
Lambda coordinates for binary elliptic curves

Thomaz Oliveira1?, Julio López2??, Diego F. Aranha3, and Francisco
Rodŕıguez-Henŕıquez1?

1 Computer Science Department, CINVESTAV-IPN
2 Institute of Computing, University of Campinas

3 Department of Computer Science, University of Braśılia

Abstract. In this work we present the λ-coordinates, a new system for
representing points in binary elliptic curves. We also provide efficient
elliptic curve operations based on the new representation and timing re-
sults of our software implementation over the field F2254 . As a result,
we improve speed records for protected/unprotected single/multi-core
software implementations of random-point elliptic curve scalar multi-
plication at the 128-bit security level. When implemented on a Sandy
Bridge 3.4GHz Intel Xeon processor, our software is able to compute a
single/multi-core unprotected scalar multiplication in 72,300 and 47,900
clock cycles, respectively; and a protected single-core scalar multiplica-
tion in 114,800 cycles. These numbers improve by around 2% on the
newer Core i7 2.8GHz Ivy Bridge platform.

1 Introduction

The introduction in contemporary processor micro-architectures of a native
carry-less multiplier and vector instruction sets, such as SSE and AVX, has
brought a renewed interest to the study of efficient software implementations of
scalar multiplication in elliptic curves defined over binary fields [41, 5, 4]. From
the algorithmic point of view, one of the most important aspects to accelerate
the computation of the scalar multiplication is the point representation. In this
respect, the relatively expensive cost of field inversions associated with the arith-
metic of affine point representation motivated the development of alternative new
projective coordinate systems.

In the case of binary curves, one of the first proposals was the homogeneous
projective coordinates system [1], which represents an affine point P = (x, y)
as the triplet (X,Y, Z), where x = X

Z and y = Y
Z ; whereas in the Jacobian

coordinate system [11], a projective point P = (X,Y, Z) corresponds to the
affine point (x = X

Z2 , y = Y
Z3). In 1998, López-Dahab (LD) coordinates [36]

were proposed using x = X
Z and y = Y

Z2 . Since then, LD coordinates have
become the most studied coordinate system for binary elliptic curves, with many

? A portion of this work was performed while the author was visiting the University
of Waterloo. The author acknowledges partial support from the CONACyT project
132073.

?? The author was supported in part by the Intel Labs University Research Office.

authors [29, 33, 3, 32, 8] contributing to improve their performance. In 2007, Kim
and Kim [28] presented a 4-dimensional LD coordinate system that represents P
as (X,Y, Z, T 2), with x = X

Z , y = Y
T and T = Z2. In a different vein, Bernstein

et al. introduced in [8] a set of complete formulas for binary Edwards elliptic
curves.

Among the works studying scalar multiplication over binary elliptic curves,
the authors in [41] were the first to analyze the impact of using the carry-
less multiplier in the computation of the scalar multiplication over Koblitz and
generic curves at security of 112, 128 and 192 bits. This work also presented
multi-core implementations of their algorithms based on the parallel formula-
tions first given in [2]. The authors in [4] held the record for the fastest unpro-
tected implementation of scalar multiplication at the 128-bit security level by
employing the NIST-K283 curve, where a simple analogue of the 2-dimensional
GLV method was used. This record was recently broken in [34, 35, 12], where the
authors merged the GLS (Galbraith, Lin and Scott) and GLV (Gallant, Lambert
and Vanstone) methods to achieve a 4-dimensional decomposition of scalars in a
non-standardized Twisted Edwards prime curve. For protected implementations,
authors in [9] and [12] hold the speed records in a genus-2 and genus-1 elliptic
curve, respectively.

Our contributions. This work further contributes to the advances in binary
elliptic curve arithmetic by presenting a new projective coordinate system and
its corresponding group law, which is based on the λ-representation of a point
P = (x, λ), where λ = x+ y

x . The efficient group law enables significant speedups
in the pre/postcomputation and the main loop of the traditional double-and-
add and halve-and-add scalar multiplication methods. The concrete application
of λ-coordinates to the 2-dimensional GLS-GLV method combined with efficient
quadratic field arithmetic allow us to claim the speed records at the 128-bit secu-
rity level for single and multi-core unprotected scalar multiplication, improving
by 20%, 21% and 17% the timings reported in [34, 35, 12], respectively. For pro-
tected single-core scalar multiplication, our timings improve by 49%, 17% and
4% the results reported in [41, 35, 9], respectively, while staying slower than the
latest speed record by a 16% margin [12].1

2 Binary Field Arithmetic

A binary extension field F2m of order q = 2m can be constructed by taking an m-
degree polynomial f(x) ∈ F2[x] irreducible over F2. The F2m field is isomorphic
to F2[x]/(f(x)) and its elements consist of the collection of binary polynomials
of degree less than m. Quadratic extensions of a binary extension field can be
built using a monic polynomial g(u) ∈ F2[u] of degree two that happens to
be irreducible over Fq. In this case, the field Fq2 is isomorphic to Fq[u]/(g(u))

1 The benchmarking was run on Intel platforms Xeon E31270 3.4GHz and Core i5 3570
3.4GHz. In addition, our library was submitted to the ECRYPT Benchmarking of
Asymmetric Systems (eBATS).

and its elements can be represented as a + bu, with a, b ∈ Fq. In this paper,
we developed an efficient field arithmetic library for the towering of the fields
Fq and its quadratic extension Fq2 , with m = 127, which were constructed by
means of the irreducible trinomials f(x) = x127 +x63 + 1 and g(u) = u2 +u+ 1,
respectively.

Given two field elements a, b ∈ Fq, field multiplication can be performed by
polynomial multiplication followed by modular reduction as, c = a · b mod f(x).
Since the binary coefficients of the base field elements Fq can be packed as vec-
tors of two 64-bit words, the usage of the standard Karatsuba method allows us
to compute the polynomial multiplication step at a cost of three 64-bit prod-
ucts (equivalent to three carry-less multiplication instruction invocations [41]),
and some additions. Due to the very special form of f(x), modular reduction
is especially elegant as it can be accomplished using essentially additions and
shifts (see Section 2.1). Multi-squaring, or exponentiation to 2k, with k > 5 is
performed via the look-up of per-field constant tables of 24 · dm4 e field elements.
Field inversion in the base field is carried out using the Itoh-Tsujii algorithm [25].
Solving a quadratic equation over Fq is computed through the half-trace function

H, which is defined as H(c) =
∑(m−1)/2

i=0 c2
2i

. By exploiting the linear property

H(c) = H(
∑m−1

i=0 cix
i) =

∑m−1
i=0 ciH(xi), and by using an 8-bit index look-up

table of size 28 · dm8 e elements, one can write efficient code for computing H(c).

Operations in the quadratic extension are performed coefficient-wise. For
instance, the multiplication of two elements a, b ∈ Fq2 is performed as, a · b =
(a0+a1u)·(b0+b1u) = (a0b0+a1b1)+(a0b1+a1b0+a1b1)u with a0, a1, b0, b1 ∈ Fq.
Squaring a field element is accomplished using the identity, a2 = (a0 + a1u)2 =
a20 + a21 + a21u. The inverse c of a field element a is given as the solution of the
equation a · c = (a0 + a1u)(c0 + c1u)−1 = 1, which can be computed using the
formulas t = a0a1+a0

2+a1
2, c0 = (a0+a1)t−1 and c1 = a1t

−1. Solving quadratic

equations in Fq2 of the form x2+x = c with Tr(c) = 0, where Tr : c 7→
∑m−1

i=0 c2
i

denotes the trace function from F2m to F2, can be reduced to the solution of two
quadratic equations over Fq, as discussed in [19].

The costs of the quadratic extension arithmetic in terms of its base field oper-
ations are presented in Table 1. Throughout this paper, we denote by (ab,mb, qb,
sb, ib, hb, tb) and (ã, m̃, q̃, s̃, ĩ, h̃, t̃) the computational costs of the addition, mul-
tiplication, square-root, squaring, inversion, half-trace and trace operations over
Fq and Fq2 , respectively.

Table 1. Operation counts for the arithmetic on the field Fq2
∼= Fq[u]/

(
u2 + u+ 1

)
Multiplication

(m̃)
Square-Root

(q̃)
Squaring

(s̃)
Inversion

(̃i)
Half-Trace

(h̃)

3mb + 4ab 2qb + ab 2sb + ab ib + 3mb + 3ab 2hb + tb + 2ab

2.1 Modular Reduction

For a better comprehension of our modular reduction algorithms, we provide in
Table 2 the notation for the vector instructions. This notation is closely based
on [5], but here, we use the AVX instruction set.

Table 2. Vector instructions used for the binary field arithmetic implementation.

Symbol Description AVX

�64,�64 Bitwise shift of packed 64-bit integers VPSLLQ, VPSRLQ

⊕, ∧, ∨ Bitwise XOR, AND, OR VPXOR, VPAND, VPOR

B Multi-precision shifts VPALIGNR

intlo64, intlhi64 Packed 64-bit integers interleaving VPUNPCKLBW, VPUNPCKHBW

For the particular irreducible trinomial f(x) = x127 + x63 + 1, we use the
following algorithm.

Algorithm 1 Modular reduction by f(x) = x127 + x63 + 1.

Input: 253-bit polynomial d′ stored into two 128-bit registers r1||r0.
Output: Fq element d′ mod f(x) stored into a 128-bit register r0.

t0 ← (r1, r0) B 64
r1 ← r1 �64 1
r1 ← inthi64(r1, t0)
r0 ← r0 ⊕ t0
r0 ← r0 ⊕ (r1 �64 63)

t0 ← t0 ⊕ r1
r0 ← r0 ⊕ r1
t0 ← t0 �64 63
r1 ← intlo64(t0, t0)
return r0

This modular reduction algorithm can be improved for squaring. In this case,
a2, with a ∈ Fq, is represented using two 128-bit registers r1||r0. By observing
that the 63-th bit of the register r1 is zero, the modular reduction algorithm can
be optimized as shown in Alg. 2.

Algorithm 2 Modular reduction by f(x) = x127 + x63 + 1 for the squaring
operation.

Input: 253-bit polynomial a2 stored into two 128-bit registers r1||r0.
Output: Fq element a2 mod f(x) stored into a 128-bit register r0.

t0 ← (r1, r0) B 64
r1 ← r1 �64 1
t0 ← inthi(r1, t0)
return r0

t0 ← t0 ⊕ r1
r0 ← r0 ⊕ r1
r0 ← r0 ⊕ t0

3 Binary elliptic curves

The Weierstrass form of a binary ordinary elliptic curve defined over Fq, q = 2m,
is given by the equation E/Fq : y2 + xy = x3 + ax2 + b, with a, b ∈ Fq and
b 6= 0. The set of points P = (x, y) with x, y ∈ Fq that satisfy the above
equation, together with the point at infinity O, form an additive abelian group
with respect to the elliptic point addition operation. This group is denoted as
Ea,b(Fq). The number of points on the curve is denoted as #Ea,b(Fq), and the
integer t = q+1−#Ea,b(Fq), known as the trace of Frobenius, satisfies |t| ≤ 2

√
q.

Let 〈P 〉 be an additively written subgroup in Ea,b(Fq) of prime order r, and
let k be a positive integer such that k ∈ [0, r− 1]. Then, the elliptic curve scalar
multiplication operation computes the multiple Q = kP , which corresponds
to adding P to itself k − 1 times. The average cost of computing kP by a
random n-bit scalar k using the customary double-and-add method is about
nD+ n

2A, where D is the cost of doubling a point (i.e. the operation of computing
R = 2S = S + S, with S ∈ 〈P 〉) and A is the cost of a point addition (i.e. the
operation of computing R = S + T, with S, T ∈ 〈P 〉). Given r, P and Q ∈ 〈P 〉,
the Elliptic Curve Discrete Logarithm Problem (ECDLP) consists of finding the
unique integer k such that Q = kP holds.

In order to have a more efficient elliptic curve arithmetic, it is standard
to use a projective version of the elliptic curve equation where the points are
represented in the so-called projective space. The following subsection describes
the λ-projective coordinates, a new coordinate system whose associated group
law is introduced here for the first time.

3.1 Group law for Lambda projective coordinates

Given a point P = (x, y) ∈ Ea,b(Fq) with x 6= 0, the λ-affine representation [14,
36–38] of P is defined as (x, λ), where λ = x + y

x . The λ-projective point P =

(X,L,Z) corresponds to the λ-affine point (X
Z ,

L
Z). The λ-projective equation

form of the Weierstrass equation is

(L2 + LZ + aZ2)X2 = X4 + bZ4.

Next, we present the formulas for point doubling and addition in the λ-
projective coordinate system. Complementary formulas and complete proofs of
all theorems can be found in Appendix A.

Theorem 1. Let P = (XP , LP , ZP) be a point in a non-supersingular curve
Ea,b(Fq). Then the formula for 2P = (X2P , L2P , Z2P) using the λ-projective
representation is given by

T = L2
P + (LP · ZP) + a · Z2

P

X2P = T 2

Z2P = T · Z2
P

L2P = (XP · ZP)2 +X2P + T · (LP · ZP) + Z2P .

For situations where the multiplication by the b-coefficient is fast, one can
replace one full multiplication with the constant multiplication by a2 + b. We
present below an alternative formula for calculating L2P :

L2P = (LP +XP)2 · ((LP +XP)2 + T + Z2
P) + (a2 + b) · Z4

P +X2P + (a+ 1) · Z2P .

Theorem 2. Let P = (XP , LP , ZP) and Q = (XQ, LQ, ZQ) be points in Ea,b(Fq)
with P 6= ±Q. Then the addition P + Q = (XP+Q, LP+Q, ZP+Q) can be com-
puted by the formulas

A = LP · ZQ + LQ · ZP

B = (XP · ZQ +XQ · ZP)2

XP+Q = A · (XP · ZQ) · (XQ · ZP) ·A
LP+Q = (A · (XQ · ZP) +B)2 + (A ·B · ZQ) · (LP + ZP)

ZP+Q = (A ·B · ZQ) · ZP .

Furthermore, we derive an efficient formula for computing the operation 2Q+
P , with the points Q and P represented in λ-projective and λ-affine coordinates,
respectively.

Theorem 3. Let P = (xP , λP) and Q = (XQ, LQ, ZQ) be points in the curve
Ea,b(Fq). Then the operation 2Q+P = (X2Q+P , L2Q+P , Z2Q+P) can be computed
as follows:

T = L2
Q + LQ · ZQ + a · Z2

Q

A = X2
Q · Z2

Q + T · (L2
Q + (a+ 1 + λP) · Z2

Q)

B = (xP · Z2
Q + T)2

X2Q+P = (xP · Z2
Q) ·A2

Z2Q+P = (A ·B · Z2
Q)

L2Q+P = T · (A+B)2 + (λP + 1) · Z2Q+P .

Table 3 summarizes the costs of the following point operations when using
the λ-projective coordinate system in an elliptic curve defined over the quadratic
field E/Fq2 , full-addition R = P + Q, mixed-addition R = P + Q with P rep-
resented in λ-affine coordinates, doubling R = 2P , and doubling and addition
R = 2Q+ P with P represented in λ-affine coordinates. The terms m̃a and m̃b

denote the field multiplication by the curve constants a and b, respectively. For
comparison purposes, the costs of these operations when using the López-Dahab
(LD) projective coordinate system [36] are also included.

3.2 GLS curves

In 2001, Gallant, Lambert and Vanstone (GLV) [16] presented a technique that
uses efficient computable endomorphisms available in certain classes of elliptic

Table 3. Operation counts for point addition and doubling on E/Fq2

Coordinate
system

Full-addition Mixed-addition Doubling
Doubling and

addition

López-
Dahab

13m̃+ 4s̃ 8m̃+ m̃a + 5s̃ 3m̃+ m̃a + m̃b + 5s̃ n/a

Lambda 11m̃+ 2s̃ 8m̃+ 2s̃
4m̃+ m̃a + 4s̃ /

3m̃+ m̃a + m̃b + 4s̃
10m̃+ m̃a + 6s̃

curves that allows for significant speedups in the scalar multiplication computa-
tion. Later, Galbraith, Lin and Scott (GLS) [15] constructed efficient endomor-
phisms for a broader class of elliptic curves defined over Fq2 , where q is a prime
number, showing that the GLV technique also applies to these curves. Subse-
quently, Hankerson, Karabina and Menezes investigated in [19] the feasibility of
implementing the GLS curves over F22m . In the next paragraphs, we introduce
the GLS curves over binary fields and its endomorphism. Our description closely
follows the one given in [19].

Let q = 2m and let E/Fq : y2 +xy = x3 +ax2 + b, with a, b ∈ Fq, be a binary
elliptic curve. Also, pick a field element a′ ∈ Fq2 such that Tr(a′) = 1, where Tr

is the trace function from Fq2 to F2 defined as, Tr : c 7→
∑2m−1

i=0 c2
i

. Then, define

Ẽ/Fq2 : y2 + xy = x3 + a′x2 + b, with #Ẽa′,b(Fq2) = (q − 1)2 + t2. It is known

that Ẽ is the quadratic twist of E, which means that both curves are isomorphic
over Fq4 under the following endomorphism [19], φ : E → Ẽ, (x, y) 7→ (x, y+sx),
with s ∈ Fq4\Fq2 satisfying s2 + s = a + a′. It is also known that the map φ
is an involution, i.e., φ = φ−1. Let π : E → E be the Frobenius map defined
as (x, y) 7→ (x2

m

, y2
m

), and let ψ be the composite endomorphism ψ = φπφ−1

given as, ψ : Ẽ → Ẽ, (x, y) 7→ (x2
m

, y2
m

+ s2
m

x2
m

+ sx2
m

).
In this work, the binary elliptic curve Ẽa′,b(Fq2) was defined with the pa-

rameters a′ = u and b ∈ Fq, where b was carefully chosen to assure that

#Ẽa′,b(Fq2) = hr, with h = 2 and where r is a prime of size 2m − 1 bits.
Moreover, s2

m

+ s = u, which implies that the endomorphism ψ acting over the
λ-affine point P = (x0 + x1u, λ0 + λ1u) ∈ Ẽa′,b(Fq2), can be computed at a cost
of only three additions in Fq as,

ψ(P) 7→ ((x0 + x1) + x1u, (λ0 + λ1) + (λ1 + 1)u).

It is worth to remark that in order to prevent the generalized Gaudry-Hess-
Smart (gGHS) attack [17, 22], the constant b of Ẽa′,b(Fq2) must be carefully
verified. However, the probability that a randomly selected b ∈ Fq is a weak
parameter is negligibly small [19].

4 Scalar Multiplication

In this Section, the most prominent methods for computing the scalar multi-
plication on Weierstrass binary curves are described. Here, we are specifically

interested in the problem of computing the elliptic curve scalar multiplication
Q = kP , where P ∈ Ẽa′,b(Fq2) is a generator of prime order r and k ∈ Zr is a
scalar of bitlength |k| ≈ |r| = 2m− 1.

4.1 The GLV method and the w-NAF representation

Let ψ be a nontrivial efficiently computable endomorphism of Ẽ. Also, let us
define the integer δ ∈ [2, r − 1] such that ψ(Q) = δQ, for all Q ∈ Ẽa′,b(Fq2).
Computing kP with the GLV method consists of the following steps.

First, a balanced length-two representation of the scalar k ≡ k1+k2δ mod r,
must be found, where |k1|, |k2| ≈ |r|/2. Given k and δ, there exist several methods
to find k1, k2 [20, 39, 27]. However, we decided to follow the suggestion in [15]
which selects two integers k1, k2 at random, perform the scalar multiplication
and then return k ≡ k1 + k2δ mod r, if required.1 Having split the scalar k
into two parts, the computation of kP = k1P + k2ψ(P) can be performed by
simultaneous multiple point multiplication techniques [21], in combination with
any of the methods to be described next. A further acceleration can be achieved
by representing the scalars k1, k2 in the width-w non-adjacent form (w-NAF).

In this representation, kj is written as an n-bit string kj =
∑n−1

i=0 kj,i2
i, with

kj,i ∈ {0,±1,±3, . . . ,±2w−1 − 1}, for j ∈ {1, 2}. A w-NAF string has a length
n ≤ |kj | + 1, at most one nonzero bit among any w consecutive bits, and its
average nonzero-bit density is approximately 1/(w + 1).

4.2 Left-to-right double-and-add

The computation of the scalar multiplication kP = k1P + k2ψ(P) via the tra-
ditional left-to-right double-and-add method, can be achieved by splitting the
scalar k as described above and representing the scalars k1, k2 so obtained in
their w-NAF form. The precomputation step is accomplished by calculating the
2w−2 multiples Pi = iP for odd i ∈ {1, . . . , 2w−1 − 1}. For the sake of efficiency,
the multiples must be computed in λ-projective form, a task that can be ac-
complished using the doubling and addition operation described in § 3.1. This
is followed by the application of the endomorphism to each point Pi so that
the multiples ψ(Pi) are also precomputed and stored. The computational effort
associated with the precomputation is 38m̃+ 2m̃a + 8s̃+ ĩ. Thereafter, the accu-
mulator Q is initialized at the point at infinity O, and the digits kj,i are scanned
from left to right one at a time. The accumulator is doubled at each iteration of
the main loop and in case that kj,i 6= 0, the corresponding precomputed multiple
is added to the accumulator as, Q = Q±Pk′i

. Algorithm 3, with t = 0 illustrates
the method just described.

1 We stress that k can be recovered at a very low computational effort. From our
experiments, the scalar k could be reconstructed with cost slower than 5m̃.

Table 4. Operation counts for selected scalar multiplication methods in Ẽa′,b(Fq2)

Double-and-add Halve-and-add

No-GLV pre/post 1D + (2w−2 − 1)A 1D + (2w−1 − 2)A

(LD) sc. mult. n
w+1

A+ nD n
w+1

(A+ m̃) + nH

2-GLV pre/post 1D + (2w−2 − 1)A+ 2w−2ψ 1D + (2w−1 − 2)A

(LD) sc. mult. n
w+1

A+ n
2
D n

w+1
(A+ m̃) + n

2
H + n

2(w+1)
ψ

2-GLV pre/post 1D + (2w−2 − 1)A+ 2w−2ψ 1D + (2w−1 − 2)A

(λ) sc. mult.
(2w+1)n

2(w+1)2
DA+ w2n

2(w+1)2
D+ n

2(w+1)2
A n

w+1
A+ n

2
H + n

2(w+1)
ψ

4.3 Right-to-left halve-and-add

In the halve-and-add method [30, 40], all point doublings are replaced by an
operation called point halving. Given a point P , the halving point operation
finds R such that P = 2R. For the field arithmetic implementation considered
in this paper, the halving operation is faster than point doubling when applied
on binary curves with Tr(a′) = 1. Halving a point involves computing a field
multiplication, a square-root extraction and solving a quadratic equation of the
form x2 + x = c [14], whose solution can be found by calculating the half-trace
of the field element c, as it was discussed in Section 2.

The halve-and-add method is described as follows. First, let us compute
k′ ≡ 2n−1k mod r, with n = |r|. This implies that, k ≡

∑n−1
i=0 k

′
n−1−i/2

i + 2k′n
mod r and therefore, kP =

∑n−1
i=0 k

′
n−1−i(

1
2iP) + 2k′nP. Then, k′ is represented

in its w-NAF form, and the 2w−2 accumulators are initialized as, Qi = O, for
i ∈ {1, 3, . . . , 2w−1−1}. Thereafter, each one of the n bits of k′ are scanned from
right to left. Whenever a digit k′i 6= 0, the point ±P is added to the accumulator
Qk′i

, followed by P = 1
2P , otherwise, only the halving of P is performed. In a

final post-processing step, all the accumulators are added as Q =
∑
iQi, for

i ∈ {1, 3, . . . , 2w−1 − 1}. This summation can be efficiently accomplished using
Knuth’s method [31].1 The algorithm outputs the result as Q = kP . Algorithm 3,
with t = n shows a two-dimensional GLV halve-and-add method.

Table 4 shows the estimated costs of the scalar multiplication algorithms in
terms of point doublings (D), halvings (H), additions (A), Doubling and addi-
tions (DA) and endomorphisms (ψ) when performing the scalar multiplication
in the curve Ẽa′,b(Fq2).

Lambda Coordinates Aftermath Besides enjoying a slightly cheaper, but
at the same time noticeable, computational cost when compared with the LD

1 For w = 4, the method is described as follows. Q5 = Q5 + Q7, Q3 = Q3 + Q5,
Q1 = Q1 + Q3, Q7 = Q7 + Q5 + Q3, Q = 2Q7 + Q1, which requires six point
additions and one point doubling.

coordinates, the flexibility of the λ-coordinate system can improve the custom-
ary scalar multiplication algorithms in other more subtle ways. For instance, in
the case of the double-and-add method, the usage of the doubling and addition
operation saves multiplications whenever an addition must be performed in the
main loop. The speedup comes from the difference between the costs of doubling
and addition (10m̃+ m̃a + 6s̃) versus doubling and then adding the points sepa-
rately (12m̃+ m̃a + 6s̃). To see the overall impact of this saving in say, the GLV
double-and-add method, one has to calculate the probabilities of one, two or
no additions in a loop iteration (details can be found in Appendix B). As men-
tioned before, it is also possible to apply the doubling and addition operation to
speedup the calculation of the multiples of P in the precomputation phase. For
that, we modified the original formula to perform the operation R,S = 2Q±P ,
which costs 16m̃+ m̃a + 8s̃.

Perhaps more significantly, in the halve-and-add method there is an impor-
tant multiplication saving in each one of the loop additions. This is because
points in the form of (x, x + y

x) are already in the required format for the λ-
mixed-addition operation and therefore, do not need to be converted to the
regular affine representation.

The concrete gains obtained from the λ-projective coordinates can be better
appreciated in terms of field operations. Specifically, using the 4-NAF represen-
tation of a 254-bit scalar yields the following estimated savings. The double-and-
add strategy requires 872m̃ + 889s̃ (considering m̃b = 2

3m̃) or 823m̃ + 610s̃ if
performed with LD or λ-coordinates, respectively. This implies a saving of 31%
over the squarings and 5% in the number of multiplications. The halve-and-
add needs 772m̃ + 255s̃ with LD and 721m̃ + 101s̃ with λ-coordinates, which
yields 6% fewer multiplications and 60% less squarings. These estimations do
not consider pre/postcomputation costs.

4.4 Parallel scalar multiplication

In this Section, we apply the method given in [2] for computing an scalar mul-
tiplication using two processors. The main idea is to compute k′′ ≡ 2tk mod r,
with 0 < t ≤ n. This produces k ≡ k′′n−12n−1−t + . . .+ k′′t 20 + k′′t−1/2

−1 + . . .+

k′′02−t mod r, which can be rewritten as, kP =
∑n−1

i=t k
′′
i (2i−tP) +

∑t−1
i=0 k

′′
i

(
1

2−(t−i)P
)
.

This parallel formulation allows to compute Q = kP using the double-and-add
and halve-and-add concurrently, where a portion of k is processed in different
cores. The constant t value depends on the performance of the scalar multipli-
cation methods and can be found experimentally. The GLV method combined
with the parallel technique is presented in Algorithm 3.

4.5 Protected scalar multiplication

Regular scalar multiplication algorithms can prevent leakage of information
about the (possibly secret) scalar in the form of variable execution time. There
are two main ways to make a scalar multiplication regular: one is using unified

Algorithm 3 Parallel scalar multiplication with GLV method

Input: P ∈ E(F22m), scalars k1, k2 of bitlength n ≈ |r|/2, w, constant t
Output: Q = kP

Calculate w-NAF(ki) for i ∈ {1, 2}
Compute Pi = iP and P̃i = ψ(Pi)
for i ∈ {1, . . . , 2w−1 − 1}
Q0 ← O
for i = n downto t do
Q0 ← 2Q0

if k1,i > 0 then Q0 ← Q0 + Pk1,i

if k1,i < 0 then Q0 ← Q0 − Pk1,i

if k2,i > 0 then Q0 ← Q0 + P̃k2,i

if k2,i < 0 then Q0 ← Q0 − P̃k2,i

end for
{Barrier}

Initialize Qi ← O
for i ∈ {1, . . . , 2w−1 − 1}
for i = t− 1 downto 0 do
P ← P/2
if k1,i > 0 then Qk1,i ← Qk1,i + P
if k1,i < 0 then Qk1,i ← Qk1,i − P

if k2,i > 0 then Qk2,i ← Qk2,i +ψ(P)
if k2,i < 0 then Qk2,i ← Qk2,i −ψ(P)

end for
Q←

∑
iQi for i ∈ {1, . . . , 2w−1 − 1}

{Barrier}
Recode k1, k2 → k, if necessary.
return Q← Q+Q0

point doubling and addition formulas [8] and the other is recoding the scalar in a
predictable pattern [26]. Both halve-and-add and double-and-add methods can
be modified in the latter manner, with the additional care that table lookups to
read or write critical data need to be completed in constant-time. This can be ac-
complished by performing linear passes with conditional move instructions over
the accumulators or precomputed points, thus thwarting cache-timing attacks.

Implementing timing-attack resistance usually impose significant performance
penalties. For example, the density of regular recodings (1

w−1) is considerably
lower than w-NAF and access to precomputed data becomes more expensive.
Efficiently computing a point halving in constant time is specially challenging,
since the fastest methods for half-trace computation require significant amounts
of memory. This requirement can be relaxed if we assume that points being mul-
tiplied are public information and available to the attacker. Note however that
this is a reasonable assumption in most protocols based on elliptic curves, but
there are exceptions [10]. In this case, performing linear passes to read and store
each accumulator Qi still impact performance at every point addition. Moreover,
the first point addition to each accumulator Qi =∞ cannot be made faster. For
these reasons, doubling-based methods seem to be a more promising option for
protected implementations. Somewhat surprisingly, because of the regular re-
coding method and when using λ-coordinates, we can combine the formulas for
mixed addition and doubling-and-addition to compute 2Q + Pi + Pj with cost
17m̃ + m̃a + 8s̃, saving one multiplication. Reading points Pi, Pj can also be
optimized by performing a single linear pass over the precomputed table. These
optimizations alone are enough to compensate the performance gap between
point doubling and halving.

Table 5. Timings for the field arithmetic and elliptic curve operations.

Field
operation

F2127 F2254 Elliptic curve
operation

GLS E/F2254

cycles op/M1 cycles op/M cycles op/M

Multiplication 42 1.00 94 1.00 Doubling 450 4.79

Mod. Reduction2 6 0.14 11 0.12 Full-addition 1102 11.72

Square root 8 0.19 15 0.16 Mixed-addition 812 8.64

Squaring 9 0.21 13 0.14 Doubling and add. 1063 11.30

Multi-Squaring 55 1.31 n/a3 n/a Halving 233 2.48

Inversion 765 18.21 969 10.30 No-GLV 4-NAF rec. 1540 16.38

Half-Trace 42 1.00 60 0.64 2-GLV-4-NAF rec. 918 9.76

Trace ≈ 0 0 ≈ 0 0 Reverse recoding 396 4.21
1 Ratio to multiplication.
2 This cost is included in the timings of all operations that require modular reduction.
3 Multi-Squaring is used for the inversion algorithm, which is computed only in F2127 .

5 Results and discussion

Our library targeted the Intel Sandy Bridge processor family. This multi-core
micro-architecture supports carry-less multiplications, the SSE set of instruc-
tions [23] that operates on 128-bit registers and the AVX extension [13], which
provides SIMD instructions in a three-operand format. However, our code can
be easily adapted to any architecture which support the mentioned features. The
benchmarking was run on an Intel Xeon E31270 3.4GHz and an Intel Core i5
3570 3.4GHz with the TurboBoost and the HyperThreading technologies dis-
abled. The code was implemented in the C programming language, compiled
with GCC 4.7.0 and executed on 64-bit Linux. Experiments with the ICC 13.0
were also carried out and generated similar results. For that reason, we ab-
stained from presenting timings for that compiler. In the rest of this section,
performance results for our software implementation of field arithmetic, elliptic
point arithmetic and elliptic curve scalar multiplication are presented.

5.1 Field arithmetic and elliptic curve operations

Table 5 shows that the quadratic field arithmetic can handle the base field el-
ements with a considerable efficiency. Field inversion, squaring and square-root
as well as the half-trace computational costs are just 1.27, 1.44, 1.87 and 1.43
times higher than their corresponding base field operations, respectively. Field
multiplication in the quadratic field can be accomplished at a cost of about 2.23
times base field multiplications, which is significantly better than the theoretical
Karatsuba ratio of three.

The lazy reduction technique was employed to optimize the λ-coordinate
formulas. Nevertheless, experimental results showed us that this method should
be used with caution. Extra savings were obtained by considering the separate

Table 6. Scalar multiplication timings with or without timing-attack resistance (TAR).

Scalar
multiplication

Curve Security Method TAR Cycles

Taverne et al. [41]2 NIST-K233 112 No-GLV (τ -and-add) no 67,800

Bos et al. [9]1 BK/FKT 128 4-GLV (double-and-add) no 156,000

Aranha et al. [4]2 NIST-K283 128 2-GLV (τ -and-add) no 99,200

Longa and Sica [34]2 GLV-GLS 128 4-GLV (double-and-add) no 91,000

Faz-H. et al. [12]2 GLV-GLS 128 4-GLV, (double-and-add) no 87,000

Taverne et al. [41]2 NIST-K233 112 No-GLV, parallel (2 cores) no 46,500

Longa and Sica [34]2 GLV-GLS 128 4-GLV, parallel (4 cores) no 61,000

Taverne et al. [41]2 Curve2251 128 Montgomery ladder yes 225,000

Bernstein [6, 7]2 Curve25519 128 Montgomery ladder yes 194,000

Hamburg [18]3 Montgomery 128 Montgomery ladder yes 153,000

Longa and Sica [34]2 GLV-GLS 128 4-GLV (double-and-add) yes 137,000

Bos et al. [9]1 Kummer 128 Montgomery ladder yes 117,000

Faz-H. et al. [12]2 GLV-GLS 128 4-GLV, (double-and-add) yes 96,000

This work GLS 128

2-GLV (double-and-add) (LD) no 117,500

2-GLV (double-and-add) (λ) no 93,500

2-GLV (halve-and-add) (LD) no 81,800

2-GLV (halve-and-add) (λ) no 72,300

2-GLV, parallel (2 cores) (λ) no 47,900

2-GLV (double-and-add) (λ) yes 114,800
1 Intel Core i7-3520M 2.89GHz (Ivy Bridge).
2 Intel Core i7-2600 3.4GHz (Sandy Bridge).
3 Intel Core i7-2720QM 2.2GHz (Sandy Bridge).

case of performing mixed-addition where the two points have their Z coordinate
equal to one. In this case, mixed addition can be performed with just five mul-
tiplications and two squarings. This observation helped us to save more than
1000 cycles in the halve-and-add algorithm computation. The reverse recoding
calculation, that is, given k1, k2 return k ≡ k1 + k2δ mod r can be omitted if
not required. However, in our scalar multiplication timings, this operation was
included in all the cases. The speedup of 40% of the 2-GLV-4-NAF against the
No-GLV-4-NAF recoding is due to the elimination of half of the additions with
carry performed in the scalars.

5.2 Scalar multiplication

From both algorithmic analysis and experimental results considerations, we de-
cided to use w = 4 for the w-NAF scalar recoding and w = 5 for the regular
recoding of [26]. In the case of our parallel implementation (see Algorithm 3), the
parameter t = 72 was selected, which is consistent with the 1.29 ratio between
the double-and-add and halve-and-add computational costs. In addition, in our
λ-coordinate system implementations, it was assumed that the points are given

and returned in the λ-affine form. If the input and output points must be rep-
resented in affine coordinates, it is necessary to add about 1000 cycles (2m̃+ ĩ)
to the timings reported in this work. Also, we observed a further 2% speedup in
average when executing our code in the newer Ivy Bridge platform. Our scalar
multiplication timings, along with the state-of-the-art implementations, are pre-
sented in Table 6.

Comparison to related work Our single-core 4-NAF 2-dimensional GLV
implementation achieves 72,300 clock cycles with the halve-and-add method.
This result is 17% and 27% faster than the best implementations of point mul-
tiplication at the 128-bit security level over prime [34] and binary curves [4],
respectively. Furthermore, our two-core parallel implementation using the GLV
technique combined with the halve-and-add and double-and-add methods takes
47,900 clock cycles, thus outperforming by 21% the timings reported in [34] for
a four-core parallel implementation. Also, the single and multi-core implemen-
tations at the 112-bit security level using Koblitz binary curves reported in [41]
outperforms our code by just 6% and 3%, respectively. Finally, our single-core
protected multiplication is 16% faster than [34], 4% faster than [9] and 16%
slower than the current speed record on prime curves [12], but sets a new speed
record for binary curves with an improvement of 49% compared to the previous
one [41].

A field multiplication comparative Trying to have a fair comparison that
attenuates the diversity of curves, methods and technologies, Table 7 compares
the estimated number of field multiplications required by implementations that
represent the state-of-the-art of unprotected implementations of scalar multipli-
cation computations.

The scalar multiplications on Koblitz curves reported in [41] and [4] require
13% and 20% less number of field multiplications than our work (2-GLV halve-
and-add with λ-coordinates), respectively. However, since our field multiplica-
tion cost is 6% and 34% faster, our computational timings outperforms [4] and
are competitive with [41], as seen in Table 6. This leads us to conclude that
the τ -and-add method is more efficient than the halve-and-add, but the former
technique suffers from the relatively limited extension fields available for Koblitz
curves, which at least for the 128-bit security level case, forces to have larger
field elements and thus more expensive field multiplications.

The GLS elliptic curve over a prime field reported in [34] requires 33% more
field multiplications than our code. Nevertheless, it benefits from a highly effi-
cient native multiplication with carry instruction (MUL), which allows to gen-
erate a fast scalar multiplication. The same observation can be extended to
protected implementations when comparing between prime and binary curves.

Table 7. Characterization of the implementations by the multiplication operation.

Implementations Field Method
Estimated Mult. Field Mult.

cost (cc)pre/post sc. mult.

Taverne et al. [41] F2233 No-GLV 92 638 100

Aranha et al. [4] F2283 2-GLV 100 572 142

Longa and Sica [34] Fp2 4-GLV 113 1004 80

This Work F2254 2-GLV 86 752 94

6 Conclusion

In this work, the λ-coordinates, a new projective coordinate system that enjoys
fast elliptic curve operations, was presented. The use of the λ-coordinates in com-
bination with an optimized implementation of a quadratic field arithmetic and
the endomorphisms available in the GLS curves, allowed us to achieve record tim-
ings in the scalar multiplication computation for different point configurations,
including the fastest reported computation of kP at the 128-bit level of security.
In addition, the expected improvement of the carry-less multiplication and the
announcement of the AVX2 instruction set [24] in the future Intel processors
will result in a significant performance improvement of the scalar multiplication
implementations presented in this work.

Acknowledgements We wish to thank Sanjit Chatterjee, Patrick Longa and
Alfred Menezes for their useful discussions.

References

1. Agnew, G.B., Mullin, R.C., Vanstone, S.A.: An implementation of elliptic curve
cryptosystems over F2155 . IEEE J. Sel. Areas Commun. 11(5), 804–813 (1993)

2. Ahmadi, O., Hankerson, D., Rodŕıguez-Henŕıquez, F.: Parallel formulations of
scalar multiplication on Koblitz curves. J. UCS 14(3), 481–504 (2008)

3. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula
for elliptic curves over GF (2n). IEEE Trans. Comput. 51(8), 972–975 (2002)

4. Aranha, D.F., Faz-Hernández, A., López, J., Rodŕıguez-Henŕıquez, F.: Faster Im-
plementation of Scalar Multiplication on Koblitz Curves. In: Hevia, A., Neven, G.
(eds.) LATINCRYPT 2012, LNCS, vol. 7533, pp. 177–193. Springer (2012)

5. Aranha, D.F., López, J., Hankerson, D.: Efficient Software Implementation of Bi-
nary Field Arithmetic Using Vector Instruction Sets. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) LATINCRYPT 2010, LNCS, vol. 6212, pp. 144–161. Springer
(2010)

6. Bernstein, D.J.: Curve25519: New Diffie-Hellman Speed Records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006, LNCS, vol. 3958, pp. 207–228.
Springer (2006)

7. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems. http://bench.cr.yp.to. Accessed June 6, 2013.

8. Bernstein, D.J., Lange, T., Farashahi, R.: Binary Edwards Curves. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008, LNCS, vol. 5154, pp. 244–265. Springer (2008)

9. Bos, J, W., Costello, C., Hisil, H., Lauter, K.: Fast Cryptography in Genus 2.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp.
194–210. Springer (2013)

10. Chatterjee, S., Karabina, K., Menezes, A.: A new protocol for the nearby friend
problem. In: Parker, M.G. (ed.) IMACC 2009, LNCS, vol. 5921, pp. 236–251.
Springer (2009)

11. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Adv. Appl. Math. 7(4),
385 – 434 (1986)

12. Faz-Hernández, A., Longa, P., Sanchez, A.H.: Efficient and Secure Methods for
GLV-Based Scalar Multiplication and their Implementation on GLV-GLS Curves,
Cryptology ePrint Archive, Report 2013/158, http://eprint.iacr.org/ (2013)

13. Firasta, M., Buxton, M., Jinbo, P., Nasri, K., Kuo, S.: Intel AVX: New Frontiers in
Performance Improvements and Energy Efficiency. White paper, Intel Corporation,
http://software.intel.com (2008)

14. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving
revisited. IEEE Trans. Comput. 53(8), 1047–1059 (2004)

15. Galbraith, S., Lin, X., Scott, M.: Endomorphisms for Faster Elliptic Curve Cryp-
tography on a Large Class of Curves. J. Cryptol. 24, 446–469 (2011)

16. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on El-
liptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001,
LNCS, vol. 2139, pp. 190–200. Springer (2001)

17. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptol. 15, 19–46 (2002)

18. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309, http://eprint.iacr.org/ (2012)

19. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
Point Multiplication Method for Elliptic Curves over Binary Fields. IEEE Trans.
Comput. 58(10), 1411–1420 (2009)

20. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2003)

21. Hankerson, D., Hernandez, J., Menezes, A.: Software Implementation of Elliptic
Curve Cryptography over Binary Fields. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000,
LNCS, vol. 1965, pp. 1–24. Springer (2000)

22. Hess, F.: Generalising the GHS Attack on the Elliptic Curve Discrete Logarithm
Problem. LMS J. Comput. Math. 7, 167–192 (2004)

23. Intel Corporation: Intel SSE4 Programming Reference, Reference Number:
D91561-001. http://software.intel.com (2007)

24. Intel Corporation: Intel Architecture Instruction Set Extensions Programming Ref-
erence, Reference Number: 319433-014. http://software.intel.com (2012)

25. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

26. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algorithms.
In: Preneel, B. (ed.) AFRICACRYPT 2009, LNCS, vol. 5580, pp. 334–349. Springer
(2009)

27. Kim, D., Lim, S.: Integer Decomposition for Fast Scalar Multiplication on Elliptic
Curves. In: Nyberg, K., Heys, H. (eds.) SAC 2003, LNCS, vol. 2595, pp. 13–20.
Springer (2003)

28. Kim, K.H., I., K.S.: A New Method for Speeding Up Arithmetic on Elliptic Curves
over Binary Fields. Cryptology ePrint Archive, Report 2007/181, http://eprint.
iacr.org/ (2007)

29. King, B.: An Improved Implementation of Elliptic Curves over GF (2n) when Using
Projective Point Arithmetic. In: Vaudenay, S., Youssef, A. (eds.) SAC 2001, LNCS,
vol. 2259, pp. 134–150. Springer (2001)

30. Knudsen, E.: Elliptic Scalar Multiplication Using Point Halving. In: Lam, K.Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT99, LNCS, vol. 1716, pp. 135–149.
Springer (1999)

31. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms,
vol. 2. Addison-Wesley, Boston (1997)

32. Lange, T.: A note on López-Dahab coordinates. Cryptology ePrint Archive, Report
2004/323, http://eprint.iacr.org/ (2006)

33. Lim, C.H., Hwang, H.S.: Speeding up elliptic scalar multiplication with precom-
putation. In: Song, J. (ed.) ICISC 1999, LNCS, vol. 1787, pp. 102–119. Springer
(2000)

34. Longa, P., Sica, F.: Four-Dimensional Gallant-Lambert-Vanstone Scalar Multipli-
cation. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012, LNCS, vol. 7658, pp.
718–739. Springer (2012)

35. Longa, P., Sica, F.: Four-Dimensional Gallant-Lambert-Vanstone Scalar Multipli-
cation. J. Cryptol., To appear (2013)

36. López, J., Dahab, R.: Improved Algorithms for Elliptic Curve Arithmetic in
GF(2n). In: Tavares, S.E., Meijer, H. (eds.) SAC 1998, LNCS, vol. 1556, pp. 201–
212. Springer (1998)

37. López, J., Dahab, R.: An overview of elliptic curve cryptography. Tech. Rep. IC-
00-10, Institute of computing, University of Campinas, http://www.ic.unicamp.
br/~reltech/2000/00-10.pdf (2000)

38. López, J., Dahab, R.: New Point Compression Algorithms for Binary Curves. In:
IEEE Information Theory Workshop (ITW 2006), pp. 126–130, IEEE Press, New
York (2006)

39. Park, Y.H., Jeong, S., Kim, C., Lim, J.: An Alternate Decomposition of an Inte-
ger for Faster Point Multiplication on Certain Elliptic Curves. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002, LNCS, vol. 2274, pp. 323–334. Springer (2002)

40. Schroeppel, R.: Automatically solving equations in finite fields (2002), U.S. patent
2002/0055962 A1

41. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hanker-
son, D., López, J.: Speeding scalar multiplication over binary elliptic curves using
the new carry-less multiplication instruction. Journal of Cryptographic Engineer-
ing 1, 187–199 (2011)

A Proofs

Proof of Theorem 1. Let P = (xP , λP) be an elliptic point in Ea,b(F2m). Then
a formula for 2P = (x2P , λ2P) is given by

x2P = λ2P + λP + a

λ2P =
x2P
x2P

+ λ2P + a+ 1.

From [20], pag. 81, we have the formulas: x2P = λ2P + λP + a and y2P =
x2P + λPx2P + x2P . Then, a formula for λ2P can be obtained as follows:

λ2P =
y2P + x22P

x2P
=

(x2P + λP · x2P + x2P) + x22P
x2P

=
x2P
x2P

+ λP + 1 + x2P =
x2P
x2P

+ λP + 1 + (λ2P + λP + a)

=
x2P
x2P

+ λ2P + a+ 1.

In affine coordinates, the doubling formula requires one division and two squar-
ings. Given the point P = (XP , LP , ZP) in the λ-projective representation, an
efficient projective doubling algorithm can be derived by applying the doubling
formula to the affine point (XP

ZP
, LP

ZP
). For x2P we have:

x2P =
L2
P

Z2
P

+
LP

ZP
+ a =

L2
P + LP · ZP + a · Z2

P

Z2
P

=
T

Z2
P

=
T 2

T · Z2
P

.

For λ2P we have:

λ2P =

X2
P

Z2
P

T
Z2

P

+
L2
P

Z2
P

+ a+ 1 =
X2

P · Z2
P + T · (L2

P + (a+ 1) · Z2
P)

T · Z2
P

.

From the λ-projective equation, we have the relation T ·X2
P = X4

P + b ·Z4
P . Then

the numerator w of λ2P can also be written as follows,

w = X2
P · Z2

P + T · (L2
P + (a+ 1) · Z2

P)

= X2
P · Z2

P + T · L2
P + T 2 + T 2 + (a+ 1) · Z2P

= X2
P · Z2

P + T · L2
P + L4

P + L2
P · Z2

P + a2 · Z4
P + T 2 + (a+ 1) · Z2P

= X2
P · Z2

P + T · (L2
P +X2

P) +X4
P + b · Z4

P + L4
P + L2

P · Z2
P + a2 · Z4

P + T 2 + (a+ 1) · Z2P

= (L2
P +X2

P) · ((L2
P +X2

P) + T + Z2
P) + T 2 + (a2 + b) · Z4

P + (a+ 1) · Z2P .

This completes the proof.

Proof of Theorem 2. Let P = (xP , λP) and Q = (xQ, λQ) be elliptic points
in Ea,b(F2m). Then a formula for P +Q = (xP+Q, λP+Q) is given by

xP+Q =
xP · xQ

(xP + xQ)2
(λP + λQ)

λP+Q =
xQ · (xP+Q + xP)2

xP+Q · xP
+ λP + 1.

Since P and Q are elliptic points on a non-supersingular curve, we have the
following relation: y2P + xP · yP + x3P + a · x2P = b = y2Q + xQ · yQ + x3Q + a · x2Q.
The known formula for computing the x-coordinate of P +Q is given by xP+Q =

s2 + s+ xP + xQ + a, where s =
yP+yQ

xP+xQ
. Then one can derive the new formula

as follows,

xP+Q =
(yP + yQ)2 + (yP + yQ) · (xP + yQ) + (xP + xQ)3 + a · (xP + xQ)2

(xP + xQ)2

=
b+ b+ xQ · (x2P + yP) + xP · (x2Q + yQ)

(xP + xQ)2
=
xP · xQ · (λP + λQ)

(xP + xQ)2
.

For computing λP+Q, we use the observation that the x-coordinate of (P+Q)−P
is xQ. We also know that for −P we have λ−P = λP + 1 and x−P = xP . By
applying the formula for the x-coordinate of (P +Q) + (−P) we have

xQ = x(P+Q)+(−P) =
xP+Q · x−P

(xP+Q + x−P)2
· (λP+Q + λ−P)

=
xP+Q · xP

(xP+Q + xP)2
· (λP+Q + λP + 1).

Then λP+Q =
xQ·(xP+Q+xP)2

xP+Q·xP
+ λP + 1.

To obtain a λ-projective addition formula, we apply the formulas above to the
affine points (XP

ZP
, LP

ZP
) and (

XQ

ZQ
,
LQ

ZQ
). Then, the xP+Q coordinate of P +Q can

be computed as:

xP+Q =

XP

ZP
· XQ

ZQ
· (LP

ZP
+

LQ

ZQ
)

(XP

ZP
+

XQ

ZQ
)2

=
XP ·XQ · (LP · ZQ + LQ · ZP)

(XP · ZQ +XQ · ZP)2
= XP ·XQ ·

A

B
.

For the λP+Q coordinate of P +Q we have:

λP+Q =

XQ

ZQ
· (XP ·XQ·A

B + XP

ZP
)2

XP ·XQ·A
B · XP

ZP

+
LP + ZP

ZP

=
(A ·XQ · ZP +B)2 + (A ·B · ZQ)(LP + ZP)

A ·B · ZP · ZQ
.

In order that both xP+Q and λP+Q have the same denominator, the formula for
xP+Q can be written as

XP+Q =
XP ·XQ ·A

B
=
A · (XP · ZQ) · (XQ · ZP) ·A

A ·B · ZP · ZQ
.

Therefore, xP+Q =
XP+Q

ZP+Q
and λP+Q =

LP+Q

ZP+Q
. This completes the proof.

Proof of Theorem 3. The λ-projective formula is obtained by adding the λ-
affine points 2Q = (

X2Q

Z2Q
,
L2Q

Z2Q
) and P = (xP , λP) with the formula of Theorem

2. Then, the x coordinate of 2Q+ P is given by

x2Q+P =
x2Q · xP

(x2Q + xP)2
(λ2Q + λP) =

X2Q · xP (L2Q + λP · Z2Q)

(X2Q + xP · Z2Q)2

=
xP · (X2

Q · Z2
Q + T · (L2

Q + (a+ 1 + λP) · Z2
Q))

(T + xP · Z2
Q)2

= xP ·
A

B
.

The λ2Q+P coordinate of 2Q+ P is computed as

λ2Q+P =

X2Q

Z2Q
· (xP · AB + xP)2

xP · AB · xP
+ λP + 1

=
T · (A+B)2 + (λP + 1) · (A ·B · Z2

Q)

A ·B · Z2
Q

.

The formula for x2Q+P can be written with denominator Z2Q+P as follows,

x2Q+P =
xP ·A
B

=
xP · Z2

Q ·A2

A ·B · Z2
Q

.

Therefore, x2Q+P =
X2Q+P

Z2Q+P
and λ2Q+P =

L2Q+P

Z2Q+P
. This completes the proof.

B Operation count for 2-GLV double-and-add using
λ-coordinates

Basically, three cases can occur in the 2-GLV double-and-add main loop. The
first one, when the digits of both scalars k1, k2 equal zero, we just perform a
point doubling (D) in the accumulator. The second one, when both scalar digits
are different from zero, we have to double the accumulator and sum two points.
In this case, we perform one doubling and addition (DA) followed by a mixed-
addition (A). Finally, it is possible that just one scalar has its digit different
from zero. Here, we double the accumulator and sum a point, which can be done
with only one doubling and addition operation.

Then, as the nonzero bit distributions in the scalars represented by the w-
NAF are independent, we have for the first case,

Pr[k1,i = 0 ∧ k2,i = 0] =
w2

(w + 1)2
, for i ∈ [0, n− 1].

For the second case,

Pr[k1,i 6= 0 ∧ k2,i 6= 0] =
1

(w + 1)2
, for i ∈ [0, n− 1].

And for the third case,

Pr[(k1,i 6= 0 ∧ k2,i = 0) ∨ (k1,i = 0 ∧ k2,i 6= 0)] =
2w

(w + 1)2
.

Consequently, the operation count can be written as

n

2

(
w2

(w + 1)2
D +

1

(w + 1)2
(DA+A) +

2w

(w + 1)2
DA

)

=
(2w + 1)n

2(w + 1)2
DA+

w2n

2(w + 1)2
D +

n

2(w + 1)2
A.

