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Abstract. In this paper we present an FPGA implementation of a high-
speed elliptic curve scalar multiplier for binary finite fields. High speeds
are achieved by boosting the operating clock frequency while at the same
time reducing the number of clock cycles required to do a scalar multi-
plication. To increase clock frequency, the design uses optimized imple-
mentations of the underlying field primitives and a mathematically ana-
lyzed pipeline design. To reduce clock cycles, a new scheduling scheme is
presented that allows overlapped processing of scalar bits. The resulting
scalar multiplier is the fastest reported implementation for generic curves
over binary finite fields. Additionally, the optimized primitives leads to
area requirements that is significantly lesser compared to other high-
speed implementations. Detailed implementation results are furnished in
order to support the claims.

Keywords. Elliptic curve scalar multiplication, FPGA, high-speed im-
plementation, Montgomery ladder

1 Introduction

Elliptic curve cryptography (ECC) is an asymmetric key cipher adopted by the
IEEE [21] and NIST [22] as it offers more security per key bit compared to other
contemporary ciphers. Security in ECC based cryptosystems is achieved through
elliptic curve scalar multiplication. The complex finite field operations involved in
ECC often mandates dedicated accelerators for cryptographic and cryptanalytic
applications. Field programmable gate arrays ( FPGAs) are a popular platform
for accelerating curve scalar multiplication due to features such as in-house pro-
grammability, shorter time to market, reconfigurability, low non-recurring costs,
and simpler design cycles [23]. However, the constrained resources, large granu-
larity, and high costs of routing makes the development of high-speed hardware
on FPGAs difficult. The challenges involved in development with FPGAs have
led to several published articles on high-speed designs of elliptic curve scalar
multiplication for FPGA platforms [1–3, 5, 6, 9, 10, 17]. For binary finite fields
over generic curves, most notable works are by Chelton and Benaissa in [5] and
more recently Azarderakhsh and Reyhani-Masoleh in [2]. Chelton and Benaissa



are capable of doing a scalar multiplication in 19.5µsec, while Azarderakhsh and
Reyhani-Masoleh’s implementation requires 17.2µsec. In this paper, we propose
an elliptic curve multiplier (ECM) capable of doing scalar multiplications in
10.7µsec in the same finite field and FPGA family as [5] and [2].

The speed of a hardware design is dictated by 2 parameters: the frequency of
the clock and the number of clock cycles required to perform the computation.
One method to boost the maximum operable clock frequency is by reducing
area. Smaller area generally implies lesser routing delay, which in turn implies
higher operable clock frequencies. Another method to increase clock frequency
is by pipelining. Chelton and Benaissa [5] extensively rely on this in order to
achieve high-speeds. However extensive pipelining in the design is likely to in-
crease the clock cycles required for the computation. Clock cycles can be reduced
by parallelization, efficient scheduling, and advanced pipeline techniques such as
data-forwarding. Parallelization by replication of computing units was used in
[2] to achieve high speeds. The drawback of parallelization however is the large
area requirements. Our ECM achieves high-speeds by (1) reducing area, (2) ap-
propriate usage of FPGA hardware resources, (3) optimal pipelining enhanced
with data-forwarding, (4) and efficient scheduling mechanisms.

The area requirements of the ECM is primarily due to the finite field arith-
metic primitives, in particular multiplication and inversion. In [17], it was shown
that an ECM developed with highly optimized field primitives is capable of
achieving high computation speeds in-spite of using a näıve scalar multiplication
algorithm, no pipelining, or parallelization. Our choice of finite field primitives
is based on [17], and has an area requirement which is 50% lesser than [5] and
37% lesser than [2]. The reduced area results in better routing thus leading to
increased operating frequencies. Besides the finite field primitives, the registers
used in the ECM contribute significantly to the area. Each register in the ECM
stores a field element, which can be large. Besides, there are several such regis-
ters present. We argue that the area as well as delay can be reduced by placing
the registers efficiently in the FPGA.

Ideally, an L stage pipeline can boost the clock frequency up to L times. In
order to achieve the maximum effectiveness of the pipelines, the design should be
partitioned into L equal stages. That is, each stage of the pipeline should have the
same delay. However to date the only means of achieving this is by trial-and-error.
In this paper, we show that a theoretical model for FPGA designs, when applied
for the ECM, can be used to first estimate the delay in the critical path and
there by find the ideal pipelining. As L increases, there is likely to be more data
dependencies in the computations, thus resulting in more stalls (bubbles) in the
pipeline. The paper investigates scheduling strategies for the Montgomery scalar
multiplication algorithm, which is an efficient method for pipelining the ECM
[13] Compared to [5], which also uses the Montgomery ladder, our scheduling
techniques require 3m clock cycles lesser for scalar multiplication in the field
GF (2m).

The structure of the paper is as follows: Section 2 has the brief mathematical
background required to understand this paper. The organization of the ECM



is discussed in Section 3. Section 4 formally analyzes pipelining the ECM while
Section 5 discusses the scheduling of instructions in the pipeline. Section 6 deter-
mines the right pipeline for the ECM and Section 7 presents the architecture of
the ECM with the right pipeline. Implementation results are presented and com-
pared the state-of-the-art in Section 8, while the final section has the conclusion
for the paper.

2 Background

An elliptic curve is either represented by 2 point affine coordinates or 3 point
projective coordinates. The smaller number of finite field inversions required by
projective coordinates makes it the preferred coordinate system. For the field
GF (2m), the equation for an elliptic curve in projective coordinates is Y 2 +
XY Z = X3Z + aX2Z2 + bZ4, where the curve constants a and b ∈ GF (2m)
and b 6= 0. The points on the elliptic curve together with the point at infinity
(O) form an Abelian group under addition with group operations point addition
and point doubling. For a given point P on the curve (called the base point)

Algorithm 1: Montgomery Point Multiplication
Input: Base point P and scalar s = {st−1st−2 . . . s0}2 with st−1 = 1
Output: Point on the curve Q = sP

begin1

P1(X1, Z1)← P(X, Z); P2(X2, Z2)← 2P(X, Z)2
for k = t − 2 to 0 do3

if sk = 1 then4

P1 ← P1 + P25

P2 ← 2P26

end7

else8

P2 ← P1 + P29
P1 ← 2P110

end11

end12
return Q← Projective2Affine(P1 , P2)13

end14

and a scalar s, scalar multiplication is the computation of the scalar product sP .
Algorithm 1 depicts the Montgomery algorithm [11, 14] for computing sP . For
each bit in s, a point addition followed by a point doubling is done (lines 5,6 and
9,10). In these operations (listed in Equation 1) only the X and Z coordinates
of the points are used.

Xi ← Xi · Zj ; Zi ← Xj · Zi ; T ← Xj ; Xj ← X4
j + b · Z4

j

Zj ← (T · Zj)
2 ; T ← Xi · Zi ; Zi ← (Xi + Zi)

2 ; Xi ← x · Zi + T
(1)

Depending on the value of the bit sk, operand and destination registers for the
point operations vary. When sk = 1 then i = 1 and j = 2, and when sk = 0
then i = 2 and j = 1. The final step in the algorithm, Projective2Affine(·),
converts the 3 coordinate scalar product in to the acceptable 2 coordinate affine
form. This step involves a finite field inversion along with 9 other multiplications
[13].
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3 The Processor Organization

The functionality of the ECM is to execute Algorithm 1. It comprises of 2 units:
the register bank and the arithmetic unit as seen in Figure 1. In each clock cycle,
control signals are generated according to the value of the bit sk, which reads
operands from the register bank, performs the computation in the arithmetic
unit, and finally write back the results. In this section we present the architecture
for the register bank and arithmetic units.

3.1 Arithmetic Unit

The field multiplier is the central part of the arithmetic unit. We choose to use a
hybrid bit-parallel Karatsuba field multiplier (HBKM), which was first introduced
in [18] and then used in [17]. The advantage of the HBKM is the sub-quadratic
complexity of the Karatsuba algorithm coupled with efficient utilization of the
FPGA’s LUT resources. Further, the bit-parallel scheme requires lesser clock
cycles compared to digit level multipliers used in [2]. The HBKM recursively splits
the input operands until a threshold (τ) is reached, then threshold (school-book)
multipliers are applied. The outputs of the threshold multipliers are combined
and then reduced (Figure 2).

Field inversion is performed by a generalization of the Itoh-Tsujii inversion
algorithm for FPGA platforms [19]. The generalization requires a cascade of



2n exponentiation circuits (implemented as the Powerblock in Figure 1), where
1 ≤ n ≤ m − 1. The ideal choice for n depends on the field and the FPGA
platform. For example, in GF (2163) and FPGAs having 4 input LUTs (such as
Xilinx Virtex 4), the optimal choice for n is 2. More details on choosing n can
be found in [8]. The number of cascades, us, depends on the critical delay of the
ECM and will be discussed in Section 4. Further, an addition chain for ⌊m−1

n
⌋ is

required. Therefore, for GF (2163) and n = 2, an addition chain for 81 is needed.
The number of clock cycles required for inversion, assuming a Brauer chain, is
given by Equation 2, where the addition chain has the form (u1, u2, · · · , ul), and
L is the number of pipeline stages in the ECM [4].

ccita = L(l+ 1) +

l
∑

i=2

⌈ui − ui−1

us

⌉

(2)

3.2 Register Bank

There are six registers in the register bank, each capable of storing a field ele-
ment. Five of the registers are used for the computations in Equation 1, while
one is used for field inversion. There are 3 ways in which the registers can be
implemented in FPGAs. The first approach, using block RAM, is slow due to
constraints in routing. The two other alternatives are distributed RAM and flip-
flops. Distributed RAM allows the FPGA’s LUTs to be configured as RAM.
Each bit of the 6 registers will share the same LUT. However each register
is used for a different purpose therefore the centralization effect of distributed
RAM will cause long routes, leading to lowering of clock frequencies. Addition-
ally, there is an impact on the area requirements. Flip-flops on the other hand
allow de-centralization of the registers, there by allowing registers to be placed
in locations close to their usage, thus routing is easier. Further, each slice in the
FPGA has equal number of LUTs and flip-flops. The ECM is an LUT intensive
design, due to which several of the flip-flops in the slice remain unutilized. By
configuring the registers to make use of these flip-flops, no additional area (in
terms of the number of slices) is required.

4 Pipelining the ECM

All combinational data paths in the ECM start from the register bank output
and end at the register bank input. The maximum operable frequency of the
ECM is dictated by the longest combinational path, known as the critical path.
There can be several critical paths, one such example is highlighted through the
(red) dashed line in Figure 1.

Estimating Delays in the ECM : Let t∗cp be the delay of the critical paths

and f∗

1 = 1
t∗cp

the maximum operable frequency of the ECM prior to pipelining.

Consider the case of pipelining the ECM into L stages, then the maximum op-
erable frequency can be increased to at-most f∗

L = L × f∗

1 . This ideal frequency
can be achieved if and only if the following two conditions are satisfied.



Table 1. LUT delays of Various Combinational Circuit Components

Component k− LUT Delay for k ≥ 4 m = 163, k = 4

m bit field adder 1 1

m bit n : 1 Mux ⌈logk(n+ log2n)⌉ 2 (for n = 4)
(Dn:1(m)) 1 (for n = 2)

Exponentiation max(LUTDelay(di)), where di is the ith 2 (for n = 1)
Circuit (D2n (m)) output bit of the exponentiation circuit 2 (for n = 2)

Powerblock us ×D2n(m) +Dus:1(m) 4 (for us = 2)
(Dpowerblk(m))

Modular Reduction 1 for irreducible trinomials 2
(Dmod) 2 for pentanomials (for pentanomials)

HBKM As seen in Figure 2, this can be written as 11 (for τ = 11)
(DHBKM(m)) Dsplit +Dthreshold +Dcombine +Dmod

= ⌈logk(
m

τ
)⌉+ ⌈logk(2τ )⌉

+⌈log2
(

m

τ

)

⌉ +Dmod

1. Every critical path in the design should be split into L stages with each stage

having a delay of exactly
t∗cp
L
.

2. All other paths in the design should be split so that any stage in these paths

should have a delay which is less than or equal to
t∗cp
L
.

While it is not always possible to exactly obtain f∗

L, we can achieve close to
the ideal clock frequency by making a theoretical estimation of t∗cp and then
identifying the locations in the architecture where the pipeline stages have to
be inserted. We denote this theoretical estimate of delay by t#cp. The theoretical
analysis is based on the following prepositions. These propositions were first
stated in [19] and used to design high-speed inversion circuits. Their correctness
have been extensively validated in [19] for 4 and 6 input LUT based FPGAs.

Proposition 1. [19] For circuits which are implemented using LUTs, the delay
of a path in the circuit is proportional to the number of LUTs in the path.

Proposition 2. [19] The number of LUTs in the critical path of an n variable
Boolean function having the form y = gn(x1, x2, · · · , xn) is given by ⌈logk(n)⌉,
where k is the number of inputs to the LUTs (k− LUT ).

Using these two propositions it is possible to analyze the delay of various com-
binational circuit components in terms of LUTs. The LUT delays of relevant
combinational components are summarized in Table 1. The reader is referred to
[19] for detailed analysis of the LUT delays. The LUT delays of all components
in Figure 1 are shown in parenthesis for k = 4. Note that the analysis also con-
siders optimizations by the synthesis tool (such as the merging of the squarer
and adder before Mux B (Figure 1), which reduces the delay from 3 to 2).

Pipelining Paths in the ECM : Table 1 can be used to determine the LUT
delays of any path in the ECM. For the example critical path, (the red dashed
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line in Figure 1), the estimate for t∗cp is the sum of the LUT delays of each

component in the path. This evaluates to t#cp = 23. Figure 3 gives a detailed
view of this path. Pipelining the paths in the ECM require pipeline registers
to be introduced in between the LUTs. The following proposition determines
how the pipeline registers have to be inserted in a path in order to achieve the
maximum operable frequency (f#

L ) as close to the ideal (f∗

L) as possible (Note

that f#
L ≤ f∗

L).

Proposition 3. If t#cp is the LUT delay of the critical paths, and L is the desired

number of stages in the pipeline, then the best clock frequency (f#

L ) is achieved

only if no path has delay more than ⌈
t#cp
L
⌉.

For example for L = 4, no path should have a LUT delay more than ⌈ 23
4
⌉. This

identifies the exact locations in the paths where pipeline registers have to be
inserted. Figure 3 shows the positions of the pipeline register for L = 4 for the
critical path.

On the Pipelining of the Powerblock : The powerblock is used only
once during the computation; at the end of the scalar multiplication. There
are two choices with regard to implementing the powerblock, either pipeline
the powerblock as per Proposition 3 or reduce the number of 2n circuits in the
cascade so that the following LUT delay condition is satisfied (refer Table 1),

Dpowerblock(m) ≤ ⌈
t#cp

L
⌉ − 1 (3)

, where −1 is due to the output mux in the register bank. However the sequential
nature of the Itoh-Tsujii algorithm [7] ensures that the result of one step is used
in the next. Due to the data dependencies which arise the algorithm is not suited
for pipelining and hence the latter strategy is favored. For k = 4 and m = 163,
the optimal exponentiation circuit is n = 2 having an LUT delay of 2 [19]. Thus
a cascade of two 22 circuits would best satisfy the inequality in (3).

5 Scheduling for the ECM

In this section we discuss the scheduling of the addition-doubling loop in Algo-
rithm 1. For each bit in the scalar (sk), the eight operations in Equation 1 are



Table 2. Scheduling Instructions for the ECM

ek1 : Xi ← Xi · Zj ek4 : Zj ← (T · Zj)
2

ek2 : Zi ← Xj · Zi ek5 : T ← Xi · Zi; Zi ← (Xi + Zi)
2

ek3 : T ← Xj ; Xj ← X4

j + b · Z4

j ek6 : Xi ← x · Zi + T

ek1 ek2 ek3
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ek4
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2

(b) Timing Diagram

Fig. 4. Scheduling the Scalar Bit sk

computed. Unlike [2], where 2 finite field multipliers are used in the architecture,
we, like [5], use a single field multiplier. This restriction makes the field multiplier
the most critical resource in the ECM as Equation 1 involves six field multipli-
cations, which have to be done sequentially. The remaining operations comprise
of additions, squarings, and data transfers can be done in parallel with the mul-
tiplications. Equation 1 can be rewritten as in Table 5 using 6 instructions, with
each instruction capable of executing simultaneously in the ECM.

Proper scheduling of the 6 instructions is required to minimize the impact
of data dependencies, thus reducing pipeline stalls. The dependencies between
the instructions ek1 to ek6 are shown in Figure 4(a). In the figure a solid arrow
implies that the subsequent instruction cannot be started unless the previous
instruction has completed, while a dashed arrow implies that the subsequent
instruction cannot be started unless the previous instruction has started. For
example ek6 uses Zi, which is updated in ek5 . Since the update does not require a
multiplication (an addition followed by a squaring here), it is completed in one
clock cycle. Thus ek5 to ek6 has a dashed arrow, and ek6 can start one clock cycle
after ek5 . On the other hand, dependencies depicted with the solid arrow involve
the multiplier output in the former instruction. This will take L clock cycles,
therefore a longer wait.

The dependency diagram shows that in the longest dependency chain, ek5 and
ek6 has dependency on ek1 and ek2 . Thus e

k
1 and ek2 are scheduled before ek3 and ek4 .

Since the addition in ek6 has a dependency on ek5 , operation ek5 is triggered just
after completion of ek1 and ek2 ; and operation ek6 is triggered in the next clock
cycle. When L ≥ 3, the interval between starting and completion of ek1 and ek2
can be utilized by scheduling ek3 and ek4 . Thus, the possible scheduling schemes
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for the 6 instructions is
({ek1 , e

k
2}, e

k
3 , e

k
4 , e

k
5 , e

k
6) (4)

Where { } implies that there is no strict order in the scheduling (either e1 or
e2 can be scheduled first). An example of a scheduling for L = 3 is shown in
Figure 4(b). For L ≥ 31, the number of clock cycles required for each bit in the
scalar is 2L + 2 . In the next part of this section we show that the clock cycles
can be reduced to 2L + 1 (and in some cases 2L) if two consecutive bits of the
scalar are considered.

5.1 Scheduling for Two Consecutive Bits of the Scalar

Consider the scheduling of operations for two bits of the scalar, sk and sk−1

(Algorithm 1). We assume that the computation of bit sk is completed and the
next bit sk−1 is to be scheduled. Two cases arise: sk−1 = sk and sk−1 6= sk. We
consider each case separately.

When the Consecutive Key Bits are Equal : Figure 5(a) shows the data
dependencies when the two bits are equal. The last two instructions to com-
plete for the sk bit are ek5 and ek6 . For the subsequent bit (sk−1), either ek−1

1

or ek−1
2 has to be scheduled first according to the sequence in (4). We see from

Figure 5(a) that ek−1
1 depends on ek6 , while ek−1

2 depends on ek5 . Further, since
ek5 completes earlier than ek6 , we schedule e

k−1
2 before ek−1

1 . Thus the scheduling
for 2 consecutive equal bits is

({ek1 , ek2} , e
k
3 , ek4 , ek5 , ek6 , ek−1

2 , ek−1
1 , ek−1

3 , ek−1
4 , ek−1

5 , ek−1
6 )

An example is shown in Figure 5(b).

1The special case of L <= 2 can trivially be analyzed. The clock cycles required in
this case is six.
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When the Consecutive Key Bits are Not Equal : Figure 6(a) shows the
data dependency for two consecutive scalar bits that are not equal. Here it can
be seen that ek−1

1 and ek−1
2 depend on ek5 and ek6 respectively. Since, ek5 completes

before ek6 , we schedule e
k−1
1 before ek−1

2 . The scheduling for two consecutive bits
is as follows

({ek1 , ek2} , e
k
3 , ek4 , ek5 , ek6 , ek−1

1 , ek−1
2 , ek−1

3 , ek−1
4 , ek−1

5 , ek−1
6 )

An example is shown in Figure 6(b).

Effective Clock Cycle Requirement : Starting from ek1 (or ek2), completion
of ek2 (or ek1) takes L + 1 clock cycles, for an L stage pipelined ECM. After
completion of ek1 and ek2 , e

k
5 starts. This is followed by ek6 in the next clock cycle.

So in all 2L + 2 clock cycles are required. The last clock cycle however is also
used for the next bit of the scalar. So effectively the clock cycles required per bit
is 2L+ 1. Compared to the work in [5], our scheduling strategy saves two clock
cycles for each bit of the scalar. For an m bit scalar, the saving in clock cycles
compared to [5] is 2m. Certain values of L allow data forwarding to take place.
In such cases the clock cycles per bit reduces to 2L, thus saving 3m clock cycles
compared to [5].

5.2 Data Forwarding to Reduce Clock Cycles

For a given value of L, Proposition 3 specifies where the pipeline registers have to
be placed in the ECM. If the value of L is such that a pipeline register is placed at
the output of the field multiplier, then data forwarding can be applied to save one
clock cycle per scalar bit. For example, consider L = 4. This has pipeline registers
placed immediately after the multiplier as shown in Figure 3. This register can
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be used to start the instruction ek5 one clock cycle earlier. Figure 5.1 compares
the execution of a single bit with and without data forwarding. Though ek2 (or
ek1) finishes in the fifth clock cycle, the result of the multiplication is latched
into the pipeline register after the fourth clock cycle. With data forwarding from
this register, we start ek5 from the fifth clock cycle, thus reducing clock cycle
requirement by one to 2L.

6 Finding the Right Pipeline

The time taken for a scalar multiplication in the ECM is the product of the
number of clock cycles required and the time period of the clock. For an L stage
pipeline, Section 4 determines the best time period for the clock. In this section
we would first estimate the number of clock cycles required and then analyze
the effect of L on the computation time.

6.1 Number of Clock Cycles

There are two parts in Algorithm 1. First the scalar multiplication in projective
coordinates and then the conversion to affine coordinates. The conversion com-
prises of finding an inverse and 9 multiplications. The clock cycles required is
given by cc2scm = cc3scm + ccita + ccconv.

cc3scm is the clock cycles required for the scalar multiplication in projective
coordinates. From the analysis in Section 5 this can be written as 2mL if data
forwarding is possible and m(2L + 1) otherwise. For the conversion to affine
coordinates, finding the inverse requires ccita clock cycles (from Equation 2),
while the 9 multiplications following the inverse requires ccconv clock cycles. The
value of ccconv for the ECM was found to be 7 + 9L. Thus,

cc2scm =
[

cc3scm

]

+
[

L(l+ 1) +

l
∑

i=2

⌈ui − ui−1

us

⌉]

+
[

7 + 9L
]

(5)



Table 3. Computation Time Estimates for Various Values of L for an ECM over
GF (2163 and FPGA with 4 input LUTs

L us DataForwarding cc3scm ccita ccconv cc2scm ct
Feasible

1 9 No 978 25 16 1019 1019t
#
cp

2 4 No 978 44 25 1047 524t
#
cp

3 3 No 1141 61 34 1236 412t
#
cp

4 2 Yes 1304 82 43 1429 357t
#
cp

5 1 No 1793 130 52 1975 395t
#
cp

6 1 Yes 1956 140 61 2157 360t
#
cp

7 1 Yes 2282 150 70 2502 358t
#
cp

6.2 Analyzing Computation Time

The procedure involved in analyzing the computation time for an L stage pipeline
is as follows.

1. Determine t#cp (the LUT delay of the critical path of the combinational cir-
cuit) using Table 1.

2. Compute the maximum operable frequency (⌈
t#cp
L
⌉) and determine the lo-

cations of the pipeline registers. Therefore determine if data forwarding is
possible.

3. Determine us, the number of cascades in the power block, using Equation 3
and the delay of a single 2n block (Table 1).

4. Compute cc2scm, using Equation 5.

5. The computation time ct is given by cc2scm × ⌈
t#cp
L
⌉.

For an ECM over GF (2163), the threshold for the HBKM set as 11, an addition
chain of (1, 2, 4, 5, 10, 20, 40, 80, 81), and 22 exponentiation circuits in the power
block, the t#cp is 23. The estimated computation time for various values of L are
given in Table 3. The cases L = 1 and L = 2 are special as for these cc3scm = 6m.
The table clearly shows that the least computation time is obtained when L = 4.

7 Detailed Architecture of the ECM

Figure 8 shows the detailed architecture for L = 4. The input to the architec-
ture is the scalar, reset signal, and the clock. At reset, the curve constants and
base point are loaded from ROM. At every clock cycle, the control unit gener-
ates signals for the register bank and the arithmetic unit. Registers are selected
through multiplexers in the register bank and fed to the arithmetic unit through
the buses A0, A1, A2, A3, and Qin. Multiplexers again channel the data into
the multiplier. The results are written back into the registers through buses C0,
C1, C2, Qout. Note the placement of the pipeline registers dividing the circuit
in 4 stages and ensuring that each stage has an LUT delay which is less than or
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equal to ⌈ 23
4
⌉ = 6. Note also the pipeline register present immediately after the

field multiplier (HBKM) used for data forwarding.



Table 4. Comparison of the Proposed ECM with FPGA based Published Results

Work Platform Field Slices LUTs Freq Comp.
(m) (MHz) Time (µs)

Orlando [15] XCV400E 163 - 3002 76.7 210
Bednara [3] XCV1000 191 - 48300 36 270
Gura [6] XCV2000E 163 - 19508 66.5 140
Lutz [12] XCV2000E 163 - 10017 66 233
Saqib [20] XCV3200 191 18314 - 10 56
Pu [16] XC2V1000 193 - 3601 115 167
Ansari [1] XC2V2000 163 - 8300 100 42
Rebeiro [17] XC4V140 233 19674 37073 60 31

Järvinen1[9] Stratix II 163 (11800ALMs) - - 48.9

Kim 2[10] XC4VLX80 163 24363 - 143 10.1
Chelton [5] XCV2600E 163 15368 26390 91 33

XC4V200 163 16209 26364 153.9 19.5

Azarderakhsh3[2] XC4CLX100 163 12834 22815 196 17.2
XC5VLX110 163 6536 17305 262 12.9

Our Result (Virtex 4 FPGA) XC4VLX80 163 8070 14265 147 9.7
XC4V200 163 8095 14507 132 10.7
XC4VLX100 233 13620 23147 154 12.5

Our Result (Virtex 5 FPGA) XC5VLX85t 163 3446 10176 167 8.6
XC5VSX240 163 3513 10195 148 9.5
XC5VLX85t 233 5644 18097 156 12.3

1. uses 4 field multipliers; 2. uses 3 field multipliers; 3. uses 2 field multipliers

Figure 9 shows the finite state machine for L = 4. The states I0 to I5 are used
for initialization (line 2 in Algorithm 1). State AD1 represents the first clock
cycle for the scalar bit st−2. States AD2

1 to AD9
1 represent the computations

when sk = 1, while AD2
0 to AD9

0 are for sk = 0. Each state corresponds to a
clock cycle in Figure 7(b). Processing for the next scalar bit (sk−1) begins in the
same clock cycle as AD9

0 and AD9
1 in states AD1

eq and AD1
neq. The states AD1

eq

or AD1
neq are entered depending on the equality of sk and sk−1. If sk = sk−1

then AD1
eq is entered, else AD1

neq is entered. After processing of all scalar bits
is complete, the conversion to affine coordinates (ccita + ccconv) takes place in
states C1 to C125.

8 Implementation Results and Comparisons

We evaluated the ECM using Xilinx Virtex 4 and Virtex 5 platforms. Table 4
shows the place and route results using the Xilinx ISE tool. There have been
several implementations of elliptic curve processors on different fields, curves,
platforms, and for different applications. Due to the vast variety of implementa-
tions available, we restrict comparisons with FPGA implementations for generic
elliptic curves over binary finite fields (Table 4). In this section we analyze recent
high-speed implementations.

The implementation in [17] is over the field GF (2233) and does a scalar
multiplication in 31µs. The implementation relied heavily on optimized finite-
field primitives and was not pipelined or parallelized. Our implementation on
the same field uses enhanced primitives from [17], and therefore has smaller area
requirements. Additionally higher speeds are achieved due to efficient pipelining
and scheduling of instructions.

The implementation in [5] uses a 7 stage pipeline, thus achieves high oper-
ating clock frequency. However, the un-optimized pipeline and large clock cycle
requirement limits performance. In comparison, the ECM uses better scheduling



there by saving around 1, 600 clock cycles and a better pipeline, there by ob-
taining frequencies close to [5], in-spite of having only 4 pipeline stages. Further,
efficient field primitives and the sub-quadratic Karatsuba multiplier instead of
the quadratic Mastrovito multiplier result in 50% reduction in area on Virtex 4.

In [2], two highly optimized digit field multipliers were used. This enabled
parallelization of the instructions and higher clock frequency. However, the use
of digit field multipliers resulted in large clock cycle requirement for scalar mul-
tiplication (estimated at 3,380). We use a single fully parallel field multiplier
requiring only 1, 429 clock cycles and an area which is 37% lesser in Virtex 4.

In [10], a computation time of 10.1µswas achieved while on the same platform
our ECM achieves a computation time of 9.7µs. Although the speed gained is
minimal, it should be noted that [10] uses 3 digit-level finite field multipliers
compared to one in ours, thus has an area requirement which is about 3 times
ours. The compact area is useful especially for cryptanalytic applications where
our ECM can test thrice as many keys compared to [10].

9 Conclusion

The papers presents techniques to reduce the computation time for scalar multi-
plications on elliptic curves. The techniques involve the use of highly optimized
finite field primitives and efficient utilization of FPGA resources in order to re-
duce the area requirements, which in turn leads to better routing, hence higher
clock frequencies. Additionally, a theoretical analysis of the data paths, help
pipeline the multiplier. Further, efficient scheduling of elliptic curve operations,
supported with data-forwarding mechanisms, reduce the number of clock cycles
required to execute a scalar multiplication. These mechanisms result in a scalar
multiplier that is faster than any other reported implementations, in-spite of
having just a single finite field multiplier. The presence of a single optimized
field multiplier additionally leads to area requirements, which is considerably
lesser than contemporary implementations. Results are presented for generic
curves over the field GF (2163), however these mechanisms can be applied for
other curves and fields as well.
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20. N. A. Saqib, F. Rodŕıiguez-Henŕıquez, and A. Diaz-Perez. A Parallel Architecture
for Fast Computation of Elliptic Curve Scalar Multiplication OverGF (2m). In 18th
International Parallel and Distributed Processing Symposium, 2004. Proceedings,
Apr. 2004.

21. I. C. Society. IEEE Standard Specifications for Public-key Cryptography, 2000.
22. U.S. Department of Commerce,National Institute of Standards and Technology.

Digital signature standard (DSS), 2000.
23. T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-the-art

Implementations and Attacks. Trans. on Embedded Computing Sys., 3(3):534–574,
2004.

Appendix A

In this appendix we summarize the ideal design parameters for k = 4 (Xilinx
Virtex 4 FPGA) and k = 6 (Xilinx Virtex 5) for the field GF (2163).

Table 5. Summary of Design Parameters for GF (2163) for k = 4 and k = 6

Parameter k = 4 k = 6

Threshold used in HBKM (τ) 11 11

Exponentiation Circuit in Powerblock 22 circuit (Quad) 24 circuit
Addition Chain (1, 2, 4, 5, 10, 20, 40, 80, 81) (1, 2, 4, 5, 10, 20, 40)
Number of Cascades in Powerblock (us) 2 1

LUT Delay (t
#
cp) 23 17

Ideal Number of Pipeline Stages (L) 4 4

Table 6. LUT requirement for different Primitives in GF (2163)

Primitives No. of LUTs in Virtex 4 LUTs in Virtex 5
Instances per unit total per unit total

Adder 1 163 163 163 163
Squarer 1 163 163 163 163

Adder merged with Squarer1 1 163 163 163 163

Quad Circuit2 4 315 1260 249 996

Mux 2:13 5, 4 163 815 163 652
Mux 4:1 8 326 2608 163 1304
Multiplier 1 9092 9092 6313 6313

Total - - 14264 - 9754

1. This is present before Mux B

2. Two of these are present in the Powerblock

3. On Virtex 4, Mux F is 2 : 1. On Virtex 5, this is not required as there is single 24 circuit

Appendix B

In this appendix we present more details about the implementation. In order to
understand how the FPGA’s LUTs have been utilized, we have synthesized each



module individually. Table 6 gives the details according to Figure 8. It may be
noted that these results may not exactly match the results in Table 4 because
(1) they have been synthesized individually (2) and it does not have the top
module which contains the control unit.

For the Virtex 5 FPGA, the Powerblock should ideally have a single 24 circuit
as seen in Table 5. This we have implemented using a cascade of two quad
circuits.

The critical path for the design (both in Virtex 4 and Virtex 5) obtained from
the Xilinx tool, was through Mux H (in the register bank), the quad circuit, and
then the Mux B (refer Figure 8). This path is present in the first stage of the
pipeline and corresponds to the maximum operating clock frequency specified in
Table 4.


