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Abstract. Correlation power-analysis (CPA) attacks are a serious threat for cryptographic device
because the key can be disclosed from data-dependent power consumption. Hiding power consump-
tion of encryption circuit can increase the security against CPA attacks, but it results in a large
overhead for cost, speed, and energy dissipation. Masking processed data such as randomized scalar
or primary base point on elliptic curve is another approach to prevent CPA attacks. However, these
methods requiring pre-computed data are not suitable for hardware implementation of real-time ap-
plications. In this paper, a new CPA countermeasure performing all field operations in a randomized
Montgomery domain is proposed to eliminate the correlation between target and reference power
traces. After implemented in 90-nm CMOS process, our protected 521-bit dual-field elliptic curve
cryptographic (DF-ECC) processor can perform one elliptic curve scalar multiplication (ECSM) in
4.57ms over GF (p521) and 2.77ms over GF (2409) with 3.6% area and 3.8% power overhead. Experi-
ments from an FPGA evaluation board demonstrate that the private key of unprotected device will
be revealed within 103 power traces, whereas the same attacks on our proposal cannot successfully
extract the key value even after 106 measurements.

Keywords: Elliptic curve cryptography (ECC), side-channel attacks, power-analysis attacks, Mont-
gomery algorithm.

1 Introduction

Elliptic curve cryptography (ECC) independently introduced by Koblitz [1] and Miller [2] has been
widely applied to provide a confident scheme for information exchange. For the past several years, many
previous works [3], [4], [5], [6] have been published for ECC hardware implementation aiming at the
performance improvement. However, even the ECC is secure at cryptanalysis, the private data of a
unprotected hardware device can be extracted by the physical attacks due to side-channel leakage. The
power-analysis attacks, initially presented by Kocher [7], can reveal the key value by analyzing the power
information of a cryptographic implementation such as on an ASIC, FPGA or microprocessor.

During the device processing, simple power-analysis (SPA) attacks can distinguish the key value
through visual inspection because of the specifically active circuit with direct hardware scheduling. The
unified elliptic curve (EC) point calculation [8], [9] is usually used to avoid the variation of power con-
sumption over time. However, the correlation power-analysis (CPA) attacks [10] computing the correlation
between target power traces and power model by statistical approach can reveal the key value due to
the existence of key-dependent operations in every round of calculation. For ECC primitives specified in
IEEE P1363 [11], the CPA attacks can be applied to EC integrated encryption system, single pass EC
Diffie-Hellman or single pass EC Menezes-Qu-Vanstone key agreement because the private key is kept
invariant for a long time duration.

Hiding technique with algorithm-independent dedicated circuit is a common approach to protect
cryptographic processors from attackers collecting the key-dependent characteristics of power traces. In
[12], wave dynamic differential logic circuit with regular routing algorithm is exploited to equalize the
current between rising and falling transitions. However, at least double hardware latency, area cost, and
energy for unprotected encryption engines are required due to precharging for half cycle, and generating
complementary logic outputs from divided single ended modules with equivalent power consumption.
Switched capacitor [13] is able to isolate the encryption core from the external power supplies, but this
approach results in 50% speed loss for replenishing charge every cycle. In order to avoid the throughput
degradation, a countermeasure circuit using digital controlled ring oscillators [14] is designed outside of
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the critical path. The concept is to generate random noise power to dominate the power consumption of
arithmetic unit, and then the correlation peak would not be found even matching the correct key value.
But this demands extra 100% power overhead for the key-dependent processing element.

At the algorithm level, masking the processed data independent of power consumption is another
approach to avoid the CPA attacks. Since the scalar K of EC point calculation is periodic with the point
order #E, a randomized scalar technique proposed by Coron [15] can be adopted to change the key value
by adding α ·#E for every elliptic curve scalar multiplication (ECSM) such as KP = (K + α ·#E)P ,
where α is a random integer and P is a primary base point on EC. However, with this method, the
throughput overhead is inevitable due to extending the key length. In [9], the ECSM of 521-bit key
extended with a 32-bit random value needs 10% more execution time to be carried out than that of
unprotected approach. Another CPA countermeasure also presented in [15] is to mask the primary base
point with pre-computed random points R and S = KR. Then the ECSM is achieved by computing
K(P +R) = KP ′ and subtracting S before returning such that KP ′ − S = KP . For every next ECSM
calculation, the random points R and S are refreshed by performing R ← (−1)β2R and S ← (−1)β2S
with a single random bit β. But the time-cost random point generation is not suitable for real-time
applications as the EC parameters are various with different users. In [16], the EC isomorphism method
can randomize the primary base point by simple finite field operations without pre-computing random
points. However, it is limited to be applied in single finite field GF (p).

In this brief, we propose a new efficient countermeasure to overcome the CPA attacks by computing
overall dual-field ECC functions in a randomized Montgomery domain. The feature of our approach is
to mask the intermediate values in not only the arithmetic but also the temporary register. Thus it is
unnecessary to extend the key length, customize circuit and modify the routing algorithm in ASIC or
FPGA design flow. Since our proposed design adopts simple logic circuit to counteract CPA attacks,
the hardware cost overhead could be significantly reduced, and the maximum operating frequency of
protected design is the same as that of unprotected design using conventional Montgomery algorithm.
Additionally, by reducing the iteration time of the division, which dominates other field operations in
computation time, the speed can be improved further.

The remainder of the paper is outlined as follows. CPA attacks applied on the ECC device are intro-
duced in Section 2. The proposed countermeasure method and design architecture are given in Section 3
and Section 4, respectively. Section 5 shows the FPGA power measurement and ASIC implementation
results. Section 6 concludes this work.

2 CPA Attacks on ECC Device

Algorithm 1 presented in [8] is a usually adopted approach to counteract SPA attacks by regularly
performing the ECSM KP = P + · · ·+ P , where K is the m-bit private key and P is a point on elliptic
curves (ECs). But the intermediate values of elliptic curve point doubling in Step 3 and Step 4 still have
dependence on the zero and non-zero bit of the key value. Hence, with a chosen point P , the key value
can be distinguished by matching the power trace segment of accessing the memory storage for point
coordinates P1 or P2.

Algorithm 1 Montgomery ladder ECSM algorithm

Input: K and P
Output: KP
1. Let P1 ← P , P2 ← 2P
2. For i from m− 2 to 0 do

3. If Ki = 1 then P1 ← P1 + P2, P2 ← 2P2

4. else P2 ← P1 + P2, P1 ← 2P1

5. Return P1

Fig. 1 illustrates the scenario of CPA attacks. For ECC primitives, the primary base point is commonly
public. Thus the power model can be characterized from the hamming distance of memory storage for
key-dependent point coordinates by measuring the device sample before the statistical analysis, which
computes the correlation between the measured target power traces and the power model. The correlation
value of correct hypothesis will be larger than that of the others due to the same hamming distance of
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processed data. Through this approach, the overall binary key can be extracted after m − 1 rounds in
linear time.
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Fig. 1. CPA attacks on an ECC device operating in a specific domain.

3 Proposed Algorithm against CPA Attacks

The fundamental concept of CPA countermeasure is to break the dependency between intermediate values
and power traces. For achieving the EC point calculation, the well-known Montgomery algorithm [17] is
usually adopted to perform the field arithmetic in a specific domain such that A ≡ a · r (mod p), where
a is in the integer domain and r ≡ 2m (mod p) is the Montgomery constant with m-bit field length. In
this work, we introduce an approach to resist the CPA attacks at modular algorithm by calculating the
operands in a randomized Montgomery domain A ≡ a · 2λ (mod p), where the domain value λ equals
the hamming weight (HW) of an n-bit random value α. Note that n is the maximum field length and
the bit values of (αn−1, αn−2, . . . , αm) are set to zero for preventing λ from exceeding m. By exploiting
this approach, the intermediate values can be masked because they are various with different domain
values such as 2g (mod p) 6= 2h (mod p) when 0 ≤ g 6= h < m. Since the proposed method is to
randomize intermediate values in basic modular operations, the SPA resistant ECSM algorithm shown in
Algorithm 1 can still be applied without computation overhead from extended scalar length, and there is
no need for pre-computed EC points. The overall randomized Montgomery operations for input operands
X ≡ x · 2λ (mod p) and Y ≡ y · 2λ (mod p) are summarized in Table 1.

Table 1. Operations in Randomized Montgomery Domain

Operation Arithmetic

Randomized Montgomery multiplication (RMM) RMM(X,Y ) ≡ x · y · 2λ (mod p)

Randomized Montgomery division (RMD) RMD(X,Y ) ≡ x · y−1
· 2λ (mod p)

Randomized addition (RA) RA(X,Y ) ≡ (x+ y) · 2λ (mod p)

Randomized subtraction (RS) RS(X,Y ) ≡ (x− y) · 2λ (mod p)

3.1 Randomized Montgomery Multiplication

Algorithm 2 shows our proposed randomized Montgomery multiplication which contains two operating
steps in every iteration to change the intermediate domain value λ′, and these steps are determined by
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the ith bit of random value α. If αi = 1, the domain value of output operand R decreases by one in Step 4
such as R = (R + V0 · S)/2 (mod p); the domain value remains the same as αi = 0 in Step 5 such as
R = (R + V0 · S) (mod p). The initial values of operands (V,R, S) are set to be (X, 0, Y ). In further
iterative calculation, the bit value V0 is equal to the ith bit value of X , and the operand S doubles its
value as αi = 0. Base on these, the functionality can be derived as follows:

– For 1st iteration, the intermediate result of R is (X0 · Y ) · 2−α0 (mod p).

– For 2nd iteration, R becomes ((X0 · Y ) · 2−α0 (mod p) +X1 · (2
1−HW(α0) · Y )) · 2−α1 (mod p).

– Until mth iteration, the final result of R is (· · · (((X0 ·Y ) ·2−α0 (mod p)+X1 · (2
1−HW(α0) ·Y )) ·2−α1

(mod p)+X2 ·(2
2−HW(α1,α0) ·Y ))·2−α2 (mod p)+ · · ·+Xm−1 ·(2

m−1−HW(αm−2,···,α1,α0) ·Y ))·2−αm−1

(mod p)
≡ (X0 · Y · 2

−HW(αm−1,...,α0)) (mod p) + (X1 · Y · 2
−HW(αm−1,...,α0)+1) (mod p) + · · ·+ (Xm−1 · Y ·

2−HW(αm−1,...,α0)+m−1) (mod p)
≡ X · Y · 2−HW(αm−1,...,α0) (mod p)
≡ X · Y · 2−λ (mod p).

Hence, the randomized Montgomery multiplication in Algorithm 2 can be performed in m iterations, the
same as those in conventional radix-2 Montgomery multiplication.

Algorithm 2 Radix-2 randomized Montgomery multiplication

Input: X,Y, p, and α
Output: R = RMM(X,Y )
1. Let V = X, R = 0, S = Y
2. For i from 0 to m− 1 do

3. R ≡ R + V0 · S (mod p), V = V/2
4. If αi = 1 then R ≡ R/2 (mod p)
5. else S ≡ 2S (mod p)
6. Return R

Algorithm 3 shows a radix-4 approach to Algorithm 2 for almost 50% iteration reduction. The domain
value of R is determined by the HW of two continuous bits of random value α in Steps 5, 6, and 7. For
the case of HW = 2, it is reduced by two through performing quartering operation such as R ≡ R/4
(mod p). While halving R and doubling S operations are performed as HW = 1, these are deduced by
computing one iteration of radix-2 Montgomery reduction and one iteration of radix-2 modular reduction
in single period. For the rest case of HW = 0, the operand S ≡ 4S (mod p) is performed due to the
unchanged domain value of R.

Algorithm 3 Radix-4 randomized Montgomery multiplication

Input: X,Y, p, and α
Output: R = RMM(X,Y )
1. Let V = X, R = 0, S = Y
2. For i from 0 to

⌈

m

2

⌉

− 1 do

3. If m (mod 2) ≡ 1 and i =
⌈

m

2

⌉

− 1 then

R ≡ R + V0 · S (mod p), V = V

2

4. else

R ≡ R + V0 · S + V1 · 2S (mod p), V = V

4

5. If (α2i+1, α2i) = (1, 1) then
R ≡ R

4
(mod p)

6. else if (α2i+1, α2i) = (1, 0) or (0, 1) then
R ≡ R

2
(mod p), S ≡ 2S (mod p)

7. else

S ≡ 4S (mod p)
8. Return R
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3.2 Randomized Montgomery division

To achieve the division in Montgomery domain, Kaliski [18] first proposed an iterative algorithm which
needsm ∼ 2m iterations of successive reduction, 0 ∼ m iterations for degree recovery (reduce intermediate
domain value λ′ to be m as λ′ > m), and two additional Montgomery multiplications with a final modular
reduction p−R. The algorithm presented in [18] is formulated from the identical equations as follows:

{

Y ·R ≡ −U · 2λ
′

(mod p)

Y · S ≡ V · 2λ
′

(mod p).

Based on Kaliski’s method, we derive a new randomized Montgomery division which is described
in Algorithm 4. To directly achieve the division operation without additional multiplication and final
modular reduction, our method is to modify the initial values of (U, V,R, S) to be (p, Y, 0, X) in Step 1
and the RS data path with modular subtraction in Steps 10, 11, 13, 14. Then the identities become

{

X−1 · Y ·R ≡ U · 2λ
′

(mod p)

X−1 · Y · S ≡ V · 2λ
′

(mod p).

Similar to RMM, the RS data path between the Montgomery domain and integer domain is determined
by the ith bit value of α. The domain value of operands R and S increases by one as αi = 1 and remains
the same as αi = 0.

Algorithm 4 Radix-2 randomized Montgomery division

Input: X,Y, p, and α
Output: R = RMD(X,Y )
1. Let U = p, V = Y,R = 0, S = X
2. While (V > 0) do
3. If U is even then U = U/2
4. If αi = 1 then S ≡ 2S (mod p)
5. else R ≡ R/2 (mod p)
6. else if V is even then V = V/2
7. If αi = 1 then R ≡ 2R (mod p)
8. else S ≡ S/2 (mod p)
9. else if U > V then U = (U − V )/2
10. If αi = 1 then R ≡ R− S (mod p), S ≡ 2S (mod p)
11. else R ≡ (R− S)/2 (mod p)
12. else V = (V − U)/2
13. If αi = 1 then S ≡ S −R (mod p), R ≡ 2R (mod p)
14. else S ≡ (S −R)/2 (mod p)
15. If i < m then i = i+ 1
16. Return R

For further reducing the degree recovery phase, the RS data path turns into dividing values by two
in Steps 5, 8, 11, 14 to keep the intermediate domain value in λ = HW(α) as i = m. Thus the identities
in Algorithm 4 are given as follows:

If i < m, then

{

X−1 · Y ·R ≡ U · 2λ
′

(mod p)

X−1 · Y · S ≡ V · 2λ
′

(mod p)

else

{

X−1 · Y ·R ≡ U · 2λ (mod p)
X−1 · Y · S ≡ V · 2λ (mod p).

Before the last iteration, both U and V are 1 because the initial values of U and V are relatively prime.
Then after finishing the iterative operations in Step 2, the values of (U, V,R, S) become (1, 0, X ·Y −1 · 2λ

(mod p), 0). As a result, the proposed randomized division algorithm requires at most 2m iterations of
successive reduction. Table 2 shows the expected operation time and the comparison with related works
on modifying radix-2 Montgomery division algorithm. With randomization capability, Algorithm 4 will
also benefit the hardware design owing to the low latency.

Algorithm 5 shows the radix-4 randomized Montgomery division derived from Algorithm 4, and there
are more branches in the algorithm as the radix becomes lager. To remain the domain value of R unpre-
dictable in the flexible range of [0,m− 1), it is determined by the HW of random value αi or (αi+1, αi).
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Table 2. Analysis of Various Division Algorithms

Algorithm 4 TCAS-I’06 [3] ESSCIRC’10 [9]

Iteration Time m ∼ 2m m ∼ 2m m ∼ 3m

Multiplication 0 2 ∼ 3 0

Domain Random 2λ, 0 ≤ λ ≤ m Fixed 2m Fixed 2m

The values of UV is reduced to at least UV/4 except U ≡ 1 (mod 4), V ≡ 3 (mod 4) or U ≡ 3
(mod 4), V ≡ 1 (mod 4) in Steps 17 and 18. With this approach and a radix-4 RMM given in Algo-
rithm 3, the EC point calculation can be carried out faster in affine coordinates than that in projective
coordinates [19], where the iteration time ratio RMD/RMM ∼= 1.32 over GF (p) and 1.44 over GF (2m).

4 Hardware Architecture of DF-ECC Processor

Fig. 2 shows the block diagram of the proposed dual-field ECC (DF-ECC) processor. For the CPA
resistance, all field operations over GF (p) and GF (2m) are performed by the Galois field arithmetic
unit (GFAU) in a randomized Montgomery domain. The operating domain is determined by the value
in domain shift register, which is sourced from a 1-bit random number generator (RNG) and refreshed
before the next ECSM calculation. For the flexibility, we use an all-digital RNG utilizing the cycle-to-
cycle time jitter in free-running oscillators with a synchronous feedback post-processor [20]. The overall
architecture of CPA countermeasure circuit is shown in Fig. 3. Besides, to efficiently store the long bit
length operands including EC parameters and points, a block memory of register file is exploited.
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Fig. 2. Overall diagram for the DF-ECC processor.

As the iterative operations in Algorithm 4 and Algorithm 5 are performed in one cycle, the critical
path is to calculate the results of R or S consisting of the UV comparison with modular operations.
For the modular division by 2 or 4 in Steps 5, 8, 11, 14 of Algorithm 4 and Steps 22, 25, 26, 28 of
Algorithm 5, multiples of the prime p are added to enable the lowest part of R or S is zero so that they
can be carried out by simple shift logic operator. Further, since the results of R, S are irrelevant to the
results of operands U or V , a fully-pipelined stage can be inserted between the UV and RS data path to
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Algorithm 5 Radix-4 randomized Montgomery division

Input: X,Y, p, and α
Output: R = RMD(X,Y )
1. Let U = p, V = Y,R = 0, S = X, i = 0
2. While (V > 0) do
3. c ≡ U (mod 4), d ≡ V (mod 4), t = 2
4. If i = m− 1 then

R ≡ 2R (mod p), S ≡ 2S (mod p), t = 1
5. else if c = 0 then U = U

4
, S ≡ 4S (mod p)

6. else if d = 0 then V = V

4
, R ≡ 4R (mod p)

7. else if c = d then

8. If U > V then U = U−V

4
,

R ≡ R− S (mod p), S ≡ 4S (mod p)
9. else V = V −U

4
,

S ≡ S −R (mod p), R ≡ 4R (mod p)
10. else if c = 2 then

11. If U

2
> V then U =

U

2
−V

2
,

R ≡ R− 2S (mod p), S ≡ 4S (mod p)

12. else V =
V −

U

2

2
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,
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2
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R ≡ R− S (mod p), S ≡ 2S (mod p), t = 1
18. else V = V −U

2
,

S ≡ S −R (mod p), R ≡ 2R (mod p), t = 1
19. If i < m then

20. If i = m− 1 or t = 1 then

21. If αi = 1 then R ≡ R (mod p), S ≡ S (mod p)
22. else R ≡ R

2
(mod p), S ≡ S

2
(mod p)

23. else

24. If (αi+1, αi) = (1, 1) then
R ≡ R (mod p), S ≡ S (mod p)

25. else if (αi+1, αi) = (1, 0) or (0, 1) then
R ≡ R

2
(mod p), S ≡ S

2
(mod p)

26. else

R ≡ R

4
(mod p), S ≡ S

4
(mod p)

27. i = i+ t
28. else R ≡ R

2t
(mod p), S ≡ S

2t
(mod p)

29. Return R
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moderate the critical path. As the UV data path is determined, then the next cycle is to set the values
of the operands R, S and simultaneously determine the next case until V = 0. Although one additional
cycle is needed after pipelining, this is negligible as the operation takes hundreds or thousands of cycles.
The timing flow of pipelined scheme is shown in Fig. 4. Besides, to reduce the hardware cost, symmetric
modular operations such as R ≡ (R − S)/2 (mod p) and S ≡ (S − R)/2 (mod p) in Algorithm 4,
R ≡ (R − S)/4 (mod p) and S ≡ (S − R)/4 (mod p) in Algorithm 5 can be executed by the same
computational unit with a swap logic circuit, which is to switch the input operands of RS data path. In
Algorithm 4, the RS data path can be classified into two groups: the first group includes Steps 4, 5 and
Steps 10, 11; the second one consists of Steps 7, 8 and Steps 13, 14. In Algorithm 5, the two groups of
RS data path are classified as follows: Steps 6, 9, 12, 15, and 18 belong in the first group; the second one
consists of the others. The data flows of R and S are switched as the processing group is different from
the group in previous cycle. Moreover, since the EC point calculation is a serial field operation, both of
the temporary registers and modular operations can be shared for the operands V, S,R in Algorithm 2
and Algorithm 4 (or Algorithm 3 and Algorithm 5). These multiple modular operations in the iterative
calculation can be effectively implemented by using a programmable data path of bit-level architecture,
which consists of the carry-save adders with a carry-lookahead adder at last stage. The detailed radix-2
and radix-4 GFAU architecture is shown in Fig. 5 and Fig. 6, respectively.
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Fig. 4. Fully-pipelined scheme for the (a) radix-2 (b) radix-4 randomized Montgomery division.

5 Power Measurement and Implementation Results

Based on our proposed architecture using Montgomery ladder ECSM method, four different 160-bit DF-
ECC processors with radix-2 and radix-4 algorithms are independently designed on an FPGA platform
to evaluate the CPA resistance. The performance results are given in Table 3, and the verification envi-
ronment is shown in Fig. 7.

As shown in Algorithm 1, the point coordinate value P2 is dependent on the bit value of the key in
every iteration. Fig. 8(a) and Fig. 8(b) illustrate the CPA attacks on the unprotected Design-I and Design-
III, respectively, using conventional Montgomery algorithm [21] to reveal the key value. The correlation
coefficients for all possible hamming distances of the point coordinate P2 are plotted over power traces,
and that of the correct key hypothesis is plotted in black. In this case, as more than 103 power traces
are used, the correlation of the correct key is the highest one among that of all the other key hypotheses,
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Table 3. FPGA Implementation Results

Design Area (Slices) f max (MHz) Field Arithmetic

I 7,573 (32%) 27.7 Radix-2 Montgomery

II 8,158 (34%) 27.7 Radix-2 Randomized Montgomery

III 9,828 (41%) 20.2 Radix-4 Montgomery

IV 10,460 (43%) 20.2 Radix-4 Randomized Montgomery
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Fig. 7. (a) Environment of power measurement. (b) Current running through the DF-ECC processor recorded by
measuring the voltage drop via a resistor in series with the board power pin and FPGA power pin.

and then the key value can be found easily. However, even after collecting 106 power measurements from
the Design-II and Design-IV using randomized Montgomery operations, the correlation coefficients of
correct and incorrect hypothesis shown in Fig. 9 cannot be scattered, and they are near zero because the
processed data are uncorrelated to power model. This means that there is no information bias of the key
value extracted by the CPA attacks.
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Fig. 8. Correlation coefficients of the target traces and power model over power traces obtained from the (a)
Design-I (b) Design-III performing arithmetic in a fixed domain.

Our proposed DF-ECC processor was also implemented by UMC 90-nm CMOS technology, and
the post-layout simulations for ASIC implementation with comparisons are given in Table 4. In terms
of area-time product, our DF-ECC processor outperforms other approaches. By reducing the division
iteration time and randomizing intermediate values in field arithmetic without increasing the key size, our
work using radix-2 approach is at least 44% faster than the previous 521-bit design [9] with comparable
hardware complexity. Compared with a four multipliers based ECC processor without power-analysis
protection [5], our fully-pipelined and highly-integrated radix-4 GFAU architecture achieves competitive
speed with 51% less gate counts.

For the CPA resistance, our approach is to mask the processed data uncorrelated with power traces
without lengthening the hardware latency and without dominating the power consumption of key-
dependent operations. From the comparison given in Table 5, our proposed countermeasure is superior
to others not only in operation time but also in energy dissipation.
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Fig. 9. Correlation coefficients of the target traces and power model over power traces obtained from the (a)
Design-II (b) Design-IV performing arithmetic in a randomized domain.

Table 4. Implementation Results Compared with Related Works

Technology
Field Area

KGates
Galois f max Time Energy AT

Length (mm2) Field (MHz) (ms/ECSM) (µJ/ECSM) Product

Ours (Radix-2) 90-nm 160 0.21 61.3
GF (p160) 277 0.71 11.9 1

GF (2160) 277 0.61 9.6 1

Ours (Radix-4) 90-nm 160 0.29 83.2
GF (p160) 238 0.43 11.2 0.82

GF (2160) 238 0.39 8.97 0.87

TCAS-II’09 [5] 0.13-µm 160 1.44 169
GF (p160) 121 0.61 42.6 1.63*

GF (2160) 146 0.37 30.5 1.16*

Ours (Radix-2) 90-nm 521 0.58 168
GF (p521) 250 8.08 452 1

GF (2409) 263 4.65 246 1

Ours (Radix-4) 90-nm 521 0.93 265
GF (p521) 232 4.57 435 0.89

GF (2409) 238 2.77 238 0.94

ESSCIRC’10 [9] 90-nm 521 0.55 170
GF (p521) 132 19.2 1,123 2.40

GF (2409) 166 8.2 480 1.78

* Technology scaled area-time product = Gates × (Time × t), where t = 90-nm/0.13-µm.

Table 5. Overhead for CPA Resistance

Ours (Radix-2) Ours (Radix-4) ESSCIRC’10 [9] JSSC’06 [12] JSSC’10 [13]

Design 521 DF-ECC 521 DF-ECC 521 DF-ECC 128 AES 128 AES

Area 4.3% 3.6% 10% 210% 7.2%

Time 0 0 14.0%a 288% 100%

Energy 5.2% 3.8% 20.8%b 270% 33%

Overhead = Result differences between protected and unprotected circuit
Results of unprotected circuit

×100%.

a. Estimated by cycle count×clock period.

b. Estimated by operation time×average power.
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6 Conclusion

In this paper, we introduced a randomized dual-field Montgomery algorithm which is suitable for ECC
hardware implementation against the CPA attacks. Without modifying logic circuit and without pre-
computing data from host system, the relationship between target power traces and power model can
be broken by performing the field arithmetic in a unpredictable operating domain. The proposed CPA
countermeasure approach has been analyzed on an FPGA platform. Attacks on the unprotected designs
reveal the private key within one thousand power traces, while the key value of the protected core cannot
be extracted after one million power traces. Circuit overhead for randomly determining the operating
domain can be integrated into the system without speed degradation. Implemented by an UMC 90-nm
technology, our protected 521-bit DF-ECC processor using radix-4 randomized Montgomery operations,
with 3.6% area and 3.8% average power overhead, can perform one GF (p521) ECSM in 4.57ms and one
GF (2409) ECSM in 2.77ms. We believe that both high performance and efficient CPA countermeasure
are achieved in our proposed DF-ECC processor.
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