [56] (2012), 232–246.

[66] Yao Wang, Xuelong Zhu, A fast algorithm for Fourier transform over finite fields
and its VLSI implementation, IEEE Journal on Selected Areas in Communica-
tions 6 (1988), 572–577.

[67] Bo-Yin Yang (editor), Post-quantum cryptography, fourth international workhop,
PQCrypto, Taipei, Taiwan, November 29–December 02, 2011, LNCS, 7071,
Springer, 2011.

http://eprint.iacr.org/2013/131
http://www.shoup.net/papers
http://eprint.iacr.org/2011/683.pdf

	McBits:fast constant-time code-based cryptography

