
Pushing the Limits of SHA-3 Hardware
Implementations to Fit on RFID

Peter Pessl and Michael Hutter

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

peter.pessl@gmail.com, Michael.Hutter@iaik.tugraz.at

Abstract. There exists a broad range of RFID protocols in literature
that propose hash functions as cryptographic primitives. Since Keccak
has been selected as the winner of the NIST SHA-3 competition in 2012,
there is the question of how far we can push the limits of Keccak to ful-
fill the stringent requirements of passive low-cost RFID. In this paper,
we address this question by presenting a hardware implementation of
Keccak that aims for lowest power and lowest area. Our smallest (full-
state) design requires only 2 927 GEs (for designs with external memory
available) and 5 522 GEs (total size including memory). It has a power
consumption of 12.5µW at 1 MHz on a low leakage 130 nm CMOS pro-
cess technology. As a result, we provide a design that needs 40 % less
resources than related work. Our design is even smaller than the small-
est SHA-1 and SHA-2 implementations.

Keywords: Hardware Implementation, SHA-3, Keccak, ASIC, RFID,
Low-Power Design, Embedded Systems.

1 Introduction

Radio Frequency Identification (RFID) is a technology that makes great de-
mands on cryptographers to realize secure applications. The main challenges
are the limited power consumption of tags that are in the field as well as the
limited chip area that is available. In the past, several RFID-protocol designers
proposed to use hash functions to provide cryptographic services. Hash functions
are basic building blocks to realize, e.g., digital signatures or privacy-preserving
protocols. However, it has been shown that these building blocks can not be im-
plemented as efficient as other cryptographic primitives like AES or PRESENT
as highlighted by M. Feldhofer, C. Rechberger [13] and A. Bogdanov et al. [12].
Until now it remains an open question if Keccak is a suitable candidate for
those devices that can leverage these demands.

Before Keccak has been selected as the winner of the NIST SHA-3 compe-
tition in October 2012, several authors reported performance results for ASIC
platforms. Most of them target high-speed implementations which require be-
tween 27 and 56 kGEs (synthesized on 90 or 130 nm CMOS process technology).

The smallest design has been estimated by the Keccak design team itself need-
ing 9.3 kGEs and 5 160 clock cycles per message block. Kavun et al. [28] have
been the first who evaluated Keccak for RFID devices. They analyzed various
Keccak variants using different state sizes. Their 1 600-bit state version requires
20.8 kGEs, 1 200 clock cycles per block, and 44µW per MHz which makes their
design not well suitable for most passive low-cost tags.

Our Contribution. In this paper, we present a compact hardware implemen-
tation that aims to identify the lowest possible bound for Keccak in terms of
power and area. Goal is to meet the basic requirements of passive low-cost RFIDs.
We focus on the most likely configuration of Keccak that will be standardized
by NIST in the near future, i.e., a 1 600 (or 800) bit state, 224/256/384/512-bit
output lengths, and 24 (or 22) rounds. We present two different designs which
are based on highly serialized 8 and 16-bit datapaths, respectively. Our smallest
full-state design requires 2 927 GEs (core only) and 5 522 GEs including memory
and hashes a block within 22 kCycles (thus following the RFID design principle
few gates and many cycles as suggested by S. Weis [42]). Our second design is
slightly larger (3 148 GEs and 5 898 GEs, respectively) but needs only 15 kCy-
cles in total. Next to these results, we also analyzed Keccak using a state size
of 800 bits only (and using 22 rounds). In this case, our designs require 4 627
GEs and 4 945 GEs in total (including memory) while the cycle count decreases
to 11 and 7 kCycles, respectively. All our designs consume less than 15µW per
MHz and thus meet the basic requirements of passive low-cost tags. Compared
to the smallest reported 1 600-bit Keccak implementation, our designs require
about 40 % less resources. The numbers are also comparative with the smallest
reported SHA-1 [33] (being slightly smaller in size but needing 50 % less power)
and SHA-2 [31] implementations (40 % less area).

Roadmap. The paper is organized as follows. In Section 2, we give a brief intro-
duction to state of the art RFID crypto and its requirements. In Section 3, the
Keccak algorithm is presented and low-resource optimizations are discussed.
Section 4 presents the implemented hardware architectures. Section 5 provides
results and a discussion about further optimizations. Conclusions are drawn in
Section 6.

2 Crypto on RFID

Radio Frequency Identification (RFID) is a contactless communication technol-
ogy that consists of three parts: tags, readers, and a back-end system. Tags are
essentially composed of tiny microchips which are attached to an antenna. They
can communicate with a reader via an electromagnetic field which is also used
to power the tags in case of passive tags. Active tags, in contrast, have their own
power source, e.g., a battery. Readers are connected to a back-end system that
is typically composed of a database holding tag records.

Nowadays, RFID systems are widely used in many applications that help to
improve, for example, logistics, inventory control, transportation, access control,

2

or contactless payment. In this context, RFID faces several security and pri-
vacy challenges. Most of these applications carry enough sensitive information
to require strong cryptographic services. Secure RFID is essential also for new
applications that require integrity of tag data, confidentiality during communi-
cation, and authentication or proof-of-origin to prevent counterfeiting—a major
challenge where RFID might help to stop the process of piracy.

In the following, we list the principle design criteria and requirements for
security-enabled RFID devices.

Reading Range and Power. The primary concern in passive RFID systems
is the limited power that is available for the tags. Tags draw their energy from
the electromagnetic field of a reader and use internal capacitors to buffer the en-
ergy to perform computations. The available energy depends thereby on various
factors such as the distance to the reader, the size of the antenna, the operating
frequency, and the field-strength of the reader. Inductively-coupled tags operat-
ing in the 13.56 MHz frequency range typically have enough power available. The
magnetic field of the readers is quite high (1.5 to 7.5 A/m). This means that there
are several milliwatts of power available for the tags to perform cryptographic
operations. Long-range tags (e.g., UHF EPC Gen2 tags), in contrast, have a
reading range of several meters. These tags have only a fraction of power avail-
able, i.e., a few microwatts that are drawn from the electromagnetic (far-)field of
the reader. Thus, these tags have to operate in an environment where the power
source is being up to 1 000 times lower compared to short-range HF systems.
In practice, the total power consumption of those devices is typically limited to
at most 10-15µW per MHz on average and 3-30µW peak power (depending on
read or write operations) [34, 35].

Costs and Chip Area. During the last decade, several authors made chip area
estimations for low-cost passive RFID tags. One of the first estimations have
been made by S. Sarma from the MIT Auto-ID Center [36–38] and S. Weis in
2003 [42]. They predicted the costs for a low-cost tag to be 5 (dollar) cents in the
near future and estimated the actual die size of a low-cost tag accordingly to be
between 5 000 and 15 000 gate equivalents where only up to 2 000 gates are usable
for security purposes. Similar estimations have been made by D. Ranasinghe and
P. Cole in 2008—both from the Auto-ID Lab Adelaide—who reported numbers
from 2 000 to 5 000 GEs for security-related functions [34]. They stated that the
number of available gates naturally increases over the years due to improvements
in manufacturing and process technology as also highlighted by M. Feldhofer and
J. Wolkerstorfer in [15].

Speed and Response Time. Tags have to answer the reader within a specific
response time. This time is usually very short, i.e., 15-250µs for EPC Gen2 tags
(nominal range), 320µs for ISO/IEC 15693 tags, and 86-91µs for ISO/IEC 14443
tags1. However, it is principally not required for a tag to finish the computation

1This number refers to the response time of ISO/IEC 14443-3 tags during anti-
collision. For higher-level protocols like ISO/IEC 14443-4, the default response time is
4.8 ms and it can be extended up to 5 seconds if needed.

3

within this short period of time (if even possible). Instead, a challenge-response
protocol is needed that allows a larger time frame for cryptographic operations
(without causing a recognizable delay). Thus, challenging a tag that is for ex-
ample clocked with 1.5 MHz, would take the reasonable time period of 4.8 ms to
perform a computation needing 7 200 clock cycles.

2.1 Hash Functions for RFID

One of the first who proposed to use hash functions in RFID protocols in 2003
were S. Weis, S. Sarma, R. Rivest, and D. W. Engels [25, 42]. They made use of
the difficulty to invert a one-way hash function to realize access control services
for low-cost EPC tags. The so-called “hash-lock” protocol works as follows. First,
the owner of the tag generates a random key and sends the hash to the tag (i.e.,
the MetaID). After that, the tag stores the hash and locks its memory. To unlock
the memory, the owner has to send the original key to the tag which hashes it
and compares the digest with the stored MetaID.

Another proposal has been made by A. Shamir who presented the RFID
protocol SQUASH (squashed form of SQUare-hASH) in 2008 [39]. He described
a tag authentication scenario using a challenge-response protocol where the tag
and the reader share a secret key S. The reader issues a random number R and
sends it to the tag. After that, the tag calculates H(S,R) where H represents
a public hash function. The tag sends the hash back to the reader which can
independently calculate the same message digest to proof the authenticity of
the tag. As a cryptographic primitive, A. Shamir proposed to use the 64-bit
SQUASH function, which is based on the well-studied Rabin encryption scheme.
Note that the SQUASH function does not provide collision resistance since it is
not necessarily required for the given RFID authentication scenario (this however
lowers the resource requirements for practical implementations).

An approach to calculate a message digest using block ciphers has been pro-
posed by H. Yoshida et al. [43] in 2005 and by A. Bogdanov et al. [12] in 2008. The
latter authors presented DM-PRESENT which is based on the 64-bit cipher
PRESENT as well as H-PRESENT that provides a 128-bit security level.

The first sponge-construction based hash function has been presented by
G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche at the ECRYPT Hash Work-
shop in 2007 [10]. Since then, several hash-function proposals were made with
respect to RFID applications including Keccak, QUARK [2], Spongent [11], and
Photon [19].

Related Work on Keccak Implementations. There exist several Keccak
implementations where most of them have been designed for FPGAs. High-
speed implementations have been reported by J. Strömbergson [40], B. Baldwin
et al. [3], E. Homsirikamol et al. [23], K. Kobayashi et al. [32], F. Gürkaynak et
al. [21], and K. Gaj et al. [17, 18]. Low-area FPGA designs have been presented
by S. Kerckhof et al. [30], J.-P. Kaps et al. [27], and B. Jungk [26].

In view of ASIC designs, there exist many high-speed variants proposed by
S. Tillich et al. [41], A. Akin et al. [1], L. Henzen et al. [22], and X. Guo et al. [20].

4

Note that there also recently exists an open-source project at OpenCores.org [24].
To the authors’ knowledge, there are only two publications that report a low-area
implementation of Keccak on ASICs. The Keccak team reported numbers for
a low-area version of Keccak needing 9.3 kGEs (including memory) on a 130 nm
CMOS process technology [9]. In 2010, E. B. Kavun and T. Yalcin presented sev-
eral low-resource designs of Keccak for RFID in [28]. Their full-state version
(1 600 bits) needs about 20 kGEs on the same process technology.

3 Keccak Specification and Design Exploration

In this section, we first give a brief overview about Keccak with the focus
on parameters likely to be integrated in the SHA-3 standard. Afterwards, we
explore different design decisions and discuss various optimizations for practical
implementations.

The Sponge Construction. Keccak is based on a new cryptographic hash
family, the so-called sponge function family [6]. As opposed to existing hash
constructions, which are classically based on the Merkle-Damg̊ard construction,
a fixed length permutation f is used to allow the handling of arbitrary length
input and to produce fixed length outputs, e.g., 224, 256, 384, or 512 bits. The
permutations are performed on a state with a fixed size of b bits.

The state is cut into two parts of size r (rate) and c (capacity), respectively.
The rate defines the number of input bits which are processed in one block
permutation. The capacity c of the sponge function represents the remaining
bits of the state, i.e., c = b − r. The authors of Keccak proposed values for r
and c in their submitted Keccak specification [8], e.g., b = 1 600 bits, r = 1 088
bits, and c = 2n = 512, where n is the length of the output.

Hashing works as follows. First, the state is initialized with 0b and the input
is padded to a length that is a multiple of r using the very simple multi-rate
padding scheme [7]. After that, it is cut into blocks of size r. During the initial
absorbing phase, the message blocks are XORed with the first r bits of the state
followed by a single state permutation f. After the sponge has absorbed the whole
message, it switches to the squeezing mode in which r bits are output iteratively
(again followed by single state permutations f).

The Keccak-f Permutation. The authors of Keccak proposed seven differ-
ent state-permutation functions Keccak-f that can be used. These permutation
functions are further denoted by Keccak-f [b], where b = 25 × 2` and ` ranges
from 0 to 6. Note that the two largest permutations are Keccak-f [1600] and
Keccak-f [800].

Keccak-f organizes the b-bit state as a 3-D matrix with dimension 5×5×w,
with w = 2`. This matrix can be split into slices and lanes. A slice is a matrix
composed of 25 bits with constant z coordinate (5 bits in each row and 5 bits in
each column). A lane is a simple array consisting of w bits of constant x and y
coordinate. Figure 1 shows the structure of the state.

The Keccak-f permutation is a round based function, each of the 12 + 2`
rounds consists of five parts:

5

x

y

θ transformation
slice lane χ transformation Keccak-f state and the

z z

Σ Σ

Fig. 1: Parts of the Keccak-f state [7] including θ transformation (left) and χ trans-
formation (right)2

θ : The parity of two nearby columns is added to each column, see left image in
Figure 1.

ρ : All lanes are rotated by a defined offset.

π : The 25 lanes are transposed in a fixed pattern, i.e., the bits of each slice are
permuted.

χ : The 5 bits of each row are non-linearly combined using AND gates and
inverters and the result is added to the row as depicted in the right image
of Figure 1.

ι : A w-bit round constant is added (XORed) to a single lane.

For a more in-depth explanation of Keccak we refer to the Keccak refer-
ence [7].

3.1 Design Exploration and Decisions

We decided to analyze the hardware complexity of Keccak-f with a state size
of both 1 600 (full-state) and 800 bits. For each design, we implemented two ver-
sions. The first version aims for lowest power and lowest area (Version 1). The
second version (Version 2) targets the same goals but tries to find an optimal
trade-off between power, area, and speed without causing a significant weight
gain in one direction. For both designs, we decided to use low width datapaths,
i.e., 8 and 16 bits. This is because lower datapath widths would result in unac-
ceptable throughput penalties while higher datapath widths exceed the limited
power and area requirements. Moreover, we serialized all operations and the
applied components have been re-used as much as possible.

2The figures have been taken from the Keccak website [29] and are available under
the Creative Commons Attribution license.

6

Figure 2 shows the basic hardware architecture of our designs. It consists of
a controller, a datapath, a Look-up Table (LUT) for constants, an input/out-
put interface, and an external RAM block. As a requirement, our design should
feature all necessary components for Keccak (permutation calculation, sponge
function, input handling including padding) and should be flexible (support mul-
tiple output lengths).

KeccakTCore

Datapath

Control

RAMT(200x8)

Data
AMBA

Address

Rd/Wr

LUT

Fig. 2: Basic hardware architecture

Memory Type and I/O Interfaces. We decided to use RAM macros for
state storage because they require typically less resources than standard-cell-
based designs (in terms of power and area). For our first version, we decided
to use an 8-bit interface; for the second version we use an 16-bit interface (to
improve speed). As a major requirement, no more than b bits (the size of the
state, e.g., 1 600 bits) should be used. As input/output interface, we chose to
implement an 8-bit AMBA APB interface, which is very simple and provides a
standardized communication interface.

Constants: LUT vs. LFSR. The round constants for the ι transformation
as well as the ρ rotation offsets should be stored in a simple LUT. The round
constants can be also generated using a 7-bit Linear Feedback Shift Register
(LFSR) but this would require more power and area.

Lane- and Slice-wise Processing. Software implementations as well as the
compact co-processor described in [9] operate lane-wise, i.e., lanes are fetched
from the memory and are subsequently processed. This approach however needs
a lot of additional storage and is slow on the small data buses we are using.

An interesting alternative, namely slice-wise processing, was proposed by
B. Jungk and J. Apfelbeck [26]. Although initially designed and implemented for
FPGAs, slice-wise processing serves as an excellent starting point for a low-
resource ASIC implementation. All operations except ρ can be performed on a
slice-per-slice basis. In order to perform these four transformations on a slice in
a single cycle, the rounds of the Keccak-f permutation must be rearranged:
the initial round solely consists of θ and ρ, followed by 23 rounds of π, χ, ι, θ
and ρ, and the final round consists of π, χ and ι. This round schedule differs
slightly from the one used by Jungk and Apfelbeck.

The ρ transformation as well as the sponge computations cannot be per-
formed slice-wise but only on a lane-per-lane basis. For this reason, we use both

7

Datapath

r0 / 64bit
4

100

4

13

r1 / 64bit

ρ0

ρ1

25 Slice Unit
θ∘ι∘χ∘π

Deinterleave8

4

4

25

Interleave

8

8

RAM Out

RAM In

12

Fig. 3: Datapath architecture of our Keccak design.

lane- and slice-wise processing and combine these two approaches into a single
datapath. This combination is a challenge when using an external memory as it
must both be possible to access slices as well as lanes while still using the full
bandwidth of the memory bus and keeping the core’s internal storage small. We
tackle this problem using a technique called interleaving which will be explained
in the next section.

Low-Power Optimizations. To reduce current drain, we integrated clock gat-
ing and operand isolation techniques. In the case of clock gating, registers are
only clocked whenever new values should be stored. Operand isolation sets the
inputs of combinational parts, whose outputs are not needed in the current cycle,
to a constant value, i.e., to 0. Both these methods reduce switching activity which
is the main contributor to power consumption in CMOS technology. Applying
these techniques to our design helps us to drastically reduce power consumption
while the area impact is kept low.

4 The Keccak Architectures

In this section, we first describe two hardware architectures for the full-state
Keccak algorithm. Our first design (Version 1) aims for lowest power and area.
Our second design (Version 2) trades area for higher throughput. After that,
we discuss the implications of smaller state sizes and present two architectures
using 800 bits only.

4.1 Version 1: Pushing the Limits towards Lowest Power and Area

Figure 3 shows the datapath architecture of our design. It provides an 8-bit
memory interface and is mainly composed of an interleave and de-interleave
unit, two 64-bit registers, one slice unit, and two ρ units.

Interleaved Storage. The 1 600-bit state is not stored linearly in the RAM (i.e.,
lane after lane) but interleaved: two adjacent lanes—each containing 64 bits—
are interleaved into a single 128-bit word. On even positions of the interleaved

8

Slice Unit

Parity

ParityReg / 5bit >>1

ι∘χπ

25

5
25<<1

0

5

bypass θ

25

bypass ι∘χ∘πRoundConstant bit

25

Fig. 4: Architecture of the slice-processing unit

word, bits of the lower lane are stored while odd positions contain the bits
of the upper lane. Using this technique, a single n-bit memory word contains
information about 2 lanes but only n/2 slices. This fact helps us to drastically
decrease the size of the internal memory needed as will be explained later. Due
to the fact that the state consists of an odd number of lanes, one selected lane
has to be stored non-interleaved; we chose the lane [0, 0], since this is the only
one with a ρ offset equal to 0. Therefore, we can skip this single lane in this
phase.

Combined Slice- and Lane-Processing. The two 64-bit registers r0 and r1
combined either store two lanes or four slices. In the latter case, only 100 out of
128 bits are used. The interleaved memory technique described above allows us
to load and store two lanes at full bus speed (i.e., 16 memory cycles on an 8-bit
bus) and four slices in only 13 cycles. When not using interleaving, the size of
the registers need to be increased to 100 bits in order to store 8 slices.

Figure 4 shows the architecture of the slice-processing unit. The π operation
is a rewiring of the input, χ is computed on the 5 rows of one slice in parallel,
and ι is a single XOR with a bit of the round constant. For the θ transformation,
the column parity of the previous slice is stored in a 5-bit register. The parity of
a slice is computed and XORed to the stored parity. The result is then added to
each of the 5 rows. In the initial and final round, some parts must be skipped.
For this reason, two multiplexers allow bypassing of blocks.

A single ρ unit is made up of a barrel shifter and a register with half the size
of the memory-bus width. The upper 4 bits of the rotation offset are handled by
proper register addressing while the lower 2 bits are done by actual shifts to the
left.

The Round Computation. The computation of a single modified round con-
sists of two main phases: the slice-processing phase and the ρ transformation
phase:

– In the slice-processing phase, the column parity of slice 63 (after having
applied ι ◦ χ ◦ π) is first computed and stored in the parity register. Then,
the following is repeated 16 times: four slices are loaded within 13 clock

9

cycles and after performing θ ◦ ι ◦ χ ◦ π on each slice, the result is stored in
memory.

– For the ρ phase, two lanes are fetched from memory. With the help of two
separate ρ units, the lanes are implicitly rotated by the specified offsets and
stored back to memory. This is done for all 24 lanes which have an offset
other than 0.

4.2 Version 2: Trading Area for Higher Throughput

The previously described design requires low resources in terms of power and
area but lacks in speed and throughput. The main drawback is the use of an 8-
bit memory interface and the asymmetric datapath. During the slice processing,
25 bits are processed at once while the ρ phase operates on only 8 bits which is
inefficient in terms of power.

We therefore make use of a 16-bit memory interface that allows writing of
single bytes to trade some gates for higher speeds. The cycle count for the ρ
phase is therefore cut into half. For the slice-processing unit, this is not the case.
Instead, a single 16-bit word has information on 8 slices but only 4 slices can be
stored in the 128-bit internal register. Thus, 8 bits have to be discarded. With
further optimizations (reading the upper byte of a 16-bit memory word in the
next cycle after writing the lower byte) the cycle count for the permutation can be
decreased by about 30 %. The number of additional gates for these modifications
is marginal and limited to the need of 8-bit wide ρ units (shifter and register)
and the increase of the RAM-macro cell due to the additional 8-bit pre-charge
logic, write logic, and sense amplifiers.

4.3 Adapting to an 800-bit State

Our design can also be used with an 800-bit state, only small additions to the
controller are necessary to support both state sizes. When restricting to 800 bits,
some optimizations are possible. First, only half of the RAM size is required.
Second, the size of the internal registers can be cut down to a total of 100 bits,
i.e., the memory needed to store four slices. A single lane now consists of 32
bits, this reduces memory requirements in the lane-processing phase to 64 bits.
Furthermore, the number of rounds is reduced from 24 to 22. The cycle count
needed for a single Keccak-f round is reduced by a factor of 2. For detailed
implementation results see Section 5.

A possible trade-off between area and speed is to extend the used interleaving
scheme to more than two lanes. When interleaving four 32-bit lanes into one 128-
bit word, four lane registers and a 16-bit memory interface are needed. The core
area will be comparable to that of the 1 600-bit version, while saving roughly
1 000 cycles per permutation compared to the 16-bit 2-lane case. However, we
did not implement this approach to minimize the area requirements.

For even smaller state sizes, i.e., 400 or 200 bits, the number of lanes used
in the interleaving scheme has to be chosen according to the desired cycle count
and area requirements.

10

Table 1: Area of chip components for our
low-area version (Version 1)

Component GEs

Datapath 1 922

r0+r1 1 213

Slice unit 382

ρ units 38

Controller 598

LUT 144

AMBA IO 69

Core Total 2 927

RAM macro 2 595

Total 5 522

Table 2: Area of chip components for our
higher-throughput version (Version 2)

Component GEs

Datapath 2 083

r0+r1 1 205

Slice unit 382

ρ units 119

Controller 646

LUT 144

AMBA IO 69

Core Total 3 148

RAM macro 2 750

Total 5 898

5 Results

We implemented both designs in VHDL using a mixed tool design flow. For
synthesis, we used the Synopsys Design Compiler 2012.06 that generates a netlist
targeting the FSC0L D standard-cell library from Faraday. This library is based
on the UMC 0.13µm low-leakage process which has a standard supply voltage of
1.2 V. The following area results have been obtained after synthesis (using low-
area optimizations enabled); power values have been generated using Cadence
Encounter Power System v8.10 after place and route (using Cadence Encounter
RTL-to-GDSII). We further used low-leakage RAM macros from Faraday as
storage blocks. Circuit size is expressed in terms of gate equivalences (GE), 1 GE
is the area occupied by a 2-input NAND Gate. All values have been determined
for a hash output length of 256 bits, the capacity c was set to 512 bits as suggested
by the Keccak authors [8].

Table 1 and Table 2 show the area usage of our 1 600-bit designs for different
chip components. For our lowest-area version, the two registers use almost 40 %
of the occupied area. The slice unit needs the largest combinational part with
13 %. The higher-throughput version needs slightly more area mainly due to the
larger ρ units, the controller, and the 16-bit RAM macro interface, i.e., 221 GEs
for the core (and 155 GEs in addition for the larger RAM macro). In total it is
6.38 % larger.

Table 3 provides more results including throughput and power. It shows that
our higher-throughput version needs 32 % less clock cycles (15 427 instead of
22 570); this translates to a throughput of 44.3 kbps (for Version 1) and 64.8 kbps
(for Version 2) at a clock frequency of 1 MHz. The power consumption values are
nearly the same: our low-area version needs 5.5µW per MHz of power (core only)
and 12.5µW per MHz (with memory included) and our higher-throughput ver-
sion needs 5.6µW per MHz and 13.7µW per MHz, respectively. The maximum
frequency of the core is 61 MHz.

11

Table 3: Comparison of 1 600-bit Keccak, SHA-1, and SHA-256 implementations

Techn. Area Power Cycles/ Throughput

[nm] [GEs] [µW/MHz]a Blockb @1MHz [kbps]

Ours, Version 1 130 5 522 12.5 22 570 44.3

Ours, Version 2 130 5 898 13.7 15 427 64.8

Keccak team [9]c 130 9 300 N/A 5 160 210.9

Kavun et al. [28] 130 20 790 44.9 1 200 906.6

SHA-1 [33] 130 5 527 23.2 344 1 488.0

SHA-1 [14] 350 8 120 - 1 274 401.8

SHA-256 [31] 250 8 588 - 490 1 044.0

SHA-256 [14] 350 10 868 - 1 128 454.0

aPower values of designs using different process technologies are omitted
bBlocksizes: 1 600-bit Keccak: 1 088 bits [8], SHA-1 & SHA-256: 512 bits
cThe Keccak implementation of [9] is based on a 64-bit memory interface. The co-

processor requires 5 kGEs and an external memory of 3 520 bits is required (9.3 kGEs
in total). It does not feature sponge and padding functionality.

Comparison with Related Work. We compare our solutions with the two
most relevant publications of low-resource full-state Keccak implementations.
It shows that our work requires significantly less area, i.e., 41 % compared to
the implementation of [9] (note that the authors estimated the total size of their
low-area design to 9.3 kGEs including an external 64-bit memory). Our design
is also more compact than the work of E. B. Kavun and T. Yalcin [28] (about a
factor of 4). We also compare our designs with the smallest SHA-1 and SHA-2
implementations from [33] and [31]. It shows that our design has about the same
size as SHA-1 and needs about 36 % less area than SHA-2. The power values
of our design are also compelling requiring less than 15µW per MHz (including
memory), this is 72 % less than [28].

5.1 Results for an 800-bit State

We also adapted our design for use with an 800-bit state. As a result, the size
of the core could be decreased by roughly 300 GEs (mainly due to the use of
smaller registers, cf. Section 4.3). In fact, 2 611 GEs are needed for our low-area
version (Version 1) and 2 837 GEs are needed for the higher-throughput variant
(Version 2). In addition to these savings, the RAM size requirements are halved.
The 8-bit RAM macro for the low-area version needs 2 016 GEs and the 16-bit
RAM macro needs 2 108 GEs. Thus, our designs require 4 627 GEs and 4 945
GEs in total, respectively.

Regarding power consumption, the smaller state versions need slightly less
power, i.e., 12.4 and 13.1µW per MHz. The cycle count for both versions drops
by more than 50 %. 10 712 clock cycles are needed for Version 1 and 7 464 clock
cycles are required for Version 2. The throughput, however, suffers due to the

12

smaller chosen blocksize of 800 − 2 × 256 = 288 bits. It decreases to 26.9 and
38.6 kbps.

5.2 Discussion

As already stated in the introduction and in Section 2, our primary goal was to
determine a lower bound for Keccak in terms of power and area. The following
points invite to further discussions:

– The throughput of our design is relatively low but still acceptable for the
targeted RFID applications. Increasing throughput is possible by adapting
our design to broader memory interfaces (i.e., 32 bits). This of course will
increase the area and power requirements.

– The use of 1 600 and 800-bit Keccak for low-cost passive RFID tags has to
be considered with caution: our smallest design requires about 5.5 kGEs and
4.6 kGEs, respectively. But there exist more compact hardware implementa-
tions that use primitives like block ciphers which can be used in a mode to
provide hashing capabilities [12, 13].

– Integration: if external memory is available, e.g., in implementations where
other chip components share a common memory, only the core logic has to
be integrated requiring around 3 kGEs. Note that our design makes use of
an 8-bit (standardized) AMBA interface and can therefore be easily adopted
for existing designs.

– The difference between the 1 600 and 800 bit versions of our Keccak im-
plementations is significant. The 800-bit version is about 900 GEs smaller in
size while being twice as fast.

– For even more “lightweight” applications, the properties of the design might
be modified (though might not being standard conform anymore), e.g., mod-
ifying the level of collision-resistance property; or reducing the size of the
state to 400 or less bits as suggested by [28]. Note that such smaller state
versions are specified from the Keccak team but will not likely be part of
the SHA-3 standard.

– We did not integrate any countermeasures against implementation attacks
which has to be considered in scenarios where Keccak is used for authenti-
cated encryption, for instance. Keccak can be protected using, for example,
secret-sharing techniques as shown by G. Bertoni [4, 5]. Note that this will in-
crease the area requirements. Future work has to evaluate low-resource SCA
and fault-attack countermeasures for Keccak.

6 Conclusions

With the results given in this paper, we show that full-state Keccak can be
implemented with less than 5.5 kGEs. There is room for improvements and it can
be expected that the limits will be further pushed down towards an acceptable
border where an integration into passive low-cost tags is getting more attrac-
tive. By now and without making any modification and restrictions for certain

13

RFID applications, we obtain power values that are below 15µW at 1 MHz (thus
guaranteeing high reading ranges) while providing 128-bit of security.

Acknowledgements. The work has been supported by the European Commis-
sion through the ICT program under contract ICT-SEC-2009-5-258754 (Tamper
Resistant Sensor Node - TAMPRES) and by the Austrian Science Fund (FWF)
under the grant number TRP251-N23.

References

1. A. Akin, A. Aysu, O. C. Ulusel, and E. Savaş. Efficient Hardware Implementations
of High Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for
Single- and Multi-Message Hashing. In Security of Information and Networks–SIN
2010, 3rd International Conference, 7-11 September 2010, Taganrog, Russia, pages
168–177, 2010.

2. J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. Quark: A
Lightweight Hash. In S. Mangard and F.-X. Standaert, editors, Cryptographic
Hardware and Embedded Systems - CHES 2010, 12th International Workshop,
Santa Barbara, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2010.

3. B. Baldwin, A. Byrney, L. Luz, M. Hamilton, N. Hanley, M. O’Neillz, and W. P.
Marnane. FPGA Implementations of the Round Two SHA-3 Candidates. In Field
Programmable Logic and Applications–FPL 2010, International Conference, Mi-
lano, Italy, August 31-September 2., pages 400–407, 2010.

4. G. Bertoni, J. Daemen, N. Debande, T.-H. Le, M. Peeters, and G. V. Assche. Power
Analysis of Hardware Implementations Protected with Secret Sharing. Cryptology
ePrint Archive: Report 2013/067, February 2013.

5. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Building Power Analysis
Resistant Implementations of Keccak. In Second SHA-3 Candidate Conference,
August 2010, 2010.

6. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Cryptographic sponge
functions. Submission to NIST (Round 3), 2011.

7. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak reference.
Submission to NIST (Round 3), 2011.

8. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak SHA-3 sub-
mission. Submission to NIST (Round 3), 2011.

9. G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer. Keccak Imple-
mentation Overview, V3.2, 2012.

10. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
ECRYPT Hash Workshop, Barcelona, Spain, May 24-25, 2007. Available online:
http://sponge.noekeon.org/SpongeFunctions.pdf.

11. A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
Spongent: A Lightweight Hash Function. In B. Preneel and T. Takagi, editors,
Cryptographic Hardware and Embedded Systems - CHES 2011, 13th International
Workshop, Nara, Japan, September 28 -October 1, 2011. Proceedings, volume 6917,
pages 312–325, 2011.

14

12. A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, and Y. Seurin.
Hash Functions and RFID Tags: Mind the Gap. In E. Oswald and P. Rohatgi,
editors, Cryptographic Hardware and Embedded Systems–CHES 2008, 10th Inter-
national Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings,
Lecture Notes in Computer Science, pages 283–299, 2008.

13. M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Functions
in RFID Protocols. In S. Dominikus, editor, Workshop on RFID Security 2006
(RFIDSec06), July 12-14, Graz, Austria, pages 109–122, July 2006.

14. M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Functions
in RFID Protocols. In R. Meersman, Z. Tari, and P. Herrero, editors, First Interna-
tional OTM Workshop on Information Security (IS’06), Montpellier, France, Oct
30 - Nov 1, 2006. Proceedings, Part I, volume 4277 of Lecture Notes in Computer
Science, pages 372–381. Springer, October 2006.

15. M. Feldhofer and J. Wolkerstorfer. RFID Security: Techniques, Protocols and
System-On-Chip Design, chapter Hardware Implementation of Symmetric Algo-
rithms for RFID Security, pages 373–415. Springer, 2008.

16. K. Finkenzeller. RFID-Handbook. Carl Hanser Verlag, 2nd edition, April 2003.
ISBN 0-470-84402-7.

17. K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and Comprehensive Methodology
for Comparing Hardware Performance of Fourteen Round two SHA-3 Candidates
using FPGAs. In S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware
and Embedded Systems–CHES 2010, 12th International Workshop, Santa Bar-
bara, USA, August 17-20, 2010. Proceedings, volume 6225, pages 264–278. Springer
Berlin Heidelberg, 2010.

18. K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif. Comprehen-
sive Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3
Finalists Using Xilinx and Altera FPGAs. Cryptology ePrint Archive: Report
2012/368, June 2012.

19. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash
Functions. In P. Rogaway, editor, Advances in Cryptology CRYPTO 2011, 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 222–239.
Springer, 2011.

20. X. Guo, S. Huang, L. Nazhandali, and P. Schaumont. Fair and Comprehensive
Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations. In
Second SHA-3 Candidate Conference, 2010, 2010.

21. F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Rogawski,
H. Kaeslin, and J.-P. Kaps. Lessons Learned from Designing a 65nm ASIC for Eval-
uating Third Round SHA-3 Candidates. In Third SHA-3 Candidate Conference,
March 2012., 2012.

22. L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F. K. Gürkaynak.
Developing a Hardware Evaluation Method for SHA-3 Candidates. In Crypto-
graphic Hardware and Embedded Systems – CHES 2010 12th International Work-
shop, Santa Barbara, USA, August 17-20, 2010. Proceedings, volume 6225 of Lec-
ture Note in Computer Science, pages 248–263, Santa Barbara, CA, 2010. Springer-
Verlag.

23. E. Homsirikamol, M. Rogawski, and K. Gaj. Comparing Hardware Performance of
Round 3 SHA-3 Candidates using Multiple Hardware Architectures in Xilinx and
Altera FPGAs. In CRYPT II Hash Workshop 2011, May 2011., 2011.

24. H. Hsing. Sha3 (keccak). OpenCores.org, January 2013.

15

25. A. Juels and S. A. Weis. Defining Strong Privacy for RFID. Cryptology ePrint
Archive (http://eprint.iacr.org/), Report 2006/137, April 2006.

26. B. Jungk. Area-Efficient FPGA Implementations of the SHA-3 Finalists. In Re-
configurable Computing and FPGAs–ReConFig 2011, International Conference,
November 30-December 2, Cancun, Mexico, 2011, pages 235–241, 2011.

27. J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and
J. P. J. Pham. Lightweight Implementations of SHA-3 Candidates on FPGAs.
In D. Bernstein and S. Chatterjee, editors, Progress in Cryptology INDOCRYPT
2011, 12th International Conference, Chennai, India, December 11-14, 2011. Pro-
ceedings, volume 7107 of Lecture Notes in Computer Science, pages 270–289.
Springer, 2011.

28. E. B. Kavun and T. Yalcin. A Lightweight Implementation of Keccak Hash Func-
tion for Radio-Frequency Identification Applications. In S. B. O. Yalcin, editor,
Workshop on RFID Security – RFIDsec 2010, 6th Workshop, Istanbul, Turkey,
June 7-9, 2010, Proceedings, volume 6370, pages 258–269. Springer, 2010.

29. Keccak Design Team. The Keccak sponge function family. http://keccak.

noekeon.org/.
30. S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M. de Dormale,

and F.-X. Standaert. Compact FPGA Implementations of the Five SHA-3 Fi-
nalists. In E. Prouff, editor, Smart Card Research and Advanced Applications–
CARDIS 2011, 10th IFIP WG 8.8/11.2 International Conference, Leuven, Bel-
gium, September 14-16, 2011, Revised Selected Papers, volume 7079 of Lecture
Notes in Computer Science, pages 217–233. Springer, 2011.

31. M. Kim, J. Ryou, and S. Jun. Efficient Hardware Architecture of SHA-256 Algo-
rithm for Trusted Mobile Computing. In M. Yung, P. Liu, and D. Lin, editors,
Information Security and Cryptology–Inscrypt 2008, 4th International Conference,
Beijing, China, December 14-17, 2008, Revised Selected Papers, volume 5487 of
Lecture Notes in Computer Science, pages 240–252. Springer, 2009.

32. K. Kobayashi, J. Ikegami, M. Knez̆ević, E. X. Guo, S. Matsuo, S. Huang,
L. Nazhandali, Ünal Kocabas, J. Fan, A. Satoh, I. Verbauwhede, K. Sakiyama,
and K. Ohta. Prototyping Platform for Performance Evaluation of SHA-3 Candi-
dates. In Hardware-Oriented Security and Trust–HOST 2010, IEEE International
Symposium, Anaheim, California, USA, June 13-14, 2010., pages 60–63, 2010.

33. M. O’Neill. Low-Cost SHA-1 Hash Function Architecture for RFID Tags. In
S. Dominikus, editor, Workshop on RFID Security 2008 (RFIDsec08), pages 41–
51, July 2008.

34. D. C. Ranasinghe and P. H. Cole. Networked RFID Systems and Lightweight
Cryptography. Springer Berlin Heidelberg, 2008.

35. M.-J. O. Saarinen and D. Engels. A do-it-all-cipher for rfid: Design requirements
(extended abstract). Cryptology ePrint Archive: Report 2012/317, June 2012.

36. S. Sarma. Towards the 5 Cent Tag. White paper, MIT Auto-ID Center, 2001.
37. S. E. Sarma, S. A. Weis, and D. W. Engels. Radio Frequency Identification: Risks

and Challenges. CryptoBytes (RSA Laboratories), 6(1):325, Spring 2003.
38. S. E. Sarma, S. A. Weis, and D. W. Engels. RFID Systems and Security and

Privacy Implications. In B. S. K. andÇetin Kaya Koç and C. Paar, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2002, 4th International Work-
shop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 454–470. Springer, August 2003.

39. A. Shamir. SQUASH A New MAC with Provable Security Properties for
Highly Constrained Devices Such as RFID Tags. In K. Nyberg, editor, Fast Soft-
ware Encryption–FSE 2008, 15th International Workshop, Lausanne, Switzerland,

16

February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in
Computer Science, pages 144–157. Springer, 2008.

40. J. Strömbergson. Implementation of the Keccak Hash Function in FPGA Devices.
Technical report, InformAsic AB, 2008.

41. S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A. Szekely.
Hardware Implementations of the Round-Two SHA-3 Candidates: Comparison on
a Common Ground. In Proceedings of Austrochip 2010, October 6, 2010, Villach,
Austria, pages 43–48, October 2010. ISBN 978-3-200-01945-4.

42. S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels. Security and Privacy As-
pects of Low-Cost Radio Frequency Identification Systems. In D. Hutter, G. Müller,
W. Stephan, and M. Ullmann, editors, Security in Pervasive Computing, 1st An-
nual Conference on Security in Pervasive Computing, Boppard, Germany, March
12-14, 2003, Revised Papers, volume 2802 of Lecture Notes in Computer Science,
pages 201–212. Springer, March 2003.

43. H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, H. Wu, Ö. Küçük, and B. Pre-
neel. MAME: A Compression Function with Reduced Hardware Requirements.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems – CHES 2007, 9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pages
148–165. Springer, September 2007. ISBN 978-3-540-74734-5.

17

