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Abstract. Linear regression-based methods have been proposed as ef-
�cient means of characterising device leakage in the training phases of
pro�led side-channel attacks. Empirical comparisons between these and
the `classical' approach to template building have con�rmed the reduc-
tion in pro�ling complexity to achieve the same attack-phase success,
but have focused on a narrow range of leakage scenarios which are es-
pecially favourable to simple (i.e. e�ciently estimated) model speci�ca-
tions. In this contribution we evaluate�from a theoretic perspective as
much as possible�the performance of linear regression-based templating
in a variety of realistic leakage scenarios as the complexity of the model
speci�cation varies. We are particularly interested in complexity trade-
o�s between the number of training samples needed for pro�ling and
the number of attack samples needed for successful DPA: over-simpli�ed
models will be cheaper to estimate but DPA using such a degraded model
will require more data to recover the key. However, they can still of-
fer substantial improvements over non-pro�ling strategies relying on the
Hamming weight power model, and so represent a meaningful middle-
ground between `no' prior information and `full' prior information.
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1 Introduction

Attackers with the opportunity to pro�le an identical copy of a target device in
a preliminary training phase are considered the strongest class of side-channel
adversary. Many di�erent strategies have been implemented�some (but not all)
are multivariate, incorporating multiple points from a measurement trace; some
characterise only the deterministic data-dependent leakage whilst others attempt
to characterise the noise also; pro�ling may be followed by a DPA-style attack
phase, but need not be if the attacker has some other strategy in mind. His-
torically, the phrase `template attack' denoted the multivariate Gaussian model
variant with full noise characterisation [4]�regarded as the most powerful but
also the most impractical method. Unsurprisingly, univariate attacks are much



more feasible, and various simpli�cations make for relatively e�cient template
building [7]. One particularly interesting option for simpli�ed pro�ling is to use
linear regression [11]. Of course, as soon as more than one pro�ling method ex-
ists the natural question to ask is which is `better' in practice? Previous studies
evaluating linear regression relative to `classical' templates [5,11,13] have demon-
strated substantial e�ciency gains in some typical leakage scenarios.

However, this previous work has some limitations. To begin with, comparisons
have been predominantly experimental, and performed for devices conforming
to Hamming weight (or otherwise close-to-linear) leakage assumptions. Such sce-
narios naturally favour linear regression from the outset, as the leakage functions
may be approximated by very simple model equations (with few parameters and
therefore low estimation complexity). Moreover, the comparisons have all been
between simple linear regression equations (i.e. low degree polynomials) for in-
termediate values on the one hand and `classical' templates for the inputs on the
other. These are at opposite ends of a spectrum�`very simple' through to `very
complex' model speci�cations�leaving the middle ground largely unexplored.
Hence we seek to evaluate a wider range of model speci�cations, in a broader,
more varied, set of realistic leakage scenarios.

In an attempt to make unambiguous, like-for-like comparisons, which are not
dependent on the estimation procedures used nor on the unknown underlying
distributions arising in experimental scenarios, we follow the theoretic approach
advocated in [15] in the context of non-pro�led DPA. Namely, our analytic ap-
proach is (as far as possible) based on computed theoretic outcomes rather than
estimated experimental outcomes, which entails focusing on fully-speci�ed hy-
pothetical leakage scenarios. We identify three key questions of interest:

1. How accurately does a particular model speci�cation approximate the leak-
age function? For example, how well can an adversary hope to approximate
a highly nonlinear function with a low-complexity model? The asymptotic
goodness-of-�t of a model indicates its usefulness in DPA.

2. How many training samples are required in the pro�ling phase to estimate a
particular model to an adequate degree of precision (relative to its asymp-
totic �t)?

3. How well does correlation DPA perform using a model built to a particular
speci�cation? Of most interest to an attacker or a designer/evaluator is the
number of trace measurements needed for successful key recovery against
the same or a su�ciently similar device.

In the following, we introduce `classical' templates and the linear regression-
based alternatives in Sect. 2 and present our evaluation methodology in Sect. 3.
We apply this methodology to a variety of realistic leakage scenarios and model
speci�cations in Sect. 4. We confront our theoretic expectations with some ex-
ample experimental analysis in Sect. 5, and conclude in Sect. 6.



2 Preliminaries

2.1 `Classical' templates

In `classical' template attacks [4] separate multivariate Gaussian models are
�tted to the leakage traces associated with each possible value of a particular key-
dependent intermediate result V (which might be part of the key directly, or the
output of some function that is dependent on part of the key). Supposing, then,
that Yv = {Yt|V = v}Tt=1 is the random vector representing the leakage over
time given that the associated intermediate target takes the value v; the pro�ling
adversary assumes that Yv ∼ N (µv, Σv) and �ts the model by �nding the T ×1
sample mean µ̂v and the T × T sample covariance Σ̂v from Nv measurements
{yv,n}Nvn=1 observed on the pro�ling device.

2.2 Linear regression-based templates

The approach proposed by [11] is to �t a linear regression model to the pooled
data at each point in time: Yt =

∑p
j=0 βj,tgj(V ) + εt, where Yt is the leakage

at time t, V is the intermediate value, {g0, . . . , gp} are p + 1 functions of the
intermediate value which form the covariate set for the model, and εt ∼ N (0, σt)
is the residual noise at time t. In practice, g0 is usually a constant (i.e. 1) and
the remaining gj are monomials of the form

∏
i∈I v[i] where v[i] denotes the i

th

bit of v and I ⊂ {1, . . . ,m} (with m the number of bits needed to represent
V in binary), so that the model speci�cation is of the form of a polynomial in
function of the bits of the intermediate value. Ordinary Least Squares (OLS)

is used to obtain the coe�cients β̂j,t and subsequently the model �tted values

Ŷt =
∑p
j=0 β̂j,tgj(V ). If all the in�uential terms are included in the model, the

�tted values coincide asymptotically with the conditional means obtained via
`classical' templating (Ŷ = µv). The noise pro�ling stage consists of estimating
a single (pooled) covariance matrix Σ̂ from the model residuals observed in a
second independent sample.

2.3 Exploiting the �tted models for key recovery

Both of the methods output a �tted multivariate Gaussian model for the inter-
mediate value-conditioned leakages:

� `Classical' template for the T -dimensional leakage of intermediate value v:
N (µ̂v, Σ̂v).



� Linear regression-based template for the T -dimensional leakage of interme-
diate value v:
N
(∑p

j=0 β̂jgj(v), Σ̂
)
, where for each j = 0, . . . , p, β̂j = {β̂j,t}Tt=1 (i.e. β̂j is

the T -dimensional vector of estimated coe�cients in the leakage function at
each point in time).

Note that the β̂j,t, as well as Σ̂, are estimated from the pooled data and are the

same for all v, whilst µ̂v and Σ̂v are estimated from the v-partitioned data.

If the covariance matrix is symmetric and positive de�nite, a d-dimensional mul-
tivariate Gaussian distribution X ∼ N (µ, Σ) is said to be �non-degenerate�, and
has the following density function:

f(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
(where A′ denotes the transpose of matrix A). Otherwise, the distribution does
not have a density�although, it is possible to get around this problem by re-
stricting attention to a rank(Σ)-sized subset of the modelled vector (in our ap-
plication, a reduced subset of trace points).

In the case, then, that the Gaussian models estimated in the pro�ling stage
are non-degenerate, let us denote by fCT,v(·) and fLR,v(·) the densities of the
`classical' template and the linear regression-based template for the leakage dis-
tribution associated with intermediate value v.

(Bayesian) key recovery comprises acquiring N (T -dimensional) trace measure-
ments {yn}Nn=1 from the target device and selecting, from the set K of hypothe-
ses on the key-part, the one under which the likelihood L (or, equivalently, log
likelihood, to avoid numerical problems) of observing those measurements is
maximised, according to the models obtained in the pro�ling stage.

kguess = argmax
k∈K

L
(
k|{yn}Nn=1

)
= argmax

k∈K

N∏
n=1

f·,vk,n(yn)

= argmax
k∈K

N∑
n=1

log f·,vk,n(yn)

where vk,n is the key hypothesis-dependent prediction for the intermediate value
corresponding to trace measurement yn.

Alternatively, the model �tted values (for a particular point in time t∗) may
be used in a (univariate) correlation DPA [3]. The �tted model produced by
`classical' templates is simply the conditional means which comprise the �rst
parameter of the �tted Gaussian distributions:

MCT (v) = E[Yt∗ |V = v] = µ̂v,t∗ ,



whereas the linear regression-based method returns the intermediate value-
conditioned �tted values from the linear regression:

MLR(v) = E[Yt∗ |V = v] =

p∑
j=0

β̂j,t∗gj(v).

The adversary proceeds in the usual way:

� For each key hypothesis k ∈ K, predict the intermediate values {vk,n}Nn=1 as-
sociated with the set of (univariate) trace measurements {yn}Nn=1 = {yn,t∗}Nn=1

(we drop the time index for notational convenience).
� Map the predicted intermediate values to a leakage prediction using the
power model obtained from pro�ling {Mk,n} = {M·(vk,n)}Nn=1.

� Compute (again for each key hypothesis k ∈ K) the sample correlation coef-
�cient between the actual trace measurements and the key-dependent model
predictions:

rk =

∑N
n=1(yn − y)(Mk,n −Mk,n)√∑N
n=1(yn − y)2

√
(Mk,n −Mk,n)2

(where a denotes the mean of a set of values {an}Nn=1, i.e. a = 1
N

∑N
n=1 an).

� Choose as key guess the one which maximises the sample correlation: kguess =
argmax
k∈K

{rk}.

In the following, we focus on the goodness-of-�t of each model speci�cation�that
is, the accuracy of the �tted values as approximations for the data-dependent
deterministic part of the device leakage, leaving analysis of the noise character-
isation as further work. Therefore, all evaluations of key recovery performance
are made in the context of correlation DPA.1

2.4 Models for inputs vs. models for intermediate values

In the above, we have presented templates in the context of building models for
intermediate values, but the original proposal [4] was to build them for (input-
part,key-part) pairs without predicting or specifying any particular function. It
was noticed that, as long as the algorithm possessed certain symmetry proper-
ties [13], the pro�ling workload could be reduced considerably. E.g., if a known

1 Correlation DPA is generally accepted as the best performing strategy whenever a
good (proportional) power model is available. Scenarios in which other strategies
have the potential to outperform correlation DPA (see, e.g. [14]) have, to our knowl-
edge, all so far been such that this was not the case�for example, those where the
adversary only has access to a nominal approximation of the leakage function.



combining function (such as XOR) is used to mix the key bits with the plaintext
bits, templates only need to be built for every possible combination (input-part
⊕ key-part)�in the case of 8-bit key-parts, this reduces the number of templates
from 216 to 28.

In `classical' templating, a separate model for each combination amounts to the
same thing as a separate model for each output of any (injective) component of
the algorithm�an S-box, say�so that the particular intermediate values need
not be speci�ed by the attacker. This is useful because even when the full details
of the algorithm are known, it may not be clear in advance at which points
the device leakage is most vulnerable. Such a strategy recovers a model at each
point in the trace which essentially maps the combined (input-part,key-part)
value to the composition of the corresponding intermediate function and the
leakage (performed in that order). One disadvantage is that, without knowing
which intermediate values occur where in the trace, one does not actually learn
the functional form of the leakage on its own so as to be able to use it in an attack
against a di�erent (speci�ed) target function on a similar device (the templates
can only be used to attack the same (sequence of) function(s) as the ones for
which they were built). The pros and cons of di�erent strategies for `classical'
templating are explored in more depth in Chapter 5 of [7].

It has been observed (e.g. in [13]) that linear regression-based methods do not
have this capability. Fitting a model for the leakage of an unspeci�ed target
function�i.e., expressing the leakage in terms of the input bits similar to the
above�will produce an approximation for the composition of the target and the
leakage. If, then, the target is nonlinear (an S-box, for example) and the �tted
model only includes linear or low-order terms, the approximation may be very
poor. When all higher-order terms are included the approximation equates with
that produced by `classical' templates�with equally high pro�ling complexity
and the same drawbacks of unportability. By contrast, when the model is speci-
�ed in function of the output of a particular target, a transportable `leakage-only'
approximation is obtained, most likely requiring only low-order terms.

It is of practical interest, then, to consider the performance of linear regression-
based templates of varying degree against unspeci�ed targets. The `best' model
�t possible arises when a full set of polynomial terms is included in the regression
equation (coinciding with the �tted values produced by `classical' templates).
But simpli�ed models do capture something of the relationship between the
target inputs and the leakage; the question is, how much, and is it useful? We
will explore this as part of our analysis in Sect. 4.



3 Methodology

We want to know whether a given linear regression model speci�cation will
produce a `good' DPA power model. We have identi�ed the following criteria for
a power model to be considered `good':

1. Goodness-of-�t: The OLS-estimated �tted values are an asymptotically ac-
curate approximation of the true data-dependent deterministic component
of the device leakage.

2. Pro�ling complexity: The pro�ling phase to estimate the model is e�cient
(with respect to the amount of data required from the training device).

3. DPA performance: A DPA attack using the model is e�ective and e�cient
(with respect to the amount of data required from the target device).

Following the example of [15] we wish to carry out our evaluations as far as
possible from a theoretic perspective, computing underlying theoretic quantities
from fully-speci�ed leakage distributions so that our evaluations are not con-
tingent on the quality of our chosen estimation procedures. This also removes
the element of `guesswork' which inevitably accompanies attempts to evaluate
experimental results, where the true underlying distributions arise from a real
device and are therefore unknown.

Criterion 1 can be easily assessed by �nding the least-squares solution (for β)
to the following system of equations representing the linear regression model in
the absence of noise:

{Yv}v∈V =


p∑
j=0

βjgj(v)


v∈V

.

The population2 coe�cient of determination ρ2 represents the proportion of the
variance in the data-dependent leakage function which is accounted for by the
model. It is computed as the square of the correlation between the (asymptotic)

�tted values {Ŷv}v∈V = {
∑p
j=0 β̂jgj(v)}v∈V and the actual values {Yv}. This is

our measure of goodness-of-�t.3

2 `Population' because we are considering computed theoretic quantities, not estima-
tions from a sample. The sample coe�cient of determination is the R2, computed
as the square of the correlation between the estimated �tted values and the sample.

3 The `perceived information' pro�ling metric proposed in [10] attempts to jointly
capture model quality and device vulnerability, inspired by the `mutual information'
metric of [12]. For our purposes, we are interested in model quality distinct from
device vulnerability, for which the coe�cient of determination is a more appropriate
natural indicator.



Criterion 2 is harder to evaluate theoretically. Statistical power analysis4 [6]
provides formulae for computing the sample sizes required for estimation, in
straightforward scenarios where all relevant sampling distributions are known�
applicable, perhaps, to the estimation of the conditional means in `classical'
templating, but not possible in general for complex estimation tasks like linear
regression. Many (di�erent) heuristics have been o�ered but remain very `rule-
of-thumb'�primarily designed as safeguards against over-ambitious use of data.

What is known is that the required sample size increases with the number of
parameters to be estimated: we can assert with con�dence that the simpler
the polynomial expression for the leakage, the fewer trace measurements are
needed to �t the model. Thus the appeal of linear regression model building,
which is upper-bounded in complexity (as well as goodness-of-�t) by `classical'
templating. However, we go one step further than this intuition, and, in the
absence of theoretic formulae, take an empirical approach�performing repeat
random experiments to ascertain the average sample size needed to obtain a
`precise' �t as the degree of the model expression (and therefore the number of
parameters to be estimated) varies.

The appropriate threshold for `su�cient precision' depends on the context. We
want our �tted models to be precise enough for distinct values to be separated,
and so have selected precision margins based on 10 percent and 5 percent of the
distance between unique values (0.1 and 0.05 respectively, in the case of Ham-
ming weight leakage). These are arbitrarily chosen; our analysis later on (Sect. 4)
indicates that any choice su�ces to demonstrate relative pro�ling complexity.

We report the sample size at these two thresholds as the number of traces re-
quired so that the mean di�erence between the �tted values and their corre-
sponding asymptotic values falls within those margins. These are obtained by
averaging over 1,000 repeat experiments on randomly drawn balanced samples
(i.e. comprising an equal number of replicates per intermediate value) with Gaus-
sian noise at high (8), medium (1) and low (0.125) signal-to-noise ratios (SNRs)5

as model degree ranges from 1 through to 8.6

Criterion 3 can be assessed straightforwardly by computing theoretic distin-
guishing vectors for correlation DPA using the asymptotically �tted model cor-

4 `Power' in this context refers to statistical power and should not be confused with
the `Power' in DPA.

5 We de�ne the SNR as var(L(V ))
var(ε)

, where L is the data-dependent leakage function (the
variance of which is computed with respect to the distribution of the intermediate
value V , which is uniform throughout in our analysis) and ε is the independent noise.

6 To reduce computational complexity we take the usual strategy (see, for example, [1])
of �tting the models to intermediate value-conditioned mean traces rather than the
increasingly large observation-level samples. For our purposes this is inconsequential,
as the estimates on the coe�cients are not a�ected and we are not concerned with
statistical inference.



responding to a given speci�cation, as per [15].

Dρ(k) = ρ(Y,MLR(Vk)) =
cov(Y,MLR(Vk))√

var(Y )
√
var(MLR(Vk))

(1)

(where Y is the actual device leakage, and Vk is the intermediate value predicted
under key hypothesis k, viewed as random variables). This yields the nearest-
rival distinguishing margin (the di�erence between the `correct key' distinguisher
value Dρ(k

∗) and that relating to the highest-ranked alternative Dρ(k
nr)), from

which can be predicted the number of traces needed for a key recovery success,
using the widely-adopted `rule-of-thumb' suggested in chapters 4 and 6 of [7]:

N∗ = 3 + 8 · z21−α(
ln

1+Dρ(k∗)
1−Dρ(k∗) − ln

1+Dρ(knr)
1−Dρ(knr)

)2 , (2)

where z21−α is the (1−α)-level critical value in the standard Normal distribution.
Such formulae originate in the practices of statistical hypothesis testing, where
the aims are subtly di�erent to those of DPA. It is di�cult to determine the
`right' α (the `false positive' rate�i.e. in our case the probability of deciding in
favour of an incorrect key) since in practice DPA success is measured via crude
`correct/incorrect' criteria without consideration for statistical signi�cance. Our
computations are based on α = 0.1�a comparatively lax threshold to re�ect
the key guess strategy employed in practical attacks�but we focus on relative
attack complexity rather than the raw numbers. However, as we explore brie�y
in Sect. 5, the sensitivity of the analysis to the size of the α, and the overly-
simpli�ed assumptions inherent in the `rule-of-thumb', can distort the theoretic
predictions away from the relative complexity displayed in practice.

4 Analysis

In this section, we evaluate (via the methodology described above) linear regres-
sion model speci�cations of increasing polynomial degree, for a variety of (8-bit)
leakage scenarios and attack assumptions. The hypothetical leakage functions
we consider are the Hamming weight, a degradation of the Hamming weight in
which interactions between adjacent wires also contribute, and a leakage func-
tion based on the toggle count of a VHDL description of the AES S-box. The
independent noise is Gaussian in all cases and of the same magnitude for all in-
puts/intermediate values. We also consider models built for intermediate values
(the AES S-box and AES AddRoundKey) vs. models built for unspeci�ed tar-
gets via the inputs, as discussed in Sect. 2.4. We summarise key features of the
di�erent model speci�cations in Table 2, Sect. 4.3 (alongside the corresponding
features of a non-pro�led Hamming weight power model in relation to the same
scenarios, for comparison).



4.1 Hamming weight leakage

We �rst consider the case that the device leaks the Hamming weight of the
intermediate values processed internally. This is a popular context for research as
it is both highly realistic (e.g., frequently observed in devices built using CMOS
logic) and straightforward to analyse. Indeed, many previous works evaluating
pro�ling methods [5,13] have focused on this scenario�either from a theoretic
perspective, or as a consequence of carrying out experiments on typical devices.

Models for intermediate values (Scenario 1) Fitting a model for Hamming
weight leakage in function of the bits of an intermediate value can be done very
e�ciently using OLS with a linear basis (so that you only need to estimate 8 coef-
�cients and an intercept). Asymptotically, this will give a perfect approximation
for the data-dependent leakage, as shown in the �rst panel of Fig. 1.

Since this strategy only requires estimating 9 parameters, the pro�ling phase re-
quires minimal data from the training device. Table 1 shows the experimentally-
obtained sample sizes required to achieve 5 percent and 10 percent precision
relative to the asymptotic model �t as the SNR decreases. The data cost of
estimating 256 separate means as per `classical' templating ranges from 15 to
over 30 times that of �tting the linear regression model with linear terms only,
depending on the SNR levels and the margin threshold. Note that, since we are
considering balanced samples only, the pro�ling complexity is lower bounded
by 1 trace per intermediate value; in practice, OLS-�tted models in low-noise
scenarios may well achieve adequate precision even when not all of the inter-
mediate values are represented in the sample, so complexity in such cases may
be over-estimated (hence, in Table 2, we report relative complexities based on
the noisy scenario). However, the balanced sample approach is typical for `clas-
sical' template building (e.g. [4]) and so we adopt it ourselves as being the most
appropriate basis for like-for-like comparison.

Table 1: Number of traces required per intermediate value for precise model �t
in a Hamming weight leakage scenario.

5 percent margin 10 percent margin

Method Params SNR=8 SNR=1 SNR=0.125 SNR=8 SNR=1 SNR=0.125

Classical 256 67 525 4206 17 134 1115
Degree 1 9 3 17 132 1 5 33

Ratio 22 31 32 17 27 34

It is already well-established in the literature [9] that the performance of any
DPA attack depends not just on the form of the leakage and the quality of the



model but also on the target function. The second and third panels of the �gure
illustrate the nearest-rival margins and the required sample sizes for attacks
against the AES S-box and AES AddRoundKey. The cryptanalytically robust
properties of the S-box actually make it more vulnerable to DPA, as a small
change in the input produces a large change in the output so that the correct
hypothesis can be readily distinguished from the alternatives. Thus the theoretic
distinguishing vectors for the S-box attacks have larger nearest-rival margins and
the corresponding sample sizes are smaller than those for the attacks against
AddRoundKey.
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Fig. 1: Asymptotic model �t and DPA performance of an OLS-estimated model
speci�ed as a linear function of the target bits, when the true leakage is Hamming
weight.

It is clear that this straightforward leakage scenario�which is the one investi-
gated in [5] and [13]�lends itself very naturally to linear regression-based pro-
�ling, as the true data-dependent leakage function can be easily and precisely
approximated with only linear terms. Our experiments indicate that the pro-
�ling stage requires around thirty times fewer training samples than `classical'
templates with no trade-o� on model precision, �t, nor DPA performance. In
the following sections we examine some more `interesting' (but still realistic)
scenarios in which simpli�ed approximations may no longer be adequate.

Models for inputs (Scenario 2) We next suppose that the attacker attempts
to build models without specifying the intermediate function, so that the linear
regression function is expressed as a polynomial in the input bits (that is, the
XOR between the input-part and the key-part), as per the discussion in Sect. 2.4.
In such cases, the complexity of the model required to produce an asymptotically
perfect �t will depend on the complexity of the target function (which might
be a highly nonlinear S-box). This is the scenario to which we will pay most
attention, as it is one in which the advantages and disadvantages of simpli�ed
approximations can be thoroughly explored.



Fig. 2 shows what happens when you build a model for the (Hamming weight)
leakage of an AES S-box output in function of the input bits. The linear and
quadratic models are very poor approximations (although, far better than simply
taking the Hamming weight of the input). The degree 7 model gives a very close
�t, which is unsurprising as only one term has been omitted.
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Fig. 2: Asymptotic �tted values from OLS-estimated models for the leakage of
an AES S-box output, in (increasing degree) polynomial function of the inputs.

This scenario is a good test case for examining pro�ling complexity because
the true (composite) leakage is highly non-linear so that all of the interaction
terms are required to perfectly characterise it. It is one thing to show that the
approximation improves as the model degree increases, but at what cost? By
how much does the number of training traces need to increase to maintain an
equivalent level of precision at each level of complexity?

The mean and the 10th and 90th percentiles of the sample size to achieve preci-
sion to within margins of 0.05 and 0.1 of the asymptotic values (as per Sect. 3)
are reported in Fig. 3. As expected, the sample sizes required to estimate the
maximum degree polynomials are much higher (around 30 times more) than the
sample sizes required to estimate the linear polynomials. There is little di�er-
ence in estimation complexity between degree 6 and degree 8 models, which is
not surprising when we consider that there is only one degree 8 term and only
8 degree 7 terms, so the reduction in the number of parameters is small. Only
models with degree 5 or lower begin to o�er reasonable savings. Required sample
size increases as signal decreases, as we would expect and in a consistent manner
as model degree varies.

We now turn our attention to the performance of DPA attacks using the di�erently-
accurate approximations as power models. Fig. 4 shows the distinguishing vector
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Fig. 3: Mean sample size required (per intermediate value) to estimate model to
0.05 (black) and 0.1 (red) of the asymptotic model �t. Error bars depict 10th and
90th percentiles.

nearest-rival margins and the corresponding estimates on the sample size re-
quired for key recovery, as the model speci�cations vary from linear terms only
to maximum-degree polynomials.

The model built in maximum-degree polynomial function of the inputs approxi-
mates the data dependent leakage perfectly; the �tted values coincide with those
from the simple model built in linear function of the intermediate value bits and,
inevitably, it performs equivalently in key recovery (as we con�rm by compar-
ing Fig. 4 with Fig. 1). It has the advantage that the target function need not
be speci�ed for the model to be estimated, but the disadvantage that �tting
the maximum-degree polynomial to the leakage has the same data complexity
as estimating separate input-conditioned means, as is done for `classical' tem-
plates. Under such circumstances there are no e�ciency advantages to using
linear regression-based pro�ling.

Lower degree speci�cations can only produce less accurate approximations, so
inevitably incur a loss of DPA performance. It is evident that a trade-o� between
model-�tting complexity and key-recovery complexity is possible. The ballpark
summary �gures in Table 2 (`Scenario 2' column) help to get to grips with this.
It is immediately clear that, for the lower degree models, the trade-o�s are, in
general, not of comparable magnitude�that is, small savings in the pro�ling
phase can produce large costs in the attack phase. Nonetheless, the degree 4
model may be of interest: pro�ling complexity is reduced to just 63% of the
traces required for `classical' templates, at a cost of only around 3 times as
many traces in the DPA attack phase. For adversaries with limited access to
the training device but good access to the target device, even a degree 3 model
may su�ce: key recovery requires around 8 times as many attack traces, but
pro�ling requires just a third of the number of training traces. Interestingly,
even the models built to linear speci�cations are able to recover the key (unlike
a non-pro�led attack using the Hamming weight, as reported in the �rst row of
the table), although with a large expected increase in attack data complexity
relative to better �t models.
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Fig. 4: Nearest-rival margins and estimated data complexity of key-recovery cor-
relation DPA attacks against the AES S-box output using OLS-�tted models ex-
pressed as (increasing degree) polynomials in the input bits.

4.2 Other leakage scenarios

We have shown above that the attacker strategy (models for intermediate values
vs. models for inputs) can in�uence the e�ectiveness of a linear regression-based
templating phase, even when the true leakage function is very straightforward. In
the case that the leakage function is not straightforward (i.e. is itself nonlinear)
an attacker may be even more limited in what he can achieve using linear re-
gression, as even intermediate value models will need to be increasingly complex
in order to well-approximate the device leakage.

Leakage with adjacent bit interactions (Scenario 3) One realistic sce-
nario we might consider is that adjacent wires in the device in�uence each other,
so that the true function is quadratic in the targeted bits (see, e.g., [2]). The
�rst panel of Fig. 5 (in Appendix A) shows the asymptotic �t of the linear and
quadratic models (in function of the intermediate value bits) produced by OLS
for an example such leakage distribution. The linear model, with 9 coe�cients
to estimate by comparison with the 256 conditional means required by `classi-
cal' templates, is already a close �t (better than the Hamming weight), with
a population coe�cient of determination ρ2 = 0.96. The quadratic model is
(asymptotically) a perfect �t, and still only requires estimating 1 + 8 + 28 = 37
coe�cients total (or, 1+ 8+7 = 16 if the adversary correctly assumes that only
adjacent wires interact). We expect the number of traces required for precise
pro�ling to be similar to those of the linear and quadratic models in the exper-
imental results of Fig. 3�that is, around 3% and 13% of the number of traces
required for `classical' templates.

As before, we compute nearest-rival margins and the corresponding sample size
requirements directly from the theoretic correlation DPA vectors. The second
and third panels of Fig. 5 show that there is very little di�erence in attack
capability between the linear and quadratic approximations (even the linear
performs better than the Hamming weight), suggesting that�in this case�the



reduced covariate set would do just as well. (See section `Scenario 3' of Table 2
for summary �gures).

Toggle-count leakage (Scenario 4) The power consumption of hardware
implementations have been shown to depend on the number of transitions that
occur in the S-box, which can be computed from back-annotated netlists as in
[8]. This produces leakages which are highly nonlinear in function of the input
or the output bits of the S-box.

Our analysis of models built for the toggle-count based leakage function of [8] in
function of the intermediate values (i.e. the AES S-box outputs) is summarised
in section `Scenario 4' of Table 2. The population coe�cients of determination
for the di�erent model speci�cations (see also Fig. 6 in Appendix A) compare
very similarly to those of the input-based models for Hamming weight leakage
(Scenario 2), suggesting similar pro�ling trade-o�s (again, we expect the sam-
ple sizes required for precise estimation to be comparable as model complexity
varies).

Interestingly, although there is little di�erence in model �t between the two
scenarios, the low degree approximations do much better in terms of attack
phase performance (relative to `classical' templates) than those in Scenario 2
(see also Fig. 7 in Appendix A). The linear model has a ρ2 of 0.06 compared
with 0.05 in Scenario 2, and yet the expected number of traces required relative
to DPA attacks using the `classical' templates is more modest than the increases
expected in Scenario 2. Similarly, the quadratic model in Scenario 4 has a ρ2

of 0.13 compared with 0.12 in Scenario 2, whilst the traces for key recovery
are ∼20-30 times the number required by `classical' templates in Scenario 4,
compared with ∼120-140 in Scenario 2.

4.3 Summary

We have shown that approximating leakage functions with low degree polyno-
mials via OLS estimation is extremely e�cient and e�ective in the case that the
leakage is linear or close to linear. The pro�ling phase requires only a fraction
(∼ 13%) of the number of traces needed to build `classical' templates to the same
degree of precision, with no increase in the traces required for successful key re-
covery in the attack phase. Even when faced with high degree leakage�either the
composite of a highly nonlinear target function with a `straightforward' leakage
or the type of highly nonlinear leakage produced by hardware implementations�
a low degree approximation can achieve substantially more than a non-pro�led
Hamming weight power model (as presented for comparison in the �rst row of
Table 2)�demonstrating the value even of minimal pro�ling. However, in such
cases only high degree model speci�cations�of similar pro�ling complexity to
`classical' templates�are able to achieve similar attack-phase e�ciency.



Table 2: Summary of linear regression models relative to `classical' templates.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Model #Params C2 C1 C3 C1 C3 C1 C3 C1 C3

HW � 0 1 1 0.00006 N/A 0.88 1.2�1.3 0.04 930�1,270
Deg. 1 9 0.03 1 1 0.05 8×106�1×107 0.96 1.0�1.1 0.06 136�220
Deg. 2 37 0.13 1 1 0.12 117�142 1 1 0.13 19�29
Deg. 3 93 0.33 1 1 0.36 7.6�8.3 1 1 0.35 3.6�5.2
Deg. 4 163 0.63 1 1 0.60 2.7�3.3 1 1 0.65 1.7�2.2
Deg. 5 219 0.83 1 1 0.83 1.4�1.5 1 1 0.85 1.2�1.4
Deg. 6 247 0.90 1 1 0.96 1.1 1 1 0.96 1.0�1.1
Deg. 7 255 1 1 1 1 1 1 1 1 1
Deg. 8 256 1 1 1 1 1 1 1 1 1

Notes: C1: Population coe�cient of determination (ρ2) of asymptotic model
�t; C2: Number of traces required (per intermediate value/input) in the pro�ling
phase as a proportion of the number required to build `classical' templates (based
on the `noisy' scenario); C3: Number of traces required for successful correlation
DPA for every one trace required when `classical' templates are used (as the
SNR ranges from 2−5 to 27). Scenario 1: Hamming weight leakage, models built
for intermediate values (Sect. 4.1); Scenario 2: Hamming weight leakage, models
built for inputs (Sect. 4.1); Scenario 3: Adjacent bit interactions (Sect. 4.2);
Scenario 4: Toggle-count leakage (Sect. 4.1).

5 Some experimental results

To see how the expected outcomes play out in practice, we performed experimen-
tal pro�ling attacks against simulated leakage of an AES S-box under scenario
4 with an SNR of 1. Table 3 shows the numbers needed to achieve a 99 per cent
success rate as model complexity and the number of traces for pro�ling varies. It
is clear from the last column of the table that even with an asymptotic pro�ling
phase the ratio between the `low degree' end, where the distinguishing margins
are small, and the `high degree' end, where they are large, is rather more mod-
est than that implied by the analysis in Table 2. This highlights the imperfect
nature of the heuristic rule-of-thumb�which is widely relied upon as an appeal-
ing means of quantifying attack complexity without performing the attacks, but
may produce distortions in cases like this where the simplifying assumptions of
bivariate normality are met to di�erent degrees for the models being compared,
and where (we conjecture) the over-exacting requirements of statistical signi�-
cance impose a greater relative divergence from practice when the margins are
small. We concede that Table 2 should be interpreted with caution; experimen-
tal analysis may be required to produce more true-to-life results for poor quality
power models.



Model 256 256 256 256 Asymptotic Ratio to

×1 ×2 ×5 ×10 �t `classical'

HW � � � � 13500 281.3
Deg. 1 0 0 6800 4250 2900 60.4
Deg. 2 0 1550 1000 875 750 15.6
Deg. 3 550 370 310 270 230 4.8
Deg. 4 230 170 120 110 95 2.0
Deg. 5 170 120 80 70 60 1.3
Deg. 6 140 100 70 60 50 1.0
Deg. 7 130 95 65 55 48 1.0
Deg. 8 130 95 65 55 48 1.0

Table 3: Number of traces needed to achieve a success rate of 99 percent in 2,000
experiments against simulated AES S-box leakage (scenario 4) with an SNR of
1. Where a 99 percent success was not achieved because of model inadequacy we
have reported the asymptotic success rate.

6 Conclusion

Models built to over-simpli�ed speci�cations may be estimated more cheaply
than maximum-complexity `classical' templates but incur greater data costs in
the DPA attack phase than they save in the pro�ling phase. However, they may
represent a `middle ground' for attackers with limited access to a training device
(but relatively free access to the target device), or for whom it is more convenient
to build models for the inputs rather than particular intermediate values. That
is, lower degree models still capture enough of the data-dependent variation to
succeed in a DPA phase, so long as they are supplied with su�cient measure-
ments from the attacked device. In particular, even very minimal pro�ling can
substantially improve on what is possible for a completely uninformed attacker
relying on the Hamming weight power model (although we �nd that the mag-
nitudes of the di�erences in complexity implied by the common rule-of-thumb
may be exaggerated at the `minimal' end).

References

1. The DPA Contest. http://www.dpacontest.org/. (Accessed 5th September 2012).
2. M.L. Akkar, R. Bevan, P. Dischamp, and D. Moyart. Power Analysis, What is

Now Possible... In T. Okamoto, editor, Advances in Cryptology � ASIACRYPT

'00, volume 1976 of LNCS, pages 489�502, 2000.
3. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage

Model. In M Joye and J-J Quisquater, editors, Proceedings of CHES 2004, volume
3156 of LNCS, pages 135�152. Springer Berlin / Heidelberg, 2004.

4. Suresh Chari, Josyula Rao, and Pankaj Rohatgi. Template Attacks. In Burton
Kaliski, Çetin Koç, and Christof Paar, editors, Proceedings of CHES 2002, volume
2523 of LNCS, pages 51�62. Springer Berlin / Heidelberg, 2003.

http://www.dpacontest.org/


5. Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. Stochas-
tic Methods. In Louis Goubin and Mitsuru Matsui, editors, Proceedings of CHES
2006, volume 4249 of LNCS, pages 15�29. Springer, 2006.

6. Helena C. Kraemer and Sue Thiemann. How Many Subjects?: Statistical Power

Analysis in Research. Sage Publications, Inc, 1st edition, September 1987.
7. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the

Secrets of Smart Cards. Springer, 2007.
8. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully Attack-

ing Masked AES Hardware Implementations. In Josyula R. Rao and Berk Sunar,
editors, Proceedings of CHES 2005, volume 3659 of LNCS, pages 157�171. Springer,
2005.

9. E. Prou�. DPA Attacks and S-Boxes. In Henri Gilbert and Helena Handschuh,
editors, Fast Software Encryption, volume 3557 of LNCS, pages 424�441. Springer
Berlin / Heidelberg, 2005.

10. Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A Formal Study of Power Variability Issues and Side-
Channel Attacks for Nanoscale Devices. In Kenneth G. Paterson, editor, Advances
in Cryptology � EUROCRYPT '11, volume 6632 of LNCS, pages 109�128. Springer,
2011.

11. Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for
Di�erential Side Channel Cryptanalysis. In Josyula Rao and Berk Sunar, editors,
Proceedings of CHES 2005, volume 3659 of LNCS, pages 30�46. Springer Berlin /
Heidelberg, 2005.

12. F-X Standaert, T. G. Malkin, and M. Yung. A Uni�ed Framework for the Analysis
of Side-Channel Key Recovery Attacks. In Antoine Joux, editor, Advances in

Cryptology � EUROCRYPT '09, volume 5479 of LNCS, pages 443�461, Berlin,
Heidelberg, 2009. Springer�Verlag.

13. François-Xavier Standaert, François Koeune, and Werner Schindler. How to Com-
pare Pro�led Side-Channel Attacks? In Michel Abdalla, David Pointcheval, Pierre-
Alain Fouque, and Damien Vergnaud, editors, ACNS, volume 5536 of LNCS, pages
485�498, 2009.

14. Carolyn Whitnall and Elisabeth Oswald. A Comprehensive Evaluation of Mutual
Information Analysis Using a Fair Evaluation Framework. In Phillip Rogaway, ed-
itor, Advances in Cryptology � CRYPTO '11, LNCS. Springer Berlin / Heidelberg,
2011.

15. Carolyn Whitnall and Elisabeth Oswald. A Fair Evaluation Framework for
Comparing Side-Channel Distinguishers. Journal of Cryptographic Engineering,
1(2):145�160, August 2011.

A Figures



0 2 4 6 8
0

2

4

6

8
Model fit

F
itt

ed
 v

al
ue

s

Deterministic leakage

Linear: ρ2=0.959

Quadratic: ρ2=1

−5 −1 3 7
0

0.2

0.4

0.6

0.8

1

log
2
(SNR)

M
ar

gi
n

Nearest−rival margins

−5 −1 3 7
0.5

1

1.5

2

2.5

log
2
(SNR)

lo
g 10

(#
 tr

ac
es

)

Number of traces

 

 
Linear
Quadratic

Fig. 5: The asymptotic �t and DPA performance of OLS-�tted models speci�ed
as linear and quadratic functions of the target bits, when the true leakage has
adjacent bit interactions.
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Fig. 6: The asymptotic �t of OLS-�tted models speci�ed as increasingly high
degree polynomials of the intermediate value bits, when the true leakage is highly
nonlinear (based on the toggle-count).
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Fig. 7: Nearest-rival margins and estimated data complexity of key-recovery cor-
relation DPA attacks against highly nonlinear (toggle-count) leakage of the AES
S-box, using OLS-�tted models of increasing polynomial degree.
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