
A Differential Fault Attack on MICKEY 2.0

Subhadeep Banik and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute Kolkata, 203, B.T. Road,
Kolkata-108.

s.banik r@isical.ac.in, subho@isical.ac.in

Abstract. In this paper we present a differential fault attack on the
stream cipher MICKEY 2.0 which is in eStream’s hardware portfolio.
While fault attacks have already been reported against the other two
eStream hardware candidates Trivium and Grain, no such analysis is
known for MICKEY. Using the standard assumptions for fault attacks,
we show that if the adversary can induce random single bit faults in the
internal state of the cipher, then by injecting around 216.7 faults and
performing 232.5 computations on an average, it is possible to recover
the entire internal state of MICKEY at the beginning of the key-stream
generation phase. We further consider the scenario where the fault may
affect at most three neighbouring bits and in that case we require around
218.4 faults on an average.

Keywords: eStream, Fault attacks, MICKEY 2.0, Stream Cipher.

1 Introduction

The stream cipher MICKEY 2.0 [4] was designed by Steve Babbage and Matthew
Dodd as a submission to the eStream project. The cipher has been selected as
a part of eStream’s final hardware portfolio. MICKEY is a synchronous, bit-
oriented stream cipher designed for low hardware complexity and high speed.
After a TMD tradeoff attack [16] against the initial version of MICKEY (ver-
sion 1), the designers responded by tweaking the design by increasing the state
size from 160 to 200 bits and altering the values of some control bit tap loca-
tions. These changes were incorporated in MICKEY 2.0 and these are the only
differences between MICKEY version 1 and MICKEY 2.0. While MICKEY 2.0
uses an 80-bit key and a variable length IV, a modified version of the cipher,
MICKEY-128 2.0 that uses a 128-bit key [5] was also proposed by the designers.

The name MICKEY is derived from “Mutual Irregular Clocking Key-stream
generator” which describes the behavior of the cipher. The state consists of two
100-bit shift registers named R and S, each of which is irregularly clocked and
controlled by the other. The cipher specification underlines that each key can be
used with up to 240 different IVs of the same length, and that 240 key-stream bits
can be generated from each key-IV pair. Very little cryptanalysis of MICKEY
2.0 is available in literature. In fact it has been noted in [3, Section 3.2] that
other than the observation related to time or power analysis attacks [12] on



straightforward implementations of the MICKEY family, there have been no
known cryptanalytic advances on these ciphers. To the best our knowledge, the
work in this paper presents the first cryptanalytic result of MICKEY 2.0 in terms
of differential fault attack.

Since the work of [6,7], fault attacks have been employed to test the strengths
and weaknesses of cryptographic primitives. Such attacks on stream ciphers was
first described by Hoch and Shamir [13]. A typical fault attack [13] involves
the random injection of faults (using laser shots/clock glitches [18, 19]) in a
device (typically initialized by a secret key) which changes one or more bits of
its internal state. The adversary then attempts to deduce information about the
internal state/secret key using the output stream from this faulty device. In order
to perform the attack, certain privileges are required like the ability to re-key
the device, control the timing of the fault etc. The attack becomes impractical
and unrealistic if the adversary is granted too many privileges. In this work we
assume the following privileges of the adversary which are generally acceptable
in cryptanalytic literature:

1. She can re-key the cipher with the original key-IV and restart cipher opera-
tions multiple times.

2. She has precise control over the timing of fault injection.
3. Initially we assume that she can inject a fault that alters the bit value of one

random register location in either the R or the S register. Later, in Section
4, we explore the situation when she can inject a fault that may affect more
than one value in contiguous register locations. We present explicit results
considering the events when upto three contiguous register locations may be
affected in R or S.

4. She is however unable to fix the exact location of the R or S register where
she wants to inject the fault. Obtaining the fault location by comparison
of the fault-free and the faulty key-streams is one of the challenges while
mounting the fault attack.

There are published works where the assumptions made are quite strong and re-
quires the adversary to have more control over fault injections, e.g., the works [9,
11,17] consider that the attacker can reproduce multiple faults in the same (but
unknown) locations. A detailed physical implementation using such fault model
is presented in [11, Section IIIB]. In this work we use a more relaxed fault model
in which the adversary is not required to fault an unknown register location
multiple number of times.

Differential fault attack is a special class of fault attack in which the attacker
uses the difference between fault-free and faultless key-streams to deduce the
internal state or the secret key of the cipher. In case of MICKEY 2.0, the differ-
ential attack is possible due to the rather simplistic nature of the output function
(r0 + s0) used to produce key-stream bits. Additionally, there are some interest-
ing properties of the state update function in MICKEY that help facilitate the
attack that we shall describe.

The organization of the paper is as follows. In Section 2, we present a de-
scription of the cipher which is suitable for our analysis, where we also present

2



some notations that will be henceforth used in the paper. The complete attack
assuming that the adversary is able to induce single bit faults in random reg-
ister locations is described in Section 3. In Section 4 we explore the case when
the adversary is able to induce a fault that affects the bit values of (random)
consecutive (upto 3) register locations. Section 5 concludes the paper.

2 Our description of MICKEY 2.0 PRGA and some
notations

A detailed description of MICKEY 2.0 is available in [4]. It uses an 80-bit key
and a variable length IV, the length of which may be between 0 and 80 bits.
The physical structure of the cipher consists of two 100 bit registers R and S.
Both registers are initially initialized to the all-zero state, and the three stages
of register update 1. IV loading, 2. Key Loading, and 3. Pre Clock are exe-
cuted sequentially before the production of the first key-stream bit. Thereafter
in the PRGA (Pseudo Random bitstream Generation Algorithm) key-stream
bits are produced. We will try to give an alternate description of this stage of
operation of MICKEY 2.0. Consider a0, a1, a2, a3 to be variables over GF(2).
Let a0 be defined as a0 = a2, if a1 = 0 and a0 = a3, if a1 = 1. Then it is
straightforward to see that a0 can be expressed as a multivariate polynomial
over GF(2), i.e., a0 = (1 + a1) · a2 + a1 · a3. The state registers R and S, dur-
ing the PRGA are updated by a call to the CLOCK KG routine, which in
turn calls the CLOCK R and the CLOCK S routine. In both these routines
state update is done via a number of If-Else constructs. As a result of this the
state update may be equivalently expressed as a series of multi-variate polyno-
mials over GF(2). Let r0, r1, . . . , r99, s0, s1, . . . , s99 denote the internal state at a
certain round during the MICKEY PRGA and let r′0, r

′
1, . . . , r

′
99, s

′
0, s
′
1, . . . , s

′
99

denote the internal state at the next round. Then it is possible to write r′i =
ρi(r0, r1, . . . , r99, s0, s1, . . . , s99), s′i = βi(r0, r1, . . . , r99, s0, s1, . . . , s99), ∀i ∈
[0, 99], where ρi, βi are polynomial functions over GF(2). The exact forms of
ρi, βi are described in Appendix A. Before describing the attack we will describe
certain notations that will be used henceforth.

1. Rt = [rt0, r
t
1, . . . , r

t
99], St = [st0, s

t
1, . . . , s

t
99] is used to denote the internal

states of the R,S registers at the beginning of the round t of the PRGA. That
is, rti , s

t
i respectively denotes the ith bit of the registers R, S at the beginning

of round t of the PRGA. Note that rt+1
i = ρi(Rt, St) and st+1

i = βi(Rt, St).
2. The value of the variables CONTROL BIT R, CONTROL BIT S at the

PRGA round t are denoted by the variables CRt, CSt respectively. These
bits are used by the R,S registers to exercise mutual self control over each
other. Note that CRt = rt67 + st34 and CSt = rt33 + st67.

3. Rt,∆rφ(t0), St,∆rφ(t0) (resp. Rt,∆sφ(t0), St,∆sφ(t0)) are used to denote the
internal states of the cipher at the beginning of round t of the PRGA, when
a fault has been injected in location φ of R (resp. S) at the beginning of
round t0 of the PRGA.

3



4. zi,∆rφ(t0) or zi,∆sφ(t0) denotes the key-stream bit produced in the ith PRGA
round, after a fault has been injected in location φ of R or S at the beginning
of round t0 of the PRGA. By zi, we refer to the fault-free key-stream bit
produced in the ith PRGA round.

3 Complete description of the Attack

We will start with a few algorithmic tools that will be used later to mount the
attack.

R0 r0 r1 · · · · · · r97 r98 r99 CR0

R1 r0 r1 · · · · · · r97 r98 r99 CR1

...

R97 r0 r1 · · · · · · r97 r98 r99 CR97

R98 r0 r1 · · · · · · r97 r98 r99 CR98

R99 r0 r1 · · · · · · r97 r98 r99 CR98

Known initially Calculated

Fig. 1: Constructing the state R0. Starting from PRGA round 99, any bit calculated
at PRGA round i is used to determine state bits of round i− 1.

Lemma 1. Consider the first 100 states of the MICKEY 2.0 PRGA. If rt99 and
CRt are known ∀t ∈ [0, 99], then the initial state R0 may be calculated efficiently.

Proof. Let the values of rt99 and CRt be known ∀t ∈ [0, 99]. We will begin by
noticing that the functions ρi for all values of i ∈ [1, 99] are of the form ρi(·) =
ri−1+(s34+r67) ·ri+αi ·r99, where s34+r67 is the value of CONTROL BIT R.
αi = 1, if i ∈ RTAPS (this is a set of tap locations related to the design of
MICKEY 2.0, see [4]) and is 0 otherwise. Now consider the following equation
governing r9999 :

r9999 = ρ99(R98, S98) = r9898 + CR98 · r9899 + α99 · r9899.

In the above equation, r9898 is the only unknown and it appears as a linear term,
and so its value can be calculated immediately. We therefore know the values of

4



2 state bits of R98: r9899, r
98
98. Similarly look at the equations governing r9899, r

98
98:

r9899 = r9798 + CR97 · r9799 + α99 · r9799, r9898 = r9797 + CR97 · r9798 + α98 · r9799.

As before, r9798 is the lone unknown term in the first equation whose value is
determined immediately. After this r9797 becomes the only unknown linear term
in the next equation whose value too is determined easily. Thus we know 3
bits of R97: r9797+i, i = 0, 1, 2. Continuing in such a bottom up manner we can
successively determine 4 bits of R96, 5 bits of R95 and eventually all the 100 bits
of R0. The process is explained pictorially in Figure 1. ut

R0 r0 r1 · · · · · · r97 r98 r99 CR0 S0 s0 s1 · · · · · · s97 s98 s99 CS0

R1 r0 r1 · · · · · · r97 r98 r99 CR1 S1 s0 s1 · · · · · · s97 s98 s99 CS1

...
...

R97 r0 r1 · · · · · · r97 r98 r99 CR97 S97 s0 s1 · · · · · · s97 s98 s99 CS97

R98 r0 r1 · · · · · · r97 r98 r99 CR98 S98 s0 s1 · · · · · · s97 s98 s99 CS98

R99 r0 r1 · · · · · · r97 r98 r99 CR98 S99 s0 s1 · · · · · · s97 s98 s99 CS99

Known initially Calculated

Fig. 2: Constructing the state S0. Starting from PRGA round 99, any bit calculated at
PRGA round i is used to determine state bits of round i− 1.

Lemma 2. Consider the first 100 states of the MICKEY 2.0 PRGA. If R0 is
known and st99, CSt, CRt are known ∀t ∈ [0, 99], then the initial state S0 of the
register S can be determined efficiently.

Proof. Since R0 is known and so is CRt for each t ∈ [0, 99] we can construct all
the bits of R1 by calculating

r1i = r0i−1 + CR0 · r0i + αi · r099, ∀i ∈ [1, 99],

and r10 is given as r00 ·CR0 + r099. Once all the bits of R1 are known, all the bits
of R2 may be determined by calculating

r2i = r1i−1 + CR1 · r1i + αi · r199, ∀i ∈ [1, 99],

and r20 = r10 ·CR1+r199. Similarly all the bits of R3, R4, . . . , R99 can be calculated
successively. As before, we begin by observing that the functions βi for all values

5



of i ∈ [1, 99] are of the form

βi(·) = si−1 + λi · (s67 + r33) · s99 + β̂i(si, si+1, . . . , s99),

where s67 + r33 is the value of CONTROL BIT S and β̂i is a function that
depends on si, si+1, . . . , s99 but not any of s0, s1, . . . , si−1. λi = 1 if FB0i 6=
FB1i (these are bit sequences related to the design of MICKEY 2.0, see [4]) and
is 0 otherwise. Now consider the following equation governing s9999:

s9999 = β99(R98, S98) = s9898 + λ99 · CS98 · s9899 + β̂99(s9899).

In the above equation s9898 is the only unknown and it appears as a linear term,
and so its value can be calculated immediately. We therefore know the values
of the 2 state bits of S98: s9899, s

98
98. Similarly look at the equations governing

s9899, s
98
98 :

s9899 = s9798 + λ99 · CS97 · s9799 + β̂99(s9799),

s9898 = s9797 + λ98 · CS97 · s9799 + β̂98(s9798, s
97
99).

As before, s9798 is the lone unknown term in the first equation whose value is
determined immediately. After this s9797 becomes the only unknown linear term
in the next equation whose value too is determined easily. Thus we know 3
bits of S97: s9797+i, i = 0, 1, 2. Continuing in such a bottom up manner we can
successively determine 4 bits of S96, 5 bits of S95 and eventually all the 100 bits
of S0. The process is explained pictorially in Figure 2. ut

3.1 Faulting specific bits of R,S

Before getting into the details of the attack, we further note that the output
key-stream bits zt, zt+1, . . . can also be expressed as polynomial functions over
Rt, St. We have

zt = rt0 + st0 = θ0(Rt, St),

zt+1 = rt+1
0 + st+1

0 = ρ0(Rt, St) + β0(Rt, St) = θ1(Rt, St),

zt+2 = rt+2
0 + st+2

0 = ρ0(Rt+1, St+1) + β0(Rt+1, St+1) = θ2(Rt, St)

The exact forms of θ0, θ1, θ2 are given in Table 1.
In the rest of this section we will assume that the adversary is able to (a)

re-key the device containing the cipher with the original key-IV, (b) apply faults
to specific bit locations in the R,S registers and (c) exercise control over the
timing of fault injection. Note that (b) is a stronger assumption, but we do not
need it in our attack. We are using this assumption here to build a sub-routine.
In the next subsection we shall demonstrate how the adversary can partially
identify the location of any fault injected at a random position by comparing
the faulty and fault-free key-streams.

We begin by observing the following differential properties of the functions
θ0, θ1, θ2.

6



Table 1: The functions θi

i θi(·)
0 r0 + s0
1 r0 · r67 + r0 · s34 + r99 + s99
2 r0 · r66 · r67 + r0 · r66 · s34 + r0 · r67 · r99 + r0 · r67 · s33 + r0 · r67 · s34 · s35+

r0 · r67 · s34 + r0 · r67 + r0 · r99 · s34 + r0 · s33 · s34 + r0 · s34 · s35 + r33 · s99+
r66 · r99 + r67 · r99 · s34 + r98 + r99 · s33 + r99 · s34 · s35 + r99 · s34 + r99+
s67 · s99 + s98

(1) θ1(. . . , r67, . . .) + θ1(. . . , 1 + r67, . . .) = r0
(2) θ1(r0, . . .) + θ1(1 + r0, . . .) = s34 + r67
(3) θ2(. . . , s99) + θ2(. . . , 1 + s99) = s67 + r33

These differential properties have the following immediate implications.

zt+1 + zt+1,∆r67(t) = θ1(Rt, St) + θ1(Rt,∆r67(t), St,∆r67(t)) = rt0 (1)

zt+1 + zt+1,∆r0(t) = θ1(Rt, St) + θ1(Rt,∆r0(t), St,∆r0(t)) = st34 + rt67 = CRt (2)

zt+2+zt+2,∆s99(t) = θ2(Rt, St)+θ2(Rt,∆s99(t), St,∆s99(t)) = st67+rt33 = CSt (3)

The above equations hold for all the values of t = 0, 1, 2, . . .. This implies that if
the adversary is able to re-key the device with the original key-IV pair multiple
times and apply faults at PRGA rounds t = 0, 1, 2, 3, . . . , 100 at precisely1 the
R register locations 0, 67 and the S register location 99, then by observing the
difference between the fault-less and faulty key-stream bits, she would be able to
recover the values of rt0, CRt, CSt for all values of t = 0, 1, 2, . . . , 100. The fault
at each register location must be preceded by re-keying.

Determining the other bits Hereafter, the values st0 for all t = 0, 1, 2,
3, 4, . . . , 100 may be found by solving: st0 = zt + rt0. Since β0(·) = s99, this
implies that st+1

0 = st99, ∀t = 0, 1, 2, . . . Therefore calculating the values of
st0, ∀t ∈ [1, 100] is the same as calculating st99, ∀t ∈ [0, 99]. The values of
rt99, ∀t ∈ [0, 99] may be obtained as follows. Consider the equation for zt+1:

zt+1 = θ1(Rt, St) = rt0 ·rt67+rt0 ·st34+rt99+st99 = CRt ·rt0+rt99+st99, ∀t ∈ [0, 99].

Note that rt99 is the only unknown linear term in these equations and hence its
value too can be determined immediately. At this point, we have the following
state bits with us:

[rt0, r
t
99, CRt, s

t
0, s

t
99, CSt], ∀t ∈ [0, 99].

1 We would like to point out that our actual attack does not need precise fault injection
at all locations of R, S. This will be explained in the next sub-section.

7



Now by using the techniques outlined in Lemma 1 we can determine all the bits
of the state R0. Thereafter using Lemma 2, one can determine all the bits of S0.
Thus we have recovered the entire internal state at the beginning of the PRGA.

3.2 How to identify the random locations where faults are injected

In this subsection we will show how the adversary can identify the locations
of randomly applied faults to the registers R and S. Although it will not be
possible to conclusively determine the location of faults applied to each and every
location of R and the S registers, we will show that the adversary can, with some
probability, identify faulty streams corresponding to locations 0, 67 of R and 99
of S. The adversary will then use the techniques described in Subsection 3.1 to
complete the attack.

To help with the process of fault location identification, we define the first
and second Signature vectors for the location φ of R as

Ψ1
rφ

[i] =

{
1, if zt+i = zt+i,∆rφ(t) for all choices of Rt, St,
0, otherwise.

Ψ2
rφ

[i] =

{
1, if zt+i 6= zt+i,∆rφ(t) for all choices of Rt, St,
0, otherwise.

for i = 0, 1, 2, . . . , l − 1. Here l ≈ 40 is a suitably chosen constant.

Remark 1. The value of l should be large enough so that one can differentiate
100 randomly generated bit sequences over GF(2) by comparing the first l bits
of each sequence. By Birthday paradox, this requires the value of l to be at least
2 · log2 100 ≈ 14. We take l = 40 as computer simulations show that this value
of l is sufficient to make a successful distinction with high probability.

Similarly one can define Signature vectors for any location φ the register S.

Ψ1
sφ

[i] =

{
1, if zt+i = zt+i,∆sφ(t) for all choices of Rt, St,
0, otherwise.

Ψ2
sφ

[i] =

{
1, if zt+i 6= zt+i,∆sφ(t) for all choices of Rt, St,
0, otherwise.

The task for the fault location identification routine is to determine the
fault location φ of R (or S) by analyzing the difference between zt, zt+1, . . .
and zt,∆rφ(t), zt+1,∆rφ(t), . . . (or zt,∆sφ(t), zt+1,∆sφ(t), . . .) by using the Signature
vectors Ψ1

rφ
, Ψ2
rφ

(or Ψ1
sφ
, Ψ2
sφ

).

Note that the ith bit of Ψ1
rφ

is 1 if and only if the (t + i)th key-stream bits

produced by Rt, St and Rt,∆rφ(t), St,∆rφ(t) are the same for all choices of the

internal state Rt, St and that ith bit of Ψ2
rφ

is 1 if the above key-stream bits are
different for all choices of the internal state.

The concept of Signature vectors to deduce the location of a randomly applied
fault was introduced in [9]. However the analysis of [9] can not be reproduced for
MICKEY 2.0, since a lot of different register locations have the same Signature
vector. However one can observe the following which are important to mount
the attack.

8



Theorem 1. The following statements hold for the Signature vectors Ψ1
rφ
, Ψ2
rφ
,

Ψ1
sφ
, Ψ2
sφ

of MICKEY 2.0.

A. Although Ψ1
rφ

[0] = 1,∀φ ∈ [1, 99] but we have Ψ2
r0 [0] = 1.

B. Ψ1
rφ

[0] = Ψ1
rφ

[1] = 1,∀φ ∈ [1, 99] \ {67, 99}.
C. Ψ2

r99 [1] = 1, and Ψ2
r67 [1] = 0.

D. Although Ψ1
sφ

[0] = 1,∀φ ∈ [1, 99] but we have Ψ2
s0 [0] = 1.

E. Ψ1
sφ

[0] = Ψ1
sφ

[1] = 1,∀φ ∈ [1, 99] \ {34, 99}.
F. Ψ2

s99 [1] = 1, and Ψ2
s34 [1] = 0.

Proof. We present the proof for Case A. The proofs for the remaining cases are
similar and can be worked out along the lines of the proof for Case A. A detailed
proof is also available in [8].

A. We have

zt + zt,∆r0(t) = θ0(Rt, St) + θ0(Rt,∆r0(t), St,∆r0(t))

= (rt0 + st0) + (1 + rt0 + st0) = 1, ∀Rt, St ∈ {0, 1}100.

So, Ψ2
r0 [0] = 1. Also θ0 is not a function of any ri, si for i ∈ [1, 99] and so

θ0(Rt,∆rφ(t), St,∆rφ(t)) = θ0(Rt, St) ∀φ ∈ [1, 99] and so we have

zt + zt,∆rφ(t) = θ0(Rt, St) + θ0(Rt,∆rφ(t), St,∆rφ(t))

= 0, ∀φ ∈ [1, 99], ∀Rt, St ∈ {0, 1}100.
So, Ψ1

rφ
[0] = 1 for all φ ∈ [1, 99].

Thus the proof. ut

Now, consider the attack scenario in which the adversary is able to re-key the
device with the same key-IV multiple number of times and inject a single fault
at a random location of register R at the beginning of any particular PRGA
round t ∈ [0, 100] and obtain faulty key-streams. She continues the process until
she obtains 100 different faulty key-streams corresponding to 100 different fault
locations in R and for each t ∈ [0, 100] (as mentioned earlier this is done by
comparing the first l bits of each faulty key-stream sequence). Assuming that
every location has equal probability of getting injected by fault, the above process
on an average takes around 100 ·∑100

i=1
1
i ≈ 29.02 faults [2] and hence re-keyings

for each value of t ∈ [0, 100] and hence a total of 101 · 29.02 ≈ 215.68 faults. The
process has to be repeated for the S register, and so the expected number of
faults is 2 · 215.68 = 216.68.

Mathematically speaking, if we define Zt = [zt, zt+1, . . . , zt+l−1], and ∆rφZt
= [zt,∆rφ(t), zt+1,∆rφ(t), . . . , zt+l−1,∆rφ(t)], then the adversary at this point has
knowledge of the 100 differential key-streams ηt,rφ = Zt +∆rφZt for each value
of t ∈ [0, 100]. The adversary however does not know the exact fault location
corresponding to any differential stream i.e. she has been unable to assign fault

9



location labels to any of the differential streams. With this information in hand
we shall study the implications of the observations A to F.

Implication of A: For any t ∈ [0, 100], Ψ2
r0 [0] = 1 guarantees that there is

at least one differential stream with ηt,rφ [0] = 1 whereas Ψ1
rφ

[0] = 1,∀φ ∈ [1, 99]
guarantees that that there is exactly one differential stream with this property.
This implies that out of the 100 differential streams for any PRGA round t the
one and only differential stream with this property must have been produced
due to a fault on the 0th location in R. Note that labelling of this stream helps
us determine the values of CRt for all t ∈ [0, 100] from Eqn. (2).

Implication of B, C: Once the differential stream corresponding to the 0th lo-
cation has been labelled we now turn our attention to the remaining 99 streams.
Statement B guarantees that of the remaining 99 streams at least 97 have the
property

(P1) ηt,rφ [0] = ηt,rφ [1] = 0.

Statement C guarantees that the number of streams with the property

(P2) ηt,rφ [0] = 0, ηt,rφ [1] = 1.

is at most 2 and at least 1. If the number of streams that satisfy (P1) is 98 and
(P2) is 1, then the lone stream satisfying (P2) must have been produced due to
fault on location 99 of R. This immediately implies that ηt,r67 [1] = 0 which by
Eqn. (1) in turn implies that rt0 = 0. Else if the number of streams satisfying
(P1) is 97 and (P2) is 2 then it implies that the streams satisfying (P2) were
produced due to faults in location 67, 99 of R. This implies ηt,r67 [1] = rt0 = 1.

Repeating the entire process on Register S one can similarly obtain the vec-
tors ∆sφZt and the differential streams ηt,sφ = Zt + ∆sφZt for all values of
t ∈ [0, 100]. As before the streams ηt,sφ are unlabeled. Let us now study the
implications of D, E, F.

Implication of D: For any t ∈ [0, 100], Ψ2
s0 [0] = 1 guarantees that there is

at least one differential stream with ηt,sφ [0] = 1 whereas Ψ1
sφ

[0] = 1,∀φ ∈ [1, 99]
guarantees that that there is exactly one differential stream with this property.
This implies that out of the 100 differential streams for any PRGA round t the
one and only differential stream with this property must have been produced
due to a fault on the 0th location in S.

Implication of E, F: Once the differential stream corresponding to the 0th lo-
cation has been labelled we now turn our attention to the remaining 99 streams.
The statement E guarantees that of the remaining 99 streams at least 97 have
the property

(P3) ηt,sφ [0] = ηt,sφ [1] = 0.

Statement F guarantees that the number of streams with the property

(P4) ηt,sφ [0] = 0, ηt,sφ [1] = 1,

10



is at most 2 and at least 1.

Case 1 If the number of streams that satisfy (P3) is 98 and (P4) is 1 then the
lone stream satisfying (P4) must have been produced due to fault on location
99 of S. Once the stream corresponding to location 99 of S has been labelled,
we can use Eqn (3) to determine CSt = ηt,s99 [2].

Case 2 If the number of streams satisfying (P3) is 97 and (P4) is 2 then it im-
plies that the streams satisfying (P4) were produced due to faults in location
34, 99 of S.
(i) Now if the bit indexed 2 of both these vectors are equal then we can

safely assume CSt = ηt,s99 [2] = ηt,s34 [2].
(ii) A confusion occurs when ηt,s99 [2] 6= ηt,s34 [2]. In such a situation we

would be unable to conclusively able to determine the value of CSt.

Assuming independence, we assume that Cases 1, 2 have equal probability
of occurring. Given the occurrence of Case 2, we can also assume that 2(i),
2(ii) occurs with equal probability. Therefore the probability of confusion, i.e.,
the probability that we are unable to determine the value of CSt for any t is
approximately equal to 1

2 · 12 = 1
4 . Let γ denote the number of t ∈ [0, 100] such

that CSt can not be conclusively determined then γ is distributed according to
γ ∼ Binomial(101, 14 ). Therefore the expected value of γ is E(γ) = 101 · 14 =

25.25. Also the probability that P (γ > 35) =
∑101
k=36

(
101
k

) (
1
4

)k ( 3
4

)101−k ≈ 0.01.
In such a situation the adversary must guess the γ values of CSt to perform
the attack, which implies that the adversary must perform the calculations in
Section 3.1 and Lemma 1, Lemma 2 a total of 2γ times to complete the attack.
For the correct value of the guesses, the calculated state R0, S0 will produce the
given fault-free key-stream sequence. We present a complete description of the
attack in Algorithm 1.

3.3 Issues related to the length of the IV

It is known that MICKEY 2.0 employs a variable length IV of length at most 80.
So if v is the length of the IV then the cipher will run for v+80 (Key loading) +
100 (Preclock) clock intervals before entering the PRGA phase. Our attack
requires that the first faults are to be injected at the beginning of the PRGA.
In order to do that the adversary must know the value of v. This not a strong
assumption as IVs are assumed to be known. However even if the adversary does
not know the IV or its length the attack can be performed. Since 0 ≤ v ≤ 80
must be satisfied, the strategy of the adversary who does not know the value of
v will be as follows. She will inject the first set of faults at clock round 260 which
corresponds to the PRGA round p = 260−180−v = 80−v. After performing the
attack, the adversary will end up constructing the internal state Rp, Sp instead of
R0, S0. Finding the value of p by looking at the faultless key-stream sequence is
straightforward. However, we would like to note that finding R0, S0 is a slightly
stronger result because, as reported in [16], there is a finite entropy loss for the
state update operation in the MICKEY PRGA.

11



Generate and record the fault-free keystream z0, z1, z2, . . . for some key-IV K, IV
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆rφZt have not been obtained do
Re-key the cipher with key-IV K, IV ;
Inject a fault at a random unknown location φ ∈ [0, 99] in R at PRGA round t;
Record the faulty key-stream sequence ∆rφZt;

end
t← t+ 1;

end

Calculate rt0, CRt, ∀t ∈ [0, 100] using A, B, C;
t← 0;
while t ≤ 100 do

while 100 different faulty key-stream sequences ∆sφZt have not been obtained do
Re-key the cipher with key-IV K, IV ;
Inject a fault at a random unknown location φ ∈ [0, 99] in S at PRGA round t;
Record the faulty key-stream sequence ∆sφZt;

end
t← t+ 1;

end
Using D, E, F calculate CSt, for all such t ∈ [0, 100] for which there is no confusion;
Let the number of undecided bits CSt = γ;
for Each of the 2γ guesses of the undecided CSt’s do

Use techniques of Subsection 3.1 compute rt0, r
t
99, CRt, s

t
0, s

t
99, CSt, ∀t ∈ [0, 99];

Use Lemma 1, Lemma 2 try to compute R0, S0;
if R0, S0 produce the sequence z0, z1, z2, . . . then

Output the required state R0, S0;
end

end

Algorithm 1: Fault Attack against MICKEY 2.0

3.4 Complexity of the Attack

As mentioned in Section 3.2, the attack requires the adversary to obtain 100
different faulty key-streams corresponding to all fault locations in R for PRGA
rounds t ∈ [0, 100]. This requires 101 ·100 ·∑100

i=1
1
k ≈ 215.68 faults on an average.

The same process must be repeated for the register S and hence the expected
number of total faults is 216.68. The computational overload comes from guessing
the γ values of CSt which can not be found out by observing the differential
key-streams. This requires a computational effort proportional to 2γ . Since γ
is distributed according to Binomial(101, 14 ), the expected value of γ is 25.25.
The expected value of the computation complexity is therefore given by E(2γ) =∑101
k=0

(
101
k

) (
1
4

)k ( 3
4

)101−k
2k ≈ 232.5.

4 Case of Multiple bit faults

In this section we explore the situation in which the adversary is unable to
induce a single bit flip of the internal state every time she injects a fault. We
assume that the best she can do is affect the bit values of three consecutive
locations of the state. This gives rise to three situations (a) the attacker flips
exactly one register bit (100 possibilities), (b) she flips 2 consecutive locations
i, i+ 1 of R/S (99 possibilities), (c) she flips 3 consecutive locations i, i+ 1, i+ 2

12



of R/S (98 possibilities). Studying such a model makes sense if we attack an
implementation of MICKEY where the register cells of the R and S registers are
physically positioned linearly one after the other. Now, this attack scenario gives
rise to 100 + 99 + 98 = 297 different instances of faults due to any single fault
injection, and we will assume that all these instances are equally likely to occur.
As before we will assume that the adversary is able to re-key the device with
the original Key-IV and obtain all the 297 faulty streams for any PRGA round
t ∈ [0, 100] by randomly injecting faults in either the R or S register. For each
PRGA round the attacker thus needs around 297 · ln 297 ≈ 210.7 faults. Thus the
fault requirement for the R register is 101 · 210.7 = 217.4. The process has to be
repeated for the S register and so the total fault requirement is 2 · 217.4 = 218.4.

Let Φ = {φ1, φ2, . . . , φk} denote the indices of k (k ≤ 3) continuous locations
in the R (or S) register. The the notations Rt,∆rΦ(t0), St,∆rΦ(t0), Rt,∆sΦ(t0),
St,∆sΦ(t0), zi,∆rΦ(t0), ∆rΦZt, ηt,rΦ , Ψ

1
rΦ [i], Ψ2

rΦ [i], Ψ1
sΦ [i], Ψ2

sΦ [i] will be used in
their usual meanings in the context of multiple faults at all locations in Φ. To
begin with note that in the single bit fault case, the attack depends on the
successful identification of the faulty streams produced due to faults in locations
0, 67 of R and 99 of S. In the multiple bit fault case too, the success of the attack
depends on the identification of faulty streams that have been produced due to
faults in these locations. We will deal each of these situations separately.

The bit r0 is affected. This could happen in 3 ways: a) r0 alone is toggled,
b) r0, r1 are toggled, c) r0, r1, r2 are toggled. We state the following

Proposition 1. Ψ1
rΦ [0] = 1,∀Φ such that 0 /∈ Φ but Ψ2

rΦ [0] = 1 for all Φ that
contain 0.

Proof. Since θ0 is a function of r0, s0 only we will have

zt + zt,∆rΦ(t) = θ0(Rt, St) + θ0(Rt,∆rΦ(t), St,∆rΦ(t)) =

{
0, if 0 /∈ Φ,
1, if 0 ∈ Φ

Hence the

result. ut

This implies that any faulty stream with its first bit different from the fault-
less first bit must have been produced due to a fault that has affected r0 and
vice versa. Thus 3 out of the 297 faulty streams have this property and they can
be identified easily. Furthermore since θ1(Rt, St) + θ1(Rt,∆rΦ(t), St,∆rΦ(t)) =
st34 + rt67 = CRt ∀Φ containing 0, the second bit in the all these faulty streams
are equal and the difference of this bit with the second faultless bit gives us the
value of CRt.

The bits r67 and r99 are affected. r67 could be affected in 6 ways : a) r67
alone is toggled, b) r66, r67 are toggled, c) r67, r68 are toggled, d) r65, r66, r67 are
toggled, e) r66, r67, r68 are toggled and f) r67, r68, r69 are toggled. Also note that
r99 could be affected in 3 ways: a) r99 is toggled, b) r98, r99 are toggled and c)
r97, r98, r99 are all toggled. Again we state the following propositions.

Proposition 2. Ψ1
rΦ [0] = Ψ1

rΦ [1] = 1,∀Φ such that 0, 67, 99 /∈ Φ.

13



Proposition 3. If 99 ∈ Φ then Ψ2
rΦ [1] = 1. If 67 ∈ Φ then Ψ2

rΦ [1] = 0.

Proof. Note that θ0 is a function of only r0, s0 and θ1 is a function of r0, r67, r99,
s34, s99 only. Therefore,

zt+1 + zt+1,∆rΦ(t) = θ1(Rt, St) + θ1(Rt,∆rΦ(t), St,∆rΦ(t))

=


0, if 0, 67, 99 /∈ Φ, (G)
CRt, if 0 ∈ Φ, (H)
rt0, if 67 ∈ Φ, (K)
1, if 99 ∈ Φ. (L)

Hence the result. ut
(G) implies that of the remaining 294 differential streams at least 294− 6− 3 =
285 satisfy

(P5) ηt,rΦ [0] = ηt,rΦ [1] = 0.

and (L) implies that the number of differential streams with the property

(P6) ηt,rΦ [0] = 0, ηt,rΦ [1] = 1.

is at least 3. A direct implication of (K) is that if the number of differential
streams satisfying (P5) is 285 and (P6) is 9 then rt0 = 1 and on the other hand
if, the number of streams satisfying (P5) is 291 and (P6) is 3 then rt0 = 0. Note
that these are exclusive cases i.e the number of streams satisfying (P5) can be
either 285 or 291. Since the values of rt0, CRt for all t ∈ [0, 100] are now known,
the attacker can now use the techniques of Section 3.1 and Lemma 1 to calculate
the entire initial state R0.

The bits s0, s34 and s99 are affected. Following previous descriptions we
know that there are respectively 3, 6, 3 possibilities of faults affecting s0, s34, s99.
Again, we present the following propositions before describing the attack.

Proposition 4. Ψ1
sΦ [0] = 1,∀Φ such that 0 /∈ Φ but Ψ2

sΦ [0] = 1 for all Φ that
contain 0.

Proposition 5. Ψ1
sΦ [0] = Ψ1

sΦ [1] = 1,∀Φ such that 0, 34, 99 /∈ Φ.

Proposition 6. If 99 ∈ Φ then Ψ2
sΦ [1] = 1. If 34 ∈ Φ then Ψ2

sΦ [1] = 0.

Proof. Proofs are similar to those of previous propositions. Since θ0 is a function
of only r0, s0 and θ1 is a function of r0, r67, r99, s34, s99 only, we have

zt + zt,∆sΦ(t) = θ0(Rt, St) + θ0(Rt,∆sΦ(t), St,∆sΦ(t)) =

{
0, if 0 /∈ Φ,
1, if 0 ∈ Φ

zt+1 + zt+1,∆sΦ(t) = θ1(Rt, St) + θ1(Rt,∆sΦ(t), St,∆sΦ(t))

=

0, if 34, 99 /∈ Φ, (M)
rt0, if 34 ∈ Φ, (N)
1, if 99 ∈ Φ. (O)

ut

14



Proposition 4 proves that there are 3 differential streams out of 297 which have
ηsΦ [0] = 1. (M) implies that of the remaining 294 streams, at least 294−3−6 =
285 satisfy

(P7) ηt,sΦ [0] = ηt,sΦ [1] = 0.

(O) implies that the number of streams that satisfy

(P8) ηt,sΦ [0] = 0, ηt,sΦ [1] = 1.

is at least 3.

CASE I. If the number of streams that satisfy (P7)is 291 and (P8) is 3 then
the streams satisfying (P8) must have been produced due to faults affecting s99.
For these streams we have

zt+2 + zt+2,∆sΦ(t) =θ2(Rt, St) + θ2(Rt,∆sΦ(t), St,∆sΦ(t))

=

CSt, if Φ = {99},
1 + CSt, if Φ = {98, 99}
1 + CSt. if Φ = {97, 98, 99}

So for 2 of these 3 streams we have ηsΦ [2] = 1 +CSt. Hence our strategy will be
to look at the bit indexed 2 of these 3 streams. Two of them will be equal and
we designate that value as 1 + CSt.

CASE II. If the number of streams that satisfy (P7) is 285 and (P8) is 9 then
the streams have been produced due to faults that have affected s34 and s99.
Note the identity ∑

Φ: 34∈Φ

ηt,sΦ [2] = rt0 · rt67 · st34 + rt99 · st34

Therefore the sum of the bits indexed 2 of all the differential streams that satisfy
(P8) is ∑

Φ: 34 or 99∈Φ

ηt,sΦ [2] =rt0 · rt67 · st34 + rt99 · st34 + CSt + CSt + 1 + CSt + 1

=CSt + rt0 · rt67 · st34 + rt99 · st34.
At this time the entire initial state of the R register and all values of CRt for
t ∈ [0, 100] is known to us. Hence by Lemma 2, all values of rti for all t > 0 can
be calculated by clocking the register R forward. Also, since CRt = rt67 + st34
is known, st34 = CRt + rt67 can be calculated easily. Therefore in the previous
equation CSt becomes the only unknown and thus its value can be calculated
easily.

At this point of time we have the values of rt0, CRt, CSt for all values of
t = 0, 1, 2, . . . , 100. Now by using the techniques of Section 3.1 and Lemma 1, 2
we will be able to determine the entire initial state R0, S0. Note that using this
fault model although the fault requirement increases, the adversary does not
have to bear the additional computational burden of guessing γ values of CSt.

15



5 Conclusion

A differential fault attack against the stream cipher MICKEY 2.0 is presented.
The work is one of the first cryptanalytic attempts against this cipher and re-
quires reasonable computational effort. The attack works due to the simplicity of
the output function and certain register update operations of MICKEY 2.0 and
would have been thwarted had these been of a more complex nature. It would
be interesting to study efficient counter-measures with minimum tweak in the
design.

Given our work in this paper, differential fault attacks are now known against
all of the three ciphers in the hardware portfolio of eStream. The attacks on all
the 3 ciphers use exactly the same fault model that is similar to what described
in this paper. Let us now summarize the fault requirements.

Cipher State size Average # of Faults
Trivium [15] 288 3.2
Grain v1 [10] 160 ≈ 28.5

MICKEY 2.0 200 ≈ 216.7

To the best of our knowledge, there was no published fault attack on MICKEY
2.0. prior to our work. We believe that one of the reasons this remained open
for such a long time could be that the cipher uses irregular clocking to update
its state registers. Hence it becomes difficult to determine the location of a
randomly applied fault injected in either the R or S register by simply comparing
the faulty and fault-free key-streams. The idea explained in Theorem 1 and its
implications are instrumental in mounting the attack. The total number of faults
is indeed much higher when we compare it with the other two eStream hardware
candidates. However, this seems natural as MICKEY 2.0 has more complex
structure than Trivium or Grain v1.

References

1. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers.
Revised on September 8, 2008.

2. P. Erdős and A. Rényi. On a classical problem of probability theory. Magyar Tu-
dományos Akadémia Matematikai Kutató Intézetének Közleményei 6: 215–220,
MR 0150807, 1961. Available at http://www.renyi.hu/~p_erdos/1961-09.pdf.

3. C. Cid and M. Robshaw (Editors), S. Babbage, J. Borghoff and V. Velichkov
(Contributors). The eSTREAM Portfolio in 2012, 16 January 2012, Version 1.0.
Available at http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf.

4. S. Babbage and M. Dodd. The stream cipher MICKEY 2.0. ECRYPT
Stream Cipher Project Report. Available at http://www.ecrypt.eu.org/stream/
p3ciphers/mickey/mickey_p3.pdf.

5. S. Babbage and M. Dodd. The stream cipher MICKEY-128 2.0. ECRYPT
Stream Cipher Project Report. Available at http://www.ecrypt.eu.org/stream/
p3ciphers/mickey/mickey128_p3.pdf.

6. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In CRYPTO 1997, LNCS, Vol. 1294, pp. 513–525.

16



7. D. Boneh, R. A. DeMillo and R. J. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults. In EUROCRYPT 1997, LNCS, Vol. 1233, pp. 37–51.

8. S. Banik and S. Maitra. A Differential Fault Attack on MICKEY 2.0. IACR eprint
archive, 2013:029. Available at http://eprint.iacr.org/2013/029.pdf.

9. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the Grain Family
of Stream Ciphers. In CHES 2012, LNCS, Vol. 7428, pp. 122–139.

10. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on Grain Family
under Reasonable Assumptions. In INDOCRYPT 2012, LNCS, Vol. 7668, pp. 191–
208.

11. A. Berzati, C. Canovas, G. Castagnos, B. Debraize, L. Goubin, A. Gouget, P. Pail-
lier and S. Salgado. Fault Analysis of Grain-128. In IEEE International Workshop
on Hardware-Oriented Security and Trust, 2009, pp. 7–14.

12. B. Gierlichs, L. Batina, C. Clavier, T. Eisenbarth, A. Gouget, H. Handschuh, T.
Kasper, K. Lemke-Rust, S. Mangard, A. Moradi and E. Oswald. Susceptibility of
eSTREAM Candidates towards Side Channel Analysis. In Proceedings of SASC
2008, available via http://www.ecrypt.eu.org/stvl/sasc2008/.

13. J. J. Hoch and A. Shamir. Fault Analysis of Stream Ciphers. In CHES 2004, LNCS,
Vol. 3156, pp. 1–20.

14. M. Hojśık and B. Rudolf. Differential Fault Analysis of Trivium. In FSE 2008,
LNCS, Vol. 5086, pp. 158–172.

15. M. Hojśık and B. Rudolf. Floating Fault Analysis of Trivium. In INDOCRYPT
2008, LNCS, Vol. 5365, pp. 239–250.

16. J. Hong and W. Kim. TMD-Tradeoff and State Entropy Loss Considerations of
stream cipher MICKEY. In INDOCRYPT 2005, LNCS, Vol. 3797, pp. 169–182.

17. S. Karmakar and D. Roy Chowdhury. Fault analysis of Grain-128 by targeting
NFSR. In AFRICACRYPT 2011, LNCS, Vol. 6737, pp. 298–315.

18. S. P. Skorobogatov. Optically Enhanced Position-Locked Power Analysis. In CHES
2006, LNCS, Vol. 4249, pp. 61–75.

19. S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks. In CHES
2002, LNCS, Vol. 2523, pp. 2–12.

Appendix A: The functions ρi, βi ∀i ∈ [0, 99]

i ρi βi

0 r0 · r67 + r0 · s34 + r99 s99
1 r0 + r1 · r67 + r1 · s34 + r99 s0 + s1 · s2 + s1 + s99
2 r1 + r2 · r67 + r2 · s34 s1 + s2 · s3 + s99
3 r2 + r3 · r67 + r3 · s34 + r99 r33 · s99 + s2 + s3 · s4 + s3 + s67 · s99 + s99
4 r3 + r4 · r67 + r4 · s34 + r99 r33 · s99 + s3 + s4 · s5 + s4 + s5 + s67 · s99 + 1

5 r4 + r5 · r67 + r5 · s34 + r99 s4 + s5 · s6 + s6 + s99
6 r5 + r6 · r67 + r6 · s34 + r99 r33 · s99 + s5 + s6 · s7 + s67 · s99
7 r6 + r7 · r67 + r7 · s34 r33 · s99 + s6 + s7 · s8 + s7 + s67 · s99 + s99
8 r7 + r8 · r67 + r8 · s34 r33 · s99 + s7 + s8 · s9 + s67 · s99 + s99
9 r8 + r9 · r67 + r9 · s34 + r99 r33 · s99 + s8 + s9 · s10 + s9 + s10 + s67 · s99 + s99 + 1

10 r9 + r10 · r67 + r10 · s34 r33 · s99 + s9 + s10 · s11 + s10 + s67 · s99 + s99
11 r10 + r11 · r67 + r11 · s34 s10 + s11 · s12 + s11 + s12 + s99 + 1

12 r11 + r12 · r67 + r12 · s34 + r99 s11 + s12 · s13 + s12 + s13 + s99 + 1

13 r12 + r13 · r67 + r13 · s34 + r99 s12 + s13 · s14 + s14 + s99
14 r13 + r14 · r67 + r14 · s34 r33 · s99 + s13 + s14 · s15 + s15 + s67 · s99 + s99
15 r14 + r15 · r67 + r15 · s34 r33 · s99 + s14 + s15 · s16 + s15 + s67 · s99
16 r15 + r16 · r67 + r16 · s34 + r99 s15 + s16 · s17 + s17
17 r16 + r17 · r67 + r17 · s34 r33 · s99 + s16 + s17 · s18 + s17 + s67 · s99 + s99
18 r17 + r18 · r67 + r18 · s34 r33 · s99 + s17 + s18 · s19 + s67 · s99
19 r18 + r19 · r67 + r19 · s34 + r99 s18 + s19 · s20 + s20 + s99
20 r19 + r20 · r67 + r20 · s34 + r99 r33 · s99 + s19 + s20 · s21 + s67 · s99 + s99

17



i ρi βi

21 r20 + r21 · r67 + r21 · s34 + r99 r33 · s99 + s20 + s21 · s22 + s21 + s22 + s67 · s99 + s99 + 1

22 r21 + r22 · r67 + r22 · s34 + r99 r33 · s99 + s21 + s22 · s23 + s22 + s67 · s99 + s99
23 r22 + r23 · r67 + r23 · s34 s22 + s23 · s24 + s24 + s99
24 r23 + r24 · r67 + r24 · s34 r33 · s99 + s23 + s24 · s25 + s24 + s67 · s99 + s99
25 r24 + r25 · r67 + r25 · s34 + r99 r33 · s99 + s24 + s25 · s26 + s26 + s67 · s99 + s99
26 r25 + r26 · r67 + r26 · s34 s25 + s26 · s27 + s26 + s99
27 r26 + r27 · r67 + r27 · s34 s26 + s27 · s28 + s27 + s28 + s99 + 1

28 r27 + r28 · r67 + r28 · s34 + r99 r33 · s99 + s27 + s28 · s29 + s28 + s67 · s99 + s99
29 r28 + r29 · r67 + r29 · s34 s28 + s29 · s30 + s30
30 r29 + r30 · r67 + r30 · s34 r33 · s99 + s29 + s30 · s31 + s30 + s31 + s67 · s99 + 1

31 r30 + r31 · r67 + r31 · s34 r33 · s99 + s30 + s31 · s32 + s31 + s67 · s99 + s99
32 r31 + r32 · r67 + r32 · s34 s31 + s32 · s33 + s32 + s33 + s99 + 1

33 r32 + r33 · r67 + r33 · s34 r33 · s99 + s32 + s33 · s34 + s33 + s67 · s99
34 r33 + r34 · r67 + r34 · s34 s33 + s34 · s35
35 r34 + r35 · r67 + r35 · s34 s34 + s35 · s36 + s36
36 r35 + r36 · r67 + r36 · s34 s35 + s36 · s37
37 r36 + r37 · r67 + r37 · s34 + r99 r33 · s99 + s36 + s37 · s38 + s37 + s67 · s99
38 r37 + r38 · r67 + r38 · s34 + r99 r33 · s99 + s37 + s38 · s39 + s38 + s67 · s99
39 r38 + r39 · r67 + r39 · s34 r33 · s99 + s38 + s39 · s40 + s67 · s99 + s99
40 r39 + r40 · r67 + r40 · s34 r33 · s99 + s39 + s40 · s41 + s40 + s67 · s99 + s99
41 r40 + r41 · r67 + r41 · s34 + r99 r33 · s99 + s40 + s41 · s42 + s67 · s99 + s99
42 r41 + r42 · r67 + r42 · s34 + r99 s41 + s42 · s43 + s42
43 r42 + r43 · r67 + r43 · s34 s42 + s43 · s44 + s43 + s44 + 1

44 r43 + r44 · r67 + r44 · s34 s43 + s44 · s45 + s44 + s99
45 r44 + r45 · r67 + r45 · s34 + r99 r33 · s99 + s44 + s45 · s46 + s46 + s67 · s99
46 r45 + r46 · r67 + r46 · s34 + r99 s45 + s46 · s47
47 r46 + r47 · r67 + r47 · s34 s46 + s47 · s48 + s48 + s99
48 r47 + r48 · r67 + r48 · s34 r33 · s99 + s47 + s48 · s49 + s67 · s99
49 r48 + r49 · r67 + r49 · s34 r33 · s99 + s48 + s49 · s50 + s49 + s50 + s67 · s99 + s99 + 1

50 r49 + r50 · r67 + r50 · s34 + r99 s49 + s50 · s51
51 r50 + r51 · r67 + r51 · s34 r33 · s99 + s50 + s51 · s52 + s67 · s99 + s99
52 r51 + r52 · r67 + r52 · s34 + r99 r33 · s99 + s51 + s52 · s53 + s67 · s99
53 r52 + r53 · r67 + r53 · s34 s52 + s53 · s54 + s53
54 r53 + r54 · r67 + r54 · s34 + r99 r33 · s99 + s53 + s54 · s55 + s55 + s67 · s99 + s99
55 r54 + r55 · r67 + r55 · s34 s54 + s55 · s56 + s55
56 r55 + r56 · r67 + r56 · s34 + r99 s55 + s56 · s57 + s56 + s57 + s99 + 1

57 r56 + r57 · r67 + r57 · s34 r33 · s99 + s56 + s57 · s58 + s57 + s67 · s99 + s99
58 r57 + r58 · r67 + r58 · s34 + r99 r33 · s99 + s57 + s58 · s59 + s67 · s99 + s99
59 r58 + r59 · r67 + r59 · s34 s58 + s59 · s60 + s60 + s99
60 r59 + r60 · r67 + r60 · s34 + r99 s59 + s60 · s61 + s61
61 r60 + r61 · r67 + r61 · s34 + r99 r33 · s99 + s60 + s61 · s62 + s61 + s62 + s67 · s99 + s99 + 1

62 r61 + r62 · r67 + r62 · s34 r33 · s99 + s61 + s62 · s63 + s62 + s63 + s67 · s99 + 1

63 r62 + r63 · r67 + r63 · s34 + r99 r33 · s99 + s62 + s63 · s64 + s63 + s67 · s99 + s99
64 r63 + r64 · r67 + r64 · s34 + r99 r33 · s99 + s63 + s64 · s65 + s64 + s67 · s99
65 r64 + r65 · r67 + r65 · s34 + r99 s64 + s65 · s66 + s65 + s66 + s99 + 1

66 r65 + r66 · r67 + r66 · s34 + r99 s65 + s66 · s67 + s66
67 r66 + r67 · s34 + r67 + r99 r33 · s99 + s66 + s67 · s68 + s67 · s99 + s68
68 r67 · r68 + r67 + r68 · s34 s67 + s68 · s69 + s68
69 r67 · r69 + r68 + r69 · s34 r33 · s99 + s67 · s99 + s68 + s69 · s70 + s70
70 r67 · r70 + r69 + r70 · s34 s69 + s70 · s71 + s70 + s71 + 1

71 r67 · r71 + r70 + r71 · s34 + r99 s70 + s71 · s72 + s71 + s72 + 1

72 r67 · r72 + r71 + r72 · s34 + r99 r33 · s99 + s67 · s99 + s71 + s72 · s73 + s72 + s73 + 1

73 r67 · r73 + r72 + r73 · s34 s72 + s73 · s74 + s74
74 r67 · r74 + r73 + r74 · s34 r33 · s99 + s67 · s99 + s73 + s74 · s75 + s74 + s75 + 1

75 r67 · r75 + r74 + r75 · s34 r33 · s99 + s67 · s99 + s74 + s75 · s76 + s75 + s76 + s99 + 1

76 r67 · r76 + r75 + r76 · s34 r33 · s99 + s67 · s99 + s75 + s76 · s77 + s76 + s77 + s99 + 1

77 r67 · r77 + r76 + r77 · s34 s76 + s77 · s78 + s77 + s78 + 1

78 r67 · r78 + r77 + r78 · s34 s77 + s78 · s79 + s99
79 r67 · r79 + r78 + r79 · s34 + r99 r33 · s99 + s67 · s99 + s78 + s79 · s80 + s80
80 r67 · r80 + r79 + r80 · s34 + r99 r33 · s99 + s67 · s99 + s79 + s80 · s81
81 r67 · r81 + r80 + r81 · s34 + r99 r33 · s99 + s67 · s99 + s80 + s81 · s82 + s81 + s82 + 1

82 r67 · r82 + r81 + r82 · s34 + r99 r33 · s99 + s67 · s99 + s81 + s82 · s83 + s83 + s99
83 r67 · r83 + r82 + r83 · s34 s82 + s83 · s84 + s84 + s99
84 r67 · r84 + r83 + r84 · s34 r33 · s99 + s67 · s99 + s83 + s84 · s85 + s85
85 r67 · r85 + r84 + r85 · s34 s84 + s85 · s86 + s86 + s99
86 r67 · r86 + r85 + r86 · s34 s85 + s86 · s87 + s86 + s87 + s99 + 1

87 r67 · r87 + r86 + r87 · s34 + r99 s86 + s87 · s88 + s87 + s99
88 r67 · r88 + r87 + r88 · s34 + r99 s87 + s88 · s89 + s88 + s89 + 1

89 r67 · r89 + r88 + r89 · s34 + r99 s88 + s89 · s90
90 r67 · r90 + r89 + r90 · s34 + r99 r33 · s99 + s67 · s99 + s89 + s90 · s91 + s91 + s99
91 r67 · r91 + r90 + r91 · s34 + r99 r33 · s99 + s67 · s99 + s90 + s91 · s92 + s99
92 r67 · r92 + r91 + r92 · s34 + r99 r33 · s99 + s67 · s99 + s91 + s92 · s93 + s92 + s99
93 r67 · r93 + r92 + r93 · s34 s92 + s93 · s94
94 r67 · r94 + r93 + r94 · s34 + r99 r33 · s99 + s67 · s99 + s93 + s94 · s95
95 r67 · r95 + r94 + r95 · s34 + r99 r33 · s99 + s67 · s99 + s94 + s95 · s96 + s95 + s99
96 r67 · r96 + r95 + r96 · s34 + r99 r33 · s99 + s67 · s99 + s95 + s96 · s97 + s96 + s99
97 r67 · r97 + r96 + r97 · s34 + r99 s96 + s97 · s98 + s98
98 r67 · r98 + r97 + r98 · s34 s97 + s98 · s99 + s99
99 r67 · r99 + r98 + r99 · s34 r33 · s99 + s67 · s99 + s98

18


