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Abstract. The design and analysis of lightweight block ciphers has been
a very active research area over the last couple of years, with many inno-
vative proposals trying to optimize different performance figures. How-
ever, since these block ciphers are dedicated to low-cost embedded de-
vices, their implementation is also a typical target for side-channel adver-
saries. As preventing such attacks with countermeasures usually implies
significant performance overheads, a natural open problem is to propose
new algorithms for which physical security is considered as an optimiza-
tion criteria, hence allowing better performances again. We tackle this
problem by studying how much we can tweak standard block ciphers
such as the AES Rijndael in order to allow efficient masking (that is one
of the most frequently considered solutions to improve security against
side-channel attacks). For this purpose, we first investigate alternative
S-boxes and round structures. We show that both approaches can be
used separately in order to limit the total number of non-linear oper-
ations in the block cipher, hence allowing more efficient masking. We
then combine these ideas into a concrete instance of block cipher called
Zorro. We further provide a detailed security analysis of this new cipher
taking its design specificities into account, leading us to exploit inno-
vative techniques borrowed from hash function cryptanalysis (that are
sometimes of independent interest). Eventually, we conclude the paper
by evaluating the efficiency of masked Zorro implementations in an 8-bit
microcontroller, and exhibit their interesting performance figures.

1 Introduction

Masking (aka secret sharing) is a widespread countermeasure against side-channel
attacks (SCA) [14]. It essentially consists in randomizing the internal state of
a device in such a way that the observation of few (say d) intermediate values
during a cryptographic computation will not provide any information about any
of the secret (aka sensitive) variables. This property is known as the “d-th order
SCA security” and was formalized by Coron et al. as follows [10]: A masked
implementation is d-th order secure if every d-tuple of the intermediate values
it computes is independent of any sensitive variable. Reaching higher-order se-
curity is a theoretically sound approach for preventing SCAs, as it ensures that
any adversary targeting the masked implementation will have to “combine” the
information from at least d + 1 intermediate computations. More precisely, if
one can guarantee that the leakage samples corresponding to the manipulation
of the different shares of a masking scheme are independent, then a higher-order



security implies that an adversary will have to estimate the d + 1-th moment
of the leakage distribution (conditioned on a sensitive variable), leading to an
exponential increase of the SCA data complexity [9]1. In practice though, this ex-
ponential security increase only becomes meaningful if combined with a sufficient
amount of noise in the side-channel leakage samples [34]. Also, the condition of
independent leakage for the shares may turn out to be difficult to fulfill because
of physical artifacts, e.g. glitches occurring in integrated circuits [21]. Yet, and
despite these constraints, masking has proven to be one of the most satisfying
solutions to improve security against SCAs, especially in the context of protected
software implementations in smart cards [24, 30–32].

In general, the most difficult computations to mask are the ones that are
non-linear over the group operation used to share the sensitive variables (e.g.
the S-boxes in a block cipher). Asymptotically, the time complexity of masking
such non-linear operations grows at least quadratically with the order d. As a re-
sult, a variety of research works have focused on specializing masking to certain
algorithms (most frequently the AES Rijndael, see e.g. [8, 23]), in order to reduce
its implementation overheads. More recently, the opposite approach has been un-
dertaken by Piret et al. [26]. In a paper presented at ACNS 2012, the authors
suggested that improved SCA security could be achieved at a lower implemen-
tation cost by specializing a block cipher for efficient masking. For this purpose,
they started from the provably secure scheme proposed by Rivain and Prouff at
CHES 2010, and specified a design allowing better performances than the AES
Rijndael as the order of the masking increases. More precisely, the authors first
observed that bijective S-boxes that are at the same time easy to mask and have
good properties for resisting standard cryptanalysis are remarkably close to the
AES S-box. As a result, they investigated the gains obtained with non-bijective
S-boxes and described a Feistel network with a Substitution-Permutation Net-
work (SPN) based round function taking advantage of this S-box. One interesting
feature of this approach is that its impact on the performances of block cipher
implementations will grow with the the physical security level (informally mea-
sured with the order d). That is, it enables performance gains that become more
significant as we move towards physically secure implementations.

In this paper, we complement this first piece of work and further investigate
design principles that could be exploited to improve the security of block ciphers
implementations against SCAs thanks to the masking countermeasure. In par-
ticular, we investigate two important directions left open by Piret et al. First, we
observe that non-bijective S-boxes usually lead to simple non-profiled attacks (as
their output directly gives rise to “meaningful leakage models” [35]). As recently
shown by Whitnall et al., we even have a proof that generic (non-profiled) SCAs
against bijective S-boxes cannot exist [36]. This naturally gives a strong incen-
tive to consider bijective S-boxes in block ciphers that are purposed for masked

1 In certain scenarios, e.g. in a software implementation where all the shares are ma-
nipulated at different time instants, masking may also increase the time complexity
of the attacks, as an adversary will have to test all the pairs, triples, . . . of samples
to extract information from a 2nd, 3rd, . . . secure implementation.



implementations. Hence, we analyze the possibility to trade a bit of the classical
S-box properties (linearity, differential profile, algebraic degree) for bijectivity
and more efficient masking. Second, we observe that the previous work from
ACNS 2012 focused on the S-box design in order to allow efficient masking. This
is a natural first step as it constitutes the only non-linear element of most block
ciphers. Yet, it is also appealing to investigate whether the algorithm structure
could not be modified in order to limit the total number of S-boxes executed
during an encryption. We investigate this possibility and suggest that irregular
designs in which only a part of the state goes through an S-box in each round
can be used for this purpose, if the diffusion layer is adapted to this setting.

Roughly speaking, our results show that each of the principles that we pro-
pose (i.e. the modified S-box and structure) allows dividing the total number of
non-linear operations in an AES-like block cipher execution by two (compared
to the original AES Rijndael). We then describe a new block cipher for efficient
masking, that combines these two ideas in order to reduce this total number of
non-linear operations by a factor four. We call this cipher Zorro in reference
to the masked fictional character. We further provide a detailed security evalu-
ation of our proposal, considering state-of-the-art and dedicated cryptanalysis,
in order to determine the number of rounds needed to obtain a secure cipher.
Because of the irregular structure of Zorro, this analysis borrows recent tools
from hash function cryptanalysis and describes new techniques for providing se-
curity bounds (e.g. against linear and differential cryptanalysis). We conclude
with performance evaluations exhibiting that Zorro already leads to interesting
performance gains for small security orders d = 1, 2, 3. Note that because of place
constraints, a part of the security analysis and several background appendices
have been deferred the long version of the paper, available from the IACR ePrint.

2 Bijective S-boxes that are easier to mask

In this section we aim at finding an 8-bit S-box having both a small masking
cost and good cryptographic properties regarding standard cryptanalysis criteria
(i.e. non-linearity, differential profile, algebraic degree. For this purpose, we will
use the number of field multiplications and amount of randomness needed to
execute a shared S-box as performance metrics. As discussed in [31], reducing this
number directly leads to more efficient Boolean masking. Interestingly, it is also
beneficial for more advanced (polynomial) masking schemes inspired from the
multiparty computation literature, such as proposed by Prouff and Roche [28].
So our proposal is generally suitable for two important categories of masking
schemes that (provably) generalize to high security orders. For reference, we
first recall that the AES S-box consists in the composition of an inversion of the
element in the field GF (28) and an affine transformation A: SAES : x 7→ A(x−1).
Starting from this standard example, a natural objective would be to find an
S-box that can be masked with a lower cost than the AES one (i.e. an S-box
that can be computed using less than 4 multiplications [31]), and with similar
security properties (i.e. a maximum of the differential spectrum close to 4, a



maximum of the Walsh spectrum close to 32, and a high algebraic degree). Since
there are 28! permutations over GF (28), an exhaustive analysis of all these S-
boxes is computationally unfeasible. Hence, we propose two different approaches
to cover various S-boxes in our analysis. First, we exhaustively consider the
S-boxes having a sparse polynomial representation (essentially one or two non-
zero coefficients). Next, we investigate some proposals for constructing 8-bit S-
boxes from a combination of smaller ones. In particular, we consider a number of
solutions of low-cost S-boxes that have been previously proposed in the literature.

2.1 Exhaustive search among sparse polynomials

Monomials in GF (28). First notice that in GF (28) the square function is lin-
ear. Hence, we can define an equivalence relation between exponents: e1 ∼ e2 ⇔
∃ k ∈ N st. e1 = e2 2k mod 255. This relation groups exponents in 34 different
equivalence classes. Only 16 classes out of the 34 lead to bijective functions.
The AES exponent has the best security parameters and requires four multipli-
cations. Our goal is to find an S-box with a lower number of multiplications,
maintaining good (although not optimal) security features. As detailed in the
long version of the paper, exponents 7, 29 and 37 are interesting candidates.

Binomials in GF (28). We also performed an exhaustive search over all the
S-boxes defined by a binomial. Note that in this case, an additional (refreshing)
mask is required for the additions performed on pairs of dependent variables (in
order to maintain the d-th order security). Again, we were only interested in
S-boxes that can be computed in less than 4 multiplications. A few examples of
the best improvements found are given next:

– 2 multiplications. We found binomials having properties similar to mono-
mials X7 and X37, with better non-linearity (a maximum of the Walsh
spectrum between 64 and 48). Binomial 8X97 + X12 is an example.

– 3 multiplications. In this case, we additionally found several binomials
reducing both the maximum value of the Walsh spectrum (from 64 to 48)
and the maximum value of the differential spectrum (from 10 to 6) compared
to the monomial X29. Binomial 155X7 + X92 is an example.

2.2 Constructing 8-bit S-boxes from smaller ones

As the exhaustive analysis of more complex polynomial representations becomes
computationally intractable, we now focus on a number of alternatives based
on the combination of smaller S-boxes. In particular, we focus on constructions
based on 4-bit S-boxes that were previously proposed, and on 7-bit S-boxes (in
order to benefit from the properties of S-boxes with an odd number of bits).

Building on GF (24) S-boxes. This is the approach chosen by the designers
of PICARO. Namely, they selected an S-box that can be computed using only
4 secure multiplications over GF (24). This S-box has good security properties,
excepted that its algebraic degree is 4 and that it is non-bijective.



In general, constructing 8-bit S-boxes from the combination of 4-bit S-boxes
allows decreasing the memory requirements, possibly at the cost of an increased
execution time (as we generally need to iterate these smaller S-boxes). That
is, just putting two 4-bit S-boxes side-by-side allows no interaction between
the two nibbles of the byte. Hence the maximum of the Walsh spectrum and
the maximum of the differential spectrum of the resulting 8-bit S-box are 24

times larger than the one of its 4-bit building block. This weakness can be
mitigated by using at least two layers of 4-bit S-boxes interleaved with nibble-
mixing linear operations. For instance, the KHAZAD [1] and ICEBERG [33]
ciphers are using 8-bit S-boxes obtained from three applications of 4-bit S-box
layers, interleaved with a bit permutation mixing two bits of each nibble (as
illustrated in Figure 4(a)). The resulting S-boxes show relatively good security
properties and have maximal algebraic degree. Unfortunately, these proposals are
not good candidates to improve the performances of a masked implementations,
since six 4-bit S-boxes have to be computed to obtain one 8-bit S-box. As any
non-linear permutation in GF (24) requires at least 2 multiplications, even using
only two layers would cost more secure multiplications than the AES S-box.
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Fig. 1: (a): ICEBERG S-box. (b) 4-round Feistel network w/o linear layer. (c)
4-round Feistel network with linear layer. (d) Combination of 7-bit S-boxes with
linear layer.

Another natural alternative to double the size of an S-box is to build on a
small Feistel network, as illustrated in Figure 4(b). Note that in this case, we need
to perform at least 3 rounds to ensure that security properties against statistical
cryptanalyses will be improved compared to the ones of the underlying 4-bit
S-box. Indeed, let us choose a differential (or linear) mask with all active bits
in the left part of the input; then after 1 round we obtain the same difference
in the right part; hence the differential (or linear) approximation probability
after two rounds will be the one of the small S-box again. In fact, an exhaustive
analysis revealed that 4-round networks are generally required to obtain good
cryptanalytic properties. However, it also turned out that adding a linear layer
could lead to improved results for S-boxes that are efficiently masked. That is,
as illustrated in Figure 4(c), we can add an invertible 8 × 8 binary matrix to
mix the bits of the two Feistel branches between each round. Such a layer allows



improving the differential and linear properties of the S-box, with limited impact
on the cost of its masked implementations (since the transform is linear).

Example 1. We instantiate the 4-round Feistel network of Figure 4(c) with a
4-bit S-box corresponding to the monomial X3, and add an 8-bit linear trans-
formation M1 (given in long version of the paper) at the end of each round.
The corresponding 8-bit S-box has a maximum differential spectrum of 10, a
maximum of the Walsh spectrum equal to 64 and an algebraic degree of 7. It
can be computed using 4 secure multiplications in GF (24).

Example 2. We instantiate the 4-round Feistel network of Figure 4(c) with a
4-bit S-box using the polynomial 8X + 7X2 + 7X3 + 14X4 + 3X6 + 6X8 +
9X9 + 5X12 (which can be computed with 1 multiplication), and add an 8-bit
linear transformation M2 (given in long version of the paper) at the end of each
round. The corresponding 8-bit S-box has a maximum differential spectrum of
8, a maximum of the Walsh spectrum equal to 64 and an algebraic degree of 6.
It can also be computed using 4 secure multiplications in GF (24).

Exploiting GF (27) and linear layers. We finally investigated the use of a
smaller S-box in GF (27). This choice was motivated by the fact that S-boxes
in GF (2n) with n odd provide better security properties against differential
cryptanalysis than S-boxes acting on an even number of bits. For instance, the
existence of Almost Perfect Non-linear permutations (aka APN permutations)
is still an open problem for even values of n while many have been constructed
for odd values of n. Hence, we expect that low-cost S-boxes acting on 7 bits will
exhibit relatively good security properties. As in the previous paragraph, moving
from a 7-bit to an 8-bit S-box can be done by combining the 7-bit S-box with
an 8-bit linear transform. That is, we used the S-box in Figure 4(d), where the
7-bit S-box is applied twice, separated by a linear transformation to mix bits
inbetween. This implies that good masking properties could only be obtained if
the 7-bit S-box uses only a single multiplication. We found several 8-bit S-boxes
using 2-multiplications based on this design, having 64 as maximum of the Walsh
spectrum, 10 as maximum of the differential spectrum and 4 as algebraic degree.

2.3 Comparing proposed S-boxes to AES one

We compiled the results we obtained in Table 1, in which our performance and se-
curity metrics are reported. As explicit with the column “additional operations”,
such a table is limited in providing precise estimates of the exact implementation
costs, as these costs are always technology-dependent. Yet, it provides general
indications about S-box candidates for efficient masking, and also complements
the work of Piret et al. in providing some interesting bijective proposals.

3 Reducing the number of S-box executions

The previous section discussed how to reduce the number of multiplications per
S-box execution in a block cipher, by trading cryptanalytic properties for more
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efficient masking. A complementary approach in order to design a block cipher
that is easy to mask is to additionally reduce the total number of S-box execu-
tions. For this purpose, a natural solution is to consider rounds where not all the
state goes through the S-boxes. To some extent, this proposal can be viewed as
similar to an NLFSR-based cipher (e.g. Grain [16], Katan [6], Trivium [7]), where
the application of a non-linear component to the state is not homogeneous. For
example, say we consider two n-bit block ciphers with s-bit S-boxes: the first
(parallel) one applies n/s S-boxes in parallel in each of its R rounds, while the
second (serial) one applies only a single S-box per round, at the cost of a larger
number of rounds R′. If we can reach a situation such that R′ < R · ns , then
the second cipher will indeed require less S-boxes in total, hence being easier to
protect against side-channel attacks. Of course, the number of S-box executions
in the serial version does not have to be stuck at one, and different trade-offs
are possible. In general, the relevance of such a proposal highly depends on
the diffusion layer. For example, an AES-like structure is nicely suited to this
goal. The rationale behind this intuition essentially relates to the fact that the
AES Rijndael has strong security margins against statistical attacks, and the
most serious concerns motivating its number of rounds are structural (e.g. [20]).
Hence, iterating simplified rounds seems a natural way to prevent such struc-
tural attacks while maintaining security against linear/differential cryptanalysis.
Furthermore, the impact of linear hulls and differentials in ciphers with strong
diffusion could ideally lead to reductions in the total number of S-box execu-
tions required to reach a cipher that is secure against statistical attacks. In the
following, we show that a modified AES cipher with 4 S-boxes per round (rather
than 16 in the standard version) is indeed a good candidate for this purpose.

3.1 The AES Rijndael

The AES Rijndael was designed by Daemen and Rijmen [12]. It operates on
message blocks of 128 bits, that can be seen as a matrix of 4 × 4 bytes. One
round is composed of four transformations. In SubBytes (SB), a single 8-bit S-
box is applied 16 times in parallel to each byte of the state matrix. In ShiftRows
(SR), the the 4 bytes in the ith row of the state matrix are rotated by i positions
to the left. In MixColumns (MC), a linear transformation defined by an MDS
matrix is applied independently to each column of the state matrix. Finally, in
AddKey (AK), a 128-bit subkey provided by the key scheduling is added to the
internal state by an exclusive or. Depending on the size of the key, the number
of rounds varies from 10 to 14. We will compare our design with the 128-bit
version, which iterates 10 rounds, with a key whitening in the first one, and no
MC in the last one. We do not describe the key scheduling as we will not reuse it.

3.2 Preliminary investigations: how many S-boxes per round?

As in the previous section (about S-boxes that are easier to mask), an exhaustive
analysis of all the round structures that could give rise to less S-box executions in
total is out of reach. Yet, and as this number of S-box executions mainly depends



on the SB operations, we considered several variants of it, while keeping SR, MC
and AK unchanged. For this purpose, we have first analyzed how some elementary
diffusion properties depend on the number and positions of the S-boxes within
the state. Namely, we considered (1) the number of rounds so that all the input
bytes have passed at least once through an S-box (NrSbox); (2) the number of
rounds so that all the output bytes have at least one non-linear term (NrNlin);
and (3) the maximal number of rounds so that an input difference has a non-
linear effect in all the output bytes (NrDiff). In all three cases, these number
of rounds should ideally be low. They are given in Table 2 for different S-box
configurations. While such an analysis is of course heuristic, it indicates that
considering four S-boxes per round, located in a single row of the state matrix
seems an appealing solution. In the following, our goal will be to show that
an AES-like block cipher where each round only applies four “easy-to-mask” S-
boxes as found in the previous section can be secure. In particular, we will select
the number of rounds as R′ = 24, so that we have (roughly) twice less S-boxes
executed than the original AES Rijndael (i.e. 24× 4 vs. 10× 16).

NrSbox NrNlin NrDiff

1 S-box 3 2 4

4 S-boxes, 1 line 2 1 3

8 S-boxes, 2 lines 2 1 3

4 S-boxes, 1 column 3 1 3

4 S-boxes, 1 diagonal 2 2 3

4 S-boxes, 1 per column 2 2 3

4 S-boxes, Square 3 2 4

Table 2: Diffusion properties for different SB∗ configurations.

3.3 The block cipher Zorro: specifications

We will use a block size and key size of n = 128 bits, iterate 24 rounds and call the
combination of 4 rounds a step. Each round is a composition of four transforms:
SB∗, AC, SR, and MC, where the two last ones are exactly the same operations as
in the AES Rijndael, SB∗ is a variant of SB where only 4 S-boxes are applied
to the 4 bytes of the first row in the state matrix, and AC is a round-constant
addition described in Appendix A. We additionally perform a key addition AK

before the first and after each step. As for the selection of the S-box, we will use
Example 1 from the previous section, and just add the constant 0xB2 to remove
a fixed point (a table representation of this S-box is given in Appendix B).
Eventually, and order to maintain high implementation efficiency, we did not
design any complex key scheduling and simply add the master key each time
AK is called - as in the block cipher LED [15]. Using less key additions than in
LED is justified by the exclusion of related-key attacks from our security claims.
As for other lightweight block ciphers such as NOEKEON [11] or PRINCE [5],



we believe that related-key attacks are not relevant for the intended use case
(e.g. challenge-response authentication in smart cards), and mainly focused on
the generation of a good permutation in the single key setting. A schematic
view of the full cipher is given in Figure 2. Reduced-round versions (used in the
following) maintain at least three steps, with number of rounds following the
pattern: 4-4-4-4-4-4, 4-4-4-4-4-3,4-4-4-4-4-2, 4-4-4-4-4-1, 4-4-4-4-4, . . .

Fig. 2: Block cipher Zorro: light gray operations are AES-like, dark gray ones
are new.

4 Security analysis

Despite its AES-like flavor, the irregular structure of the block cipher Zorro

makes it quite different than most recently proposed SPNs. As a result, its
security evaluation also requires more dedicated cryptanalysis than usually con-
sidered when designing such regular ciphers. In this section, we provide a pre-
liminary investigation of a number of standard and less standard attacks against
Zorro, paying a particular attention to different solutions to exploit the modi-
fied non-linear layer SB∗. While further studies by external cryptanalysts would
certainly be welcome, we hope that the following analysis provides reasonable
confidence that the proposed structure can lead to a secure block cipher.

4.1 Linear/differential cryptanalysis.

In general, security against linear [22] and differential [2] cryptanalysis can be
estimated by counting the number of active S-boxes [13]. Based on the speci-
fications in the previous section, we would need to pass through 28 (resp. 32)



S-boxes in order to reach a security level of 2128 against differential (resp. linear)
cryptanalysis. Nevertheless, since less than 16 S-boxes are applied per round,
simple bounds based on the MDS property of the diffusion layer cannot be ob-
tained such as for the AES. An easy shortcoming is that trails that do not start
in the first state row will be propagated through the second round with proba-
bility one. Besides, since the S-boxes only apply to one out of the 4 input bytes
of MC in each round, the number of active S-boxes also progresses slower. As a
result, the main question for bounding security against these statistical attacks
is to determine the extent to which actual characteristics can take advantage of
this feature, by keeping a maximum number of inactive S-boxes.

For this purpose, we propose a technique inspired by hash functions crypt-
analysis, that finds the best balance between this number of inactive S-boxes
and the number of freedom degrees for the differential (or linear) paths. Taking
the example of differential cryptanalysis, we first consider a fully active input
state (we discuss next how to adapt our reasoning to other input differences)
and a fixed (unknown) key. In this case, we have 16 + 16 degrees of freedom at
the beginning of the differential path (in bytes, i.e. we have 232∗8 possible trials
to test if the differential path is verified). A first observation is that, in order to
have x inactive S-boxes in the next round, we need to verify at least x byte condi-
tions through the MC operation, which will spend x bytes of the freedom degrees
available. Conversely, we have that verifying x byte conditions through MC can
desactivate at most x S-boxes in the following rounds2. Our bounds then follow
from the fact that desactivating an S-box is only possible as long as degrees of
freedom are available (otherwise there will be no solutions for the differential
path). That is, we can consider that for each round i we can ask xi conditions
to be verified through the MC transform, and that at most xi S-boxes will not be
activated in the following rounds because of these conditions. Hence, the follow-
ing inequalities have to be verified for finding a valid path. They represent the
degrees of freedom still available after r rounds, and the cumulated number of
active S-boxes (that must be smaller than 28 as previously pointed out):

r∑
i=1

xi < 32, and 4× r −
r∑

i=1

xi < 28.

For simplicity, we can consider the average number of conditions x̄ that we can
impose at each round. We observe that the highest number of rounds is achieved
for r = 14 and x̄ = 32/14 = 2.285, where we have 24 active S-boxes and no more
freedom degrees available (for 15 rounds, the number of active S-boxes exceeds
28). Eventually, we note that when the initial state is not completely active,
e.g. taking only Y possible differences, we have that with cin = log2(216∗8/Y )/8

2 Consider the case where the 1st output byte of MC is inactive, i.e. we have one less
active S-box in the next round. For more S-boxes to be inactive, we would have to
pay more conditions on MC. Alternatively, say MC has one active output difference per
column (implying x = 12 byte conditions). Then, we have at most 6 inactive S-boxes
in the two next rounds, before coming back to the whole active state with 6 < x.



byte conditions we will be able to desactivate at most cin S-boxes. Hence, the
inequalities taking all possible input differences into account become:

r∑
i=1

xi < 32− cin, and 4× r −
r∑

i=1

xi − cin < 28.

They provide the same result as before: 14 rounds is the upper bound for building
a classical differential path3. A similar reasoning for linear cryptanalysis leads
to an upper bound of 16 rounds (out of 24, leaving us good security margins).

4.2 Truncated differential attacks

In view of the non-linear transformation in Zorro, a natural extension of dif-
ferential cryptanalysis to investigate is the use of dedicated truncated differen-
tials [18]. In particular, the most damaging truncated differential patterns are
those that would exclude active bytes affected by non-linear operations. For this
reason, we analyzed the possible existence of cycles of differences that verify
transitions from three active rows of the state to another three active rows with
probability one for any number of rounds (i.e. excluding non-linear operations).
Such patterns are represented in Figure 3, where big squares represent states,
small squares represent bytes, highlighted ones are affected by non-linear trans-
formations and gray bytes are the ones with a non-zero difference. Truncated
differentials only following the pattern of the figure would never go through the
S-boxes. Quite naturally, staying in this pattern for several rounds implies more
conditions, but if an input difference exists so that it follows the pattern for some
rounds before regenerating this first input difference again, this would imply that
the pattern can be followed for an infinite number of rounds as a cycle would
have been created. If no cycle exists, we have essentially 4 byte constraints per
round for 12 unknowns, and we run out of degrees of freedom for verifying the
pattern after 3 rounds. As a result, we essentially have to ensure that no cycle
has been created, that would prevent differences to affect the first state row for
an infinite number of rounds. The probability that such a cycle exists is small
(about 264−96 + 232−96 + 2−96 ≈ 2−32). Yet, in order to be sure they do not
exist, we performed an exhaustive search over all the 3-row input differences,
and checked whether they generate a cycle or end by spreading the difference.
The naive cost of such a search is 212∗8 = 296. We describe a time and memory
efficient alternative in the long version of the paper. It allowed us to verify that
the pattern of Figure 3 can be verified for at most two rounds.

SB* SR MC SB* SR MC

Fig. 3: Two rounds of truncated differential pattern.
3 Note that despite these bounds to being possibly loose for small number of rounds,

they also guarantee security against boomerang attacks. Namely, we have at least
9 active S-boxes after 10 rounds, which would correspond to best differentials with
probabilities p, q ≈ 242 in a boomerang attack (leading to p2q2 ≈ 2−168).



5 Other cryptanalysis attempts

Because of place constraints, the rest of our security evaluations have only been
included in the long version of the paper, in which we additionally evaluated
meet-in-the-middle and biclique attacks, impossible differential attacks, deriva-
tive and algebraic analyses and rebound attacks. The best cryptanalysis attempt
we found is a meet-in-the-middle one, targeting 12 rounds of Zorro. These in-
vestigations are admittedly far from exhaustive. Yet, we believe that the attacks
evaluated are among the most relevant regarding the structure and components
of Zorro. A number of other standard cryptanalysis techniques would naturally
apply just like for any other cipher. One can mention the slide attacks introduced
in [3] and exploiting the similarity of the round functions (that are prevented
by the use of round constants). Another example are integral attacks exploiting
properties of the MC transform [20]. Since our modified SB∗ does not affect these
diffusion properties, they would target 7 rounds, just as for the AES [19]. We
leave the investigation of these other attack paths as a scope for further research.

6 Concluding remarks

To conclude this work, we firstreport on masked implementations of Zorro in
an Atmel AtMega644p 8-bit microcontroller. In order to justify the interest of
this new cipher, we compared its performance figures with two natural competi-
tors, namely the AES and PICARO. We considered the schemes of Rivain and
Prouff [31] for this purpose. In the AES case, we also considered the optimization
from Kim et al. [17]. The results of Figure 4 suggest that the AES remains most
efficient cipher in the unprotected case, while PICARO and Zorro gradually lead
to improved cycle counts with larger masking orders. The fact that Zorro ex-
ploits both an improved S-box and a modified structure explains its asymptotic
gain over PICARO. Besides, we recall that using bijective S-boxes is important
in order to avoid easy attack paths for non-profiled side-channel analysis. Note
that considering the polynomial masking scheme of Prouff and Roche in [28]
could only lead to more significant gains (the cost of masking is cubic in the
security order in this case, compared to quadratic for Boolean masking).

Finally, we stress that the design of Zorro leads to interesting open problems
regarding further optimizations for algorithms that are “easy to mask”. Keeping
the (generic) criteria of minimizing the number of field multiplications in the
algorithm, a natural direction would be to consider cipher designs with stronger
diffusion layers such as Khazad [29]. Alternatively, one could also give up a bit
of our generality and focus exclusively on Boolean masking (e.g. the Rivain and
Prouff 2010 scheme) while giving up polynomial types of masking schemes (e.g.
the Prouff and Roche 2011 one). For example, the S-boxes of block ciphers such
as PRESENT [4] or NOEKEON [11] require three multiplications in GF (216),
which makes them less suitable than Zorro regarding our current optimization
criteria (as these ciphers require 16 × 32 and 31 × 16 of these S-boxes, respec-
tively). But they have efficient bitslice representations minimizing the number



of AND gates, which could lead to further improvements of Boolean masked
implementations. In general, taking advantage of bitslicing in this specialized
context, while maintaining a “regular” design (e.g. excluding bit manipulations
that would leak more on certain bits than others) is an interesting open problem.
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A Round constants

The round constants addition is limited to the first state row. Constants are gen-
erated as {i, i, i, i << 3}, with i the round index and << the left shift operator.

B S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 B2 E5 5E FD 5F C5 50 BC DC 4A FA 88 28 D8 E0 D1
10 B5 D0 3C B0 99 C1 E8 E2 13 59 A7 FB 71 34 31 F1
20 9F 3A CE 6E A8 A4 B4 7E 1F B7 51 1D 38 9D 46 69
30 53 E 42 1B F 11 68 CA AA 6 F0 BD 26 6F 0 D9
40 62 F3 15 60 F2 3D 7F 35 63 2D 67 93 1C 91 F9 9C
50 66 2A 81 20 95 F8 E3 4D 5A 6D 24 7B B9 EF DF DA
60 58 A9 92 76 2E B3 39 C 29 CD 43 FE AB F5 94 23
70 16 80 C0 12 4C E9 48 19 8 AE 41 70 84 14 A2 D5
80 B8 33 65 BA ED 17 CF 96 1E 3B B C2 C8 B6 BB 8B
90 A1 54 75 C4 10 5D D6 25 97 E6 FC 49 F7 52 18 86
A0 8D CB E1 BF D7 8E 37 BE 82 CC 64 90 7C 32 8F 4B
B0 AC 1A EA D3 F4 6B 2C FF 55 A 45 9 89 1 30 2B
C0 D2 77 87 72 EB 36 DE 9E 8C DB 6C 9B 5 2 4E AF
D0 4 AD 74 C3 EE A6 F6 C7 7D 40 D4 D 3E 5B EC 78
E0 A0 B1 44 73 47 5C 98 21 22 61 3F C6 7A 56 DD E7
F0 85 C9 8A 57 27 7 9A 3 A3 83 E4 6A A5 2F 79 4F


