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Abstract. Towards the cold boot attack (a kind of side channel attack),
the problems of reconstructing RSA parameters when (i) certain bits are
unknown (Heninger and Shacham, Crypto 2009) and (ii) the bits are
available but with some error probability (Henecka, May and Meurer,
Crypto 2010) have been considered very recently. In this paper we exploit
the error correction heuristic proposed by Henecka et al to show that
CRT-RSA schemes having low Hamming weight decryption exponents
are insecure given small encryption exponents (e.g., e = 216 + 1). In
particular, we show that the CRT-RSA schemes presented by Lim and
Lee (SAC 1996) and Galbraith, Heneghan and McKee (ACISP 2005)
with low weight decryption exponents can be broken in a few minutes in
certain cases. Further, the scheme of Maitra and Sarkar (CT-RSA 2010),
where the decryption exponents are not of low weight but they have large
low weight factors, can also be cryptanalysed. We also identify a few
modifications of the error correction strategy that provides significantly
improved experimental outcome towards the cold boot attack.

Keywords: Cold Boot Attack, CRT-RSA, Cryptanalysis, Error Correction, Ex-
ponents, Hamming Weight, RSA.

1 Introduction

Side channel attack. Side channel cryptanalysis is now a quite popular tech-
nique for evaluating cryptographic schemes and this method usually considers
additional information available from the physical implementation of a cryp-
tosystem, rather than exploiting the theoretical weaknesses of the algorithm
itself. The additional information may be obtained from timing information,
power consumption, electromagnetic leaks etc. and the attack may very well
exploit technical knowledge of the internal operation of the system on which
the algorithm is implemented. The initial research in this area is pioneered by
Kocher [18].

Recently, the idea of cold-boot attack has been presented in [12] that shows
it is possible to exploit degraded data from the computer memory to attack



cryptosystems such as DES, AES, RSA etc. This idea has been studied in more
detail in [14] that shows that if certain percentage of bits of the RSA secret key
are available, then it is possible to reconstruct the complete secret key (or in
other words, it is possible to factorize the RSA modulus). Subsequently, in [13],
a model has been considered, where the bits of the secret key are available with
some probability of error. In this paper we study the work of [13] in more detail.

In general, the side channel attacks use the existing cryptanalytic techniques
with additional (side channel) information. In contrast, in this paper we exploit
the algorithm developed for side channel attacks [13], that is applied for a direct
attack on certain versions of CRT-RSA with no extra hints or other informa-
tion. Further, we also provide certain modifications on the algorithm of [13] to
(heuristically) improve the results of [13]. This improved strategy can immedi-
ately be used for the side channel cryptanalysis presented in [13] which is related
to cold-boot attack [12].

We also like to refer the recent paper [6] related to noisy factoring where
new attacks have been proposed whose running time is essentially the “square
root” of exhaustive search. In this case [6, Section 4], that attack considers that
the noisy version of one of the RSA primes is available. However, the cold-boot
attack model that we consider here, is different from [6] as the noisy versions of
more than one secret parameters of RSA variants are in the hand of cryptanalyst.

RSA. In the seventies, the path-breaking idea of public key cryptosystem has
been introduced by Diffe and Hellman [10] and as an outstanding follow-up,
RSA public key cryptosystem [27] has been proposed by Rivest, Shamir and
Adleman. RSA is undoubtedly the most attractive research area in cryptology
with immediate applications in practice.

The RSA cryptosystem and several variants of it are in use for applications
related to secure data exchange mechanisms. The encryption as well as the de-
cryption process in RSA use modular exponentiation. As square and multiply is
the most popular method for modular exponentiation, it is immediate to note
that the cost is low for small exponents.

Before proceeding further, let us briefly explain the RSA public key cryp-
tosystem. In RSA, a large integer N is generated such that N = pq, where
p, q are primes of same bit lengths. The encryption and decryption exponents
are denoted by e, d respectively and they are chosen in such a manner that
ed ≡ 1 mod φ(N), where φ(N) = φ(pq) = (p − 1)(q − 1), the Euler’s totient
function. The parameters e,N are distributed as the public key and the part d
is kept secret. In the encryption process, we have C = Me mod N , whereas, the
decryption is performed as M = Cd mod N .

It is clear that the cost of modular exponentiation can be reduced if one can
reduce the exponents e, d. However, ed > φ(N) provides the constraint that one
cannot make both e, d small. For any integer x, let us denote its bit-length as `x
and thus `e + `d ≥ `N . Towards making the decryption process faster, the secret
decryption exponent d has to be made small. In this direction, using the idea of
continued fraction, Wiener [28] showed that when d < 1
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4 , one can factor N



efficiently. Later, using lattice based techniques, this result has been improved by
Boneh and Durfee [3, 2] till the upper bound N0.292. To achieve further efficiency
during encryption process, small e is considered. Coppersmith [7] has shown that
RSA with very small e, e.g., e = 3 is not secure. For practical purposes, little
larger encryption exponents are used. For example, it is a common practice to
use e = 216 + 1 and it is believed to be quite secure. Given small e, d becomes of
the order of N , and the decryption process will be much less efficient than the
encryption.

CRT-RSA. To achieve further efficiency during decryption, Wiener [28] pre-
scribed use of Chinese Remainder Theorem (CRT) that has earlier been studied
by Quisquater and Couvreur [26]. This is known as CRT-RSA. In CRT-RSA,
one uses dp = d mod (p− 1) and dq = d mod (q − 1), instead of d, for the de-
cryption process. This is the most widely used variant of RSA in practice, and
decryption becomes more efficient if one pre-calculates the value of q−1 mod p.
Thus, in PKCS [24] standard for the RSA cryptosystem, it is recommended
to store the RSA secret parameters as a tuple (p, q, d, dp, dq, q

−1 mod p). For
all the cryptanalytic strategy we mention here, the term q−1 mod p could not
be exploited. Thus, in this paper, we will refer the secret key of RSA as a tu-
ple SK = (p, q, d, dp, dq). Let us now discuss the cryptanalytic results related
to CRT-RSA. The birthday attack has been pointed out by Pinch (as referred
in [25]) in case of very small dp, dq (one may also have a look at [23]). Further,
if dp, dq < N0.073, one can factor N in polynomial time [17]. In [16], it has been
shown that CRT-RSA is weak if dp − dq is known and dp, dq are smaller than
N0.099. Broadly speaking, it is easy to see that CRT-RSA can be broken in O(e)
time if dp − dq can be obtained with small effort.

There are also some important results related to RSA variants under the fault
attack. Boneh et al [4] showed that CRT-RSA implementations are vulnerable
in this regard. Later Coron et al [8, 9] extended the results of [4]. Recently, Brier
et al [5] have presented alternative key-recovery attacks on CRT-RSA signatures
under fault model.

RSA and CRT-RSA variants. There are several proposals on RSA and CRT-
RSA key generation algorithms such that e is small and the secret parameters
have certain special structures. For example, Lenstra [19] pointed out that by
taking N with half of most significant bits to be zero, one would obtain around
30% advantage in encryption and decryption process. Similar idea for using
large number of zeros in the binary representation of decryption exponent has
also been used in several papers. In such a case, the multiplication effort will
be reduced a lot in square and multiply algorithm. Initially Lim and Lee [21]
considered the RSA keys with relatively low Hamming weight of the decryption
exponent d. Later, Galbraith et al [11] proposed a key generation algorithm
for CRT-RSA. Using that idea, one can generate CRT-RSA modulus N which
allows the cost of encryption and decryption to be balanced according to the



requirements of the applications. For faster decryption, one can choose dp, dq
with low Hamming weight. In this regard, Galbraith et al [11] mentioned

“In some settings we may also want to choose the di to have low Ham-
ming weight. This is easily done if the ki are small.”

Towards the security analysis, for small e, the estimated time complexity to

attack such a scheme [11] has been presented as O
(√

wdp
( `dp/2
wdp/2

))
, where wx is

the Hamming weight of the binary representation of the integer x. In line of the
work of [11], another efficient scheme has been proposed in [22] that also relied on
large low weight factors in the decryption exponent dp, dq. The security analysis
of [22] show that the exhaustive search for the low Hamming weight factors in
the decryption exponents is an approach to attack such a scheme. Note that the
schemes of [21, 11, 22] are motivated towards implementing on low end devices
with limited computational power (such as smart card).

Our Contribution. To the best of our knowledge, there has been no crypt-
analytic result on the security of schemes [21, 11, 22] so far. For the first time,
in contrary to the claims in [21, 11, 22], we show that the ideas exploiting low
weight integers in the secret decryption exponents, can be broken much faster.
The basic technique we use in this paper is the work of [13] related to error
correction of RSA secret key. In Crypto 2010, Henecka et al [13] studied the
case when the bits of SK were known with some error probability for each bit.
We refer a noisy version of SK as ˜SK, i.e., ˜SK = (p̃, q̃, d̃, d̃p, d̃q). That is, each
bit of the parameters in SK is considered to be flipped with some probability
δ ∈ [0, 12 ). The authors [13] could show that one can correct the errors in the
secret key (i.e. recover the secret key) in polynomial time (for small e) when the
error rate δ is less than 0.237, 0.160, 0.084 when noisy versions of (p, q, d, dp, dq)
or (p, q, d) or (p, q) are available.

The algorithm presented in [13] guesses the bits of one of the primes and
then uses the reconstruction technique for cold-boot attack in [14] as to get ap-
proximations of the other parameters in SK. The verification of each guess is
achieved by comparing the Hamming distance of the guess with the erroneous
version of SK obtained through side-channel attacks. This is equivalent to prun-
ing the search space towards the correct solution, and hence higher bit-error can
be corrected if one uses more parameters from SK during the pruning phase.

In CRT-RSA situation, we have edp ≡ 1 mod (p − 1). Thus, one can write
edp = 1 + kp(p − 1) where kp < e. Similarly we have edq = 1 + kq(q − 1)
where kq < e. For small values of e, one may assume kp, kq are known to the
attacker in O(e) time complexity as we explain in Section 2. In general, for a
randomly chosen integer x, we have wx ≈ `x

2 . However, for efficient decryption,
sometimes wdp , wdq are taken significantly smaller than the random case. For
example, consider that `dp = `dq = 512 and wdp , wdq ≈ 50. In such a scenario,
one can take the all zero bit string as error-incorporated (noisy) presentation of
dp, dq, where the error rate is around 50

512 ≈ 10%. As the error rate is significantly
small, one can apply the error correcting algorithm of [13] to recover the secret



key. Denoting the time complexity of the error-correction algorithm [13] as τ ,
our strategy attacks the schemes [21, 11] in τO(e) time, and the scheme [22] in
τO(e3) time.

While attacking the schemes [21, 11, 22], one can attempt to recover all the
bits of p as it is done for the error correcting algorithm in [13]. However, one can
also try to construct only the least significant half of p using the same strategy
and then use the lattice based result of [1] to get the complete p. While describing
the experimental results, we present separate data for constructing all the bits
of p and only least significant half of p.

While applying the heuristic [13], we noted a few modifications that can im-
prove the performance significantly and the central idea is as follows. Instead of a
single fixed threshold related to bit-matching in [13], we use multiple thresholds
towards the motivation that we involve several constraints on the secret param-
eters in our case whereas a single constraint has been taken into consideration
in [13].

Parameters Upper bound of δ [13] Success probability (expt.) upper bound of δ
theoretical experimental [13] our achieved in our expt.

(p, q) 0.084 0.08 0.22 0.61 0.12
(p, q, d) 0.160 0.14 0.15 0.52 0.17

(p, q, d, dp, dq) 0.237 0.20 0.21 0.50 0.25

Table 1. Experimental results of [13] with maximum possible δ as available from [13,
Section 6, Tables 2, 3, 4].

To present a glimpse of our improvement, let us provide a brief comparison
of our results with that of [13] in Table 1. For the experiments, we only refer to
the results at maximum value of δ in [13] (and show that our success probability
is better at that point) because our main contribution is to show that we can
go significantly beyond the bound of δ in [13] with our heuristic strategy in
Algorithm 2 (Section 3). See Section 4 for the detailed experimental results. For
any other results describing lower error rates presented in [13], we always obtain
improved success probability and those are not explicitly mentioned here.

We like to point out that apart from the specific attack on CRT-RSA with
certain parameters, our improved heuristic can correct more noise than the ex-
isting strategy [13] for cold-boot attack in general.

Roadmap. In Section 2, we efficiently exploit the error correction strategy
of [13] to show that CRT-RSA schemes that involve low weight secret param-
eters are not secure. We point out that the CRT-RSA based schemes of [21,
11] with certain parameters can be broken in a few minutes (Section 2.1) and
also present cryptanalytic results on the scheme of [22] (Section 2.2). Further,
in the process, we provide modifications to the error correction heuristic of [13]
that provides significantly improved experimental results. This is presented in



Section 3. Detailed experimental results are presented in Section 4. Conclusion
of this paper is presented in Section 5.

2 The idea of Cryptanalysis

We start with the basic relations of CRT-RSA, such as edp = 1 + kp(p − 1) ⇒
kp − 1 ≡ kpp mod e, and edq = 1 + kp(q − 1) ⇒ kq − 1 ≡ kqq mod e. From

these we get kq ≡ (kp − 1) (kp(1−N)− 1)
−1

mod e. Since both kp, kq < e and
from the above equation a choice of kp fixes kq, there are O(e) possible choices
for the pairs (kp, kq). As we have assumed, the Hamming weight of dp, dq are
considered to be significantly lower than the random case. Further, the presence
of 1’s in the binary representation of dp, dq are considered to be i.i.d. For better
explanation, from now on, we will assume that kp, kq are known to the attacker
and finally the complexity of the attack will be obtained by multiplying an O(e)
factor, unless mentioned otherwise.

Our idea is to guess a few bits (say a many bits) of p from the least significant
side and let the corresponding integer be p′. From p′, we get an approximation q′

of q. From p′, q′ and using the knowledge of e, kp, kq, we obtain the approxima-
tions of dp, dq, that we denote by d′p, d

′
q respectively. If the Hamming weights of

d′p, d
′
q are less than some predefined threshold, then p′ would be a possible choice

of p. This process will be repeated until we have obtained a set A of possible
guesses p′ for p. Then we extend the solutions by adding a more bits in the more
significant side with the possible partial solutions in A. The process continues
till we get a set of possible solutions for p itself.

Input: N, e, kp, kq and a,C
Output: Set A, containing possible guesses for p.

Initialize b = 0, A = ∅, A−1 = {λ}, i = 1;1

while b < `N
2

do2

A = {0, 1}a‖A−1;3

For each possible options p′ ∈ A, calculate q′ = (p′)−1N mod 2b+a;4

For each p′, q′, calculate5

d′p = (1 + kp(p′ − 1)) e−1 mod 2b+a, d′q = (1 + kq(q′ − 1)) e−1 mod 2b+a;
If the number of 0’s taking together the binary patterns of d′p, d

′
q in the6

positions b to b+ a− 1 from the least significant side is less than C, then
delete p′ from A;
If b 6= 0 and A = ∅, then terminate the algorithm and report failure;7

A−1 = A; b = b+ a; i = i+ 1;8

end
Report A;9

Algorithm 1: Reconstruction algorithm for p.



In Algorithm 1, we present the algorithm formally. For that we need to use
certain notations. Given two binary strings u1, u2, by u1‖u2 we mean the con-
catenation of the strings. With abuse of notation, for two integers x, y, by x‖y
we denote the integer formed by the concatenation of the binary representations
of x, y. We also consider the notation X‖Y = {x‖y : x ∈ X, y ∈ Y }. By λ we
mean an empty or null string. Steps 4 and 5 in Algorithm 1 can be calculated
efficiently using the relations [13, Equations (8), (10), (11)].

2.1 Cryptanalysis of [21, 11]

In [21, 11], CRT-RSA secret keys are generated in a manner such that the weights
of dp, dq are small. By δ we denote the probability that a bit of dp or dq is 1.

Thus, δ can be estimated as
wdp
`dp

or
wdq
`dq

. Following the theoretical results of [13],

we immediately get the result as below. For the sake of completeness, a detailed
analysis regarding this is available in Appendix A.

Theorem 1. Let a = d ln `N4ε2 e, γ0 =
√

(1 + 1
a ) ln 2

4 and C = a + 2aγ0. We also

consider that the parameters kp, kq of CRT-RSA are known. Then one can obtain

p in time O(l
2+ ln 2

2ε2

N ) with success probability greater than 1 − 2ε2

ln `N
− 1

`N
if δ ≤

1
2 − γ0 − ε.

To maximize δ, we need that ε should converge to zero and in such a case a
tends to infinity. Then the value of γ0 converges to 0.416. Thus, asymptotically
Algorithm 1 works when δ is less than 0.5 − 0.416 = 0.084. However since in
this case a becomes very large, the algorithm will not be efficient and may not
be implemented in practice. This is the reason, experimental results could not
reach the theoretical bounds in [13].

Generally, dp, dq are taken to be of same bit size which is equal to `N
2 . Thus,

following the idea of Theorem 1 above, one can cryptanalyze CRT-RSA having
wdp , wdq ≤ 0.04`N in O(e·poly(`N )) time. For each possible option of kp, kq (this
requires O(e) time), one needs to apply Algorithm 1 to obtain p. It is indeed
clear that for small e the attack remains efficient.

In [21, Page 9, end of paragraph 3], example parameters have been pro-
posed, where `N = 768, `dp = 384 and wdp = 30. This falls under the condition
mentioned above and we could cryptanalyze all the CRT-RSA keys with such
parameters in a few minutes in practice. In another example [21, Table 2, Sec-
tion 7], it has been considered that `N = 768, `dp = 377 and wdp = 45 and

e = 257. In this case δ =
wdp
`dp
≈ 0.12 > 0.08, and thus it is not in the bound

given in Theorem 1 and so Algorithm 1 would not work as it is. However, in
the next section (Section 3) we will present some modifications over Algorithm 1
to get Algorithm 2 that provides significantly improved results experimentally
than what presented in Theorem 1. That helps us in easily breaking CRT-RSA
with the above mentioned parameters in a few minutes again.

In [11, Figure 1], parameters are proposed as (`e, `dp , `kp) = (176, 338, 2) with
wdp = 38. Note that in this situation, one could easily obtain kp and kq, even



without trying O(e) steps. Here δ = 38
338 ≈ 0.11. Using Algorithm 2 discussed in

Section 3, one can break the CRT-RSA scheme with such parameters mentioned
in [11] within a few minutes.

2.2 Cryptanalysis of [22]

In [22], the CRT-RSA decryption exponents dp, dq have been chosen in a slightly
different manner. Here the weight of dp, dq are not small, but they are of the form
dp = dp1dp2 and dq = dq1dq2 . The factors dp1 and dq1 are of size O(e) and the
other factors dp2 of dp and dq2 of dq are of significantly small Hamming weight.
So, in this case we have edp1dp2 = 1 + kp(p − 1) and edq1dq2 = 1 + kq(q − 1).

There are O(e2) choices of dp1 , dq1 . Since kq ≡ (kp−1) (kp(1−N)− 1)
−1

mod e,
within O(e3) many attempts one can get the correct choice of (dp1 , dq1 , kp, kq).
Hence one can consider that the attacker knows dp1 , dq1 , kp and kq, perform the
attack and then multiply the effort by O(e3) to get the total time complexity of
the cryptanalysis. Let a many LSBs of p be known and p′ be the corresponding
integer. Then a many LSBs of dp2 , dq2 can be obtained through the following
identities:

dp2 ≡ (edp1)−1(1 + kp(p
′ − 1)) mod 2a,

dq2 ≡ (edq1)
−1 (

1 + kq
(
N(p′)−1 mod 2a − 1

))
mod 2a. (1)

We use the Equation (1) in step 5 of the Algorithm 1 instead of what is given
there towards the cryptanalysis of [22]. Here `dp2 ≈

`N
2 − `e. When wdp2 , wdq2 ≤

0.08
(
`N
2 − `e

)
, one could cryptanalyze the CRT-RSA scheme with the parame-

ters proposed in [22] in time O(e3`
2+ ln 2

2ε2

N ).
Five challenges have been presented in [22], where e = 216+1, `N = 1024 and

wdp2 = wdq2 = 40. As both dp1 and dq1 are of O(e), `dp2 ≈ `dq2 ≈ 512−16 = 496.

Hence δ = 40
496 ≈ 0.08. Thus, the proposal of [22] can be cryptanalysed using

Algorithm 1 with a modification in step 5 as described above.
Let us now explain the efficiency of our cryptanalysis on the proposal of [22]

as we could not break it in real time as had been done on the examples of [21,
11]. Note that for e as described in [22], e3 is around 248 and that many runs of
Algorithm 1 or Algorithm 2 are required.

The parameters of [22] are so chosen that if one tries to go for an exhaus-
tive search, then it will require around 294 effort. Based on this, it has been
claimed [22] that such a scheme is secure as the best possible factorization strat-
egy using NFS [20] requires around 286 time complexity and one cannot attack
the scheme in a lower complexity than that.

Now we show that one can indeed attack the scheme of [22] in a time complex-
ity much less than 286. One can implement the attack with all possible values of
dp1 , dq1 , kp, kq that requires 248 many invocations of Algorithm 1 or Algorithm 2
when e is 16-bit integer. As Algorithm 2 works significantly better than Algo-
rithm 1, we estimate the time complexity of each invocation of Algorithm 2.
Given a block length a = 10, to get p, we need d 51210 e = 52 many generations of



set A, where we bound the number of solutions in the set A by 1000 in the exper-
iments. We can estimate the time complexity for each invocation of Algorithm 2
with the above parameters as 52 · 1000 < 216. Hence, the total complexity of the
attack is around 248+16 = 264, which is significantly smaller than 286.

While the idea presented in [22] can be cryptanalyzed, it cannot be broken in
a few minutes experimentally as it could be done for [21, 11]. One may actually
explore the ideas of countermeasure from [22]. To protect/blind the secret expo-
nents, one needs to use the product of one large integer (of small weight) and one
very small integer such that the weight of the product is not small (please see
Section 2.2). Proper choice of parameters (in particular bit length of the smaller
and larger factors) will make the attack less effective. As an example, instead of
choosing 16-bit kp, kq, one may try larger ones (say, 32 bits). This will increase
dp1 , dq1 to 32 bits. In this case, the attacker needs to know dp1 , dq1 , kp and the
attack complexity will this increase.

3 Heuristics for further improvement of the error
correction algorithm [13]

The theoretical bounds on the noise rate δ in [13] for which SK can be recovered
from a noisy version of it are as follows: (i) δ < 0.237, when p̃, q̃, d̃, d̃p, d̃q are

available, (ii) δ < 0.160, when p̃, q̃, d̃ are available, and (iii) δ < 0.084 when p̃, q̃
are available. However one cannot achieve these bounds due to high length of the
block size. The experimental bounds achieved in [13, Section 6, Tables 2, 3, 4]
are presented as 0.20, 0.14 and 0.08 for cases 1, 2 and 3 respectively with success
probability less than 0.25. In this section we explain certain heuristics to improve
these experimental results significantly. We present experimental results having
error rates higher than the theoretical upper bound of [13]. This we get for the
parameter a = 10 which is much lower than the values used in the experiments
of [13] and increasing a in our strategy improves our results further. Let us now
present the broad ideas behind our improvements.

Different values of the threshold C. Instead of one fixed threshold C, we
take different thresholds in different steps, that depend on the value b+a. During
the pruning, we count the number of bits at which the noisy parameters and the
possible solutions match for the positions 0 to b + a − 1. Thus the number of
comparison for each parameter is (b+a) at each step and then based on that we
decide whether we will accept or reject a solution. Thus we consider a cumulative
measure, where for the initial steps, the bit strings compared are of the lesser size
and as the solution grows, the bit strings in comparison are of larger size. The
threshold parameters are chosen based on the error rate and length of the-then
solutions (which are actually b+ a at that point of time).

Multiple constraints on each round. Instead of considering the total number
of mismatched bits for each component of the secret key, all possible constraints
are considered at the same time in our strategy. Suppose we want to factor



N = pq where p, q are available with some noise. Consider an instance of the
algorithm where we have reached up to the bit position i.

For proceeding further, let us have a few notations. For an integer x, by x[i],
we denote the i-th least significant bit of x. Further, by x[i], we mean the bit-
string x[i], x[i − 1], . . . , x[1], x[0] and this will also be interpreted as an integer.
As an example, for a prime, say, p = 23, we have the binary representation 10111
and thus, p[3] = 0111, which is 7 as an integer.

Let the number of matched bits between the partial solution p′ and the
corresponding bits of the noisy version p̃, i.e., p̃[i] be µ1 and for q′ and q̃[i] be
µ2. We impose constraints on both the values of µ1, µ2 along with µ3 = µ1 + µ2

to achieve better pruning. In [13], the pruning was applied on the sum of the
individual values only. Here, in case of m many components of the secret key,
total number of constraints in each iteration would be

∑m
i=1

(
m
i

)
= 2m−1. When

we work with the five parameters p, q, d, dp, dq, we use a total of 31 constraints
instead of 1 as mentioned in [13].

Suppose that the secret key has m components. For the l-th component
(1 ≤ l ≤ m) of the key, let µ2l−1 denote the number of matched bits between
the partial solution and the noisy version of the component at the corresponding
bits. Then for each individual component, numbers of matched bits are given
by {µ1, µ2, µ4, . . . , µ2m−1} respectively. Now, for any general k ∈ [1, 2m − 1], we
define the term µk as follows: µk =

∑m
i=1 kiµ2i−1 , where ki are the bits of k

for 1 ≤ i ≤ m. Thus the total number of matched bits in all components of
the secret key is given by µ2m−1 =

∑m
i=1 µ2i−1 . In practice, when we work with

m = 5 parameters p, q, d, dp, dq of the secret key, µ31 = µ1 + µ2 + µ4 + µ8 + µ16

represents the cumulative sum of matched bits between the partial solution and
corresponding bits of the noisy version for all parameters.

Value of threshold parameters and its run-time modifications. For each
µi, we choose the value of the threshold Ca+bi depending upon the noise rate
δ and the value of a + b at that stage. For a fixed noise rate δ, we choose the
minimum Ca+bi such that

Ca+bi∑
j=1

(
wi(a+ b)

j

)
δj(1− δ)a+b−j > ν, (2)

where wi is the Hamming weight of i as we have mentioned earlier. In the
experiments we take ν = 0.99 for a + b < 150 and ν = 0.98 for a + b ≥ 150.
We choose the thresholds like this so that the possibility of rejecting a correct
partial solution remains very low. It is clear that one cannot allow the size of
A to increase exponentially. Thus one needs to keep some upper bound on |A|
while running the algorithm. Let |A| be restricted by a constant upper bound
B. Consider m secret parameters and take certain threshold for each µi. While
creating the set A from A−1 in a loop, if |A| > B, we reduce Ca+b2m−1 by 1.
One may ask, why do we reduce only the threshold corresponding to µ2m−1 =
µ1+µ2+. . .+µ2m−1 . We have tried in manipulating other thresholds as well, but



found that this is quite an effective idea to obtain good experimental results. The
study of such thresholds and their modifications during the run of the algorithm
is an interesting question and requires serious attention that is not in the scope
of this work.

The modified algorithm. Based on the above discussion, our improved error
correction strategy is presented in Algorithm 2. We have presented the algorithm
with all the five parameters p̃, q̃, d̃, d̃p, d̃q, though one can easily modify it for less
number of parameters.

Input: N, e, k, kp, kq
Input: p̃, q̃, d̃, d̃p, d̃q
Input: a,B and threshold parameters as described in (2).
Output: Set A, containing possible guesses for p.

Initialize b = 0, A = ∅, A−1 = ∅;1

while b < `N
2

do2

A = {0, 1}a‖A−1;3

For each possible options p′ ∈ A, calculate q′ = (p′)−1N mod 2b+a;4

Calculate d′ = (1 + k (N + 1− p′ − q′)) e−1) mod 2b+a;5

Calculate6

d′p = (1 + kp(p′ − 1)) e−1 mod 2b+a, d′q = (1 + kq(q′ − 1)) e−1 mod 2b+a;
Calculate µi’s for i = 1 to 31 comparing least significant b+ a bits of the7

noisy strings and the corresponding possible partial solution strings of
length b+ a, i.e., through the positions 0 to b+ a− 1;
If µi < Ca+b

i for any i ∈ [1, . . . , 31], delete the solution from A;8

If |A| > B, reduce Ca+b
31 by 1 and go to Step 8;9

If b 6= 0 and A = ∅, then terminate the algorithm and report failure;10

A−1 = A; b = b+ a;11

end
Report A;12

Algorithm 2: Improved Error Correction algorithm.

In the next section we present experimental results to highlight the significant
improvements over [13]. Theoretical analysis of Algorithm 2 (possibly exploiting
statistical techniques) is indeed of interest, though it is not attempted in this
initiative.

4 Experimental Results

We have implemented Algorithm 2 using C programming language (with GMP
library for processing large integers) on Linux Ubuntu 2.6. The hardware plat-
form is an HP Z800 workstation with 3GHz Intel(R) Xeon(R) CPU. Our imple-
mentation is not optimized and for each run the time required varied from a few



seconds to a few minutes depending on the error rates. The time estimations
presented in our tables are the averages of the time required in the successful
runs only. In all the experiments, we take 1024-bit RSA with public exponent
e = 216+1. We consider a = 10 and B = 1000. For each experiment, we generate
20 different RSA secret keys and for each secret key, we generate 20 many noisy
versions by incorporating independently and uniformly distributed errors with
noise rate δ. So, we have a total of 400 samples.

First we go for only two parameters. This can be interpreted in two ways: (i)
the noisy versions of p, q are available with error rate δ or (ii) p, q are completely
unknown, but the weights of p, q are small, i.e.,

wp
`p
≈ wq

`q
≈ δ.

Note that we run Algorithm 2 till we obtain all the bits of p. However, it is
known that if one obtains the least significant half of p, then it is possible to
obtain the factorization of N efficiently [1]. In this case, as we need to reconstruct
half of the bits of p instead of the full binary string, the success probability
will increase. Keeping this in mind, in the experimental results we provide the
success probability to obtain the complete bit pattern of p to compare our results
with [13] as well as the success probability to obtain least significant half of p, that
is actually required for the attack. We refer the second one as success probability
(half) in the tables. The error rate of the order of 0.08 could be achieved with
success probability 0.22 in [13], and one may see in Table 2 that our results are
significantly improved.

δ 0.08 0.09 0.10 0.11 0.12 0.13
Success probability 0.61 0.36 0.19 0.06 0.02 -
Time (in seconds) 255.97 249.56 252.23 235.34 230.13 -

Success probability (half) 0.71 0.55 0.41 0.23 0.13 0.08
Time (in seconds) 68.82 66.24 66.23 66.00 60.04 61.67

Table 2. Experimental results with Algorithm 2 with two parameters p, q.

δ 0.08 0.09 0.10 0.11 0.12 0.13
Success probability 0.59 0.27 0.14 0.04 - -
Time (in seconds) 307.00 294.81 272.72 265.66 - -

Success probability (half) 0.68 0.49 0.25 0.18 0.08 0.02
Time (in seconds) 87.41 84.47 80.18 74.57 79.33 76.04

Table 3. Experimental results with Algorithm 2 with two parameters dp, dq.

In Table 3, we present experimental results related to our attack in Section 2.
Taking e = 216 + 1, we have generated CRT-RSA secret exponents dp, dq having
small Hamming weights using the idea of [11]. In Table 3, we present experi-
mental results taking 5-bit kp, kq. The results in Table 3 is slightly worse than
Table 2. This is because in the least `kp many bits of dp, dq, the error rate is not



small due to the key generation algorithm of [11]. We obtained similar kinds of
results for cryptanalysis of [22] too, with similar parameters as in the benchmark
examples of [22, Appendix A]. However, in these cases, for practical experiments
in a few minutes, we need to consider that dp1 , dq1 , kp, kq are available. That is,
the time need to be multiplied by 248 for actual attack, when e = 216 + 1, say.

Next, in Table 4, we consider the case with three parameters p, q, d. When
δ = 0.14, the success probability in [13, Table 3] has been reported as 0.15. The
success probability using our modification is 0.52 in this scenario. Further we
could demonstrate experimental results till δ = 0.17 which is better than the
theoretical bound of 0.16 in [13].

δ 0.14 0.15 0.16 0.17 0.18
Experiment 0.52 0.21 0.11 0.03 -

Time (in seconds) 461.24 430.36 412.08 407.8 -

Experiment(half) 0.69 0.48 0.23 0.14 0.07
Time (in seconds) 142.99 131.69 127.12 123.00 124.00

Table 4. Experimental results with Algorithm 2 with three parameters p, q, d.

Next we present the results will all five parameters. It is evident from Table 5
that we obtained significant improvement over the results of [13].

δ 0.20 0.21 0.22 0.23 0.24 0.25
Experiment 0.50 0.44 0.33 0.14 0.02 0.005

Time (in seconds) 699.82 639.16 607.23 580.45 540.10 502.00

Experiment(half) 0.70 0.58 0.55 0.31 0.12 0.065
Time (in seconds) 221.00 192.35 190.94 173.96 168.00 169.61

Table 5. Experimental results with Algorithm 2 with five parameters p, q, d, dp, dq.

Our current implementation is only towards proof-of-the-concept. The results
are expected to improve further with optimized implementation. While we can
work with higher error rates and the success probability of our modified version
are much better than [13], we require little more running time than [13]. However,
we like to point out that our improvement is not achieved at the cost of a higher
running time as our results cannot be reached taking a = 10 by the techniques
of [13]. Towards the higher error rates, the value of a in [13] varies from 20 to 29,
whereas we work with a as small as 10 for all the cases. Still we achieve better
success rate. Larger the size of a, larger is the set of partial solutions A. This
clearly shows that our strategy performs significantly better with the new ideas
of pruning where the correct solution is retained with good success rate.

We have also explored a few other implementation strategies for Algorithm 2.
Let D(x) be the largest integer that divides x. From the knowledge of k, kp and



kq, one can easily calculate D(k), D(kp), D(kq). Thus, in the steps 5 and 6 of the
Algorithm 2, one can calculate

d′ = (1 + k (N + 1− p′ − q′)) e−1) mod 2b+a+D(k),
d′p = (1 + kp(p

′ − 1)) e−1 mod 2b+a+D(kp) and

d′q = (1 + kq(q
′ − 1)) e−1 mod 2b+a+D(kq).

Since D(k), D(kp) and D(kq) are very small in general, the improvement in
terms of time complexity will not be significant and we have checked that exper-
imentally too. In the course of optimizing the algorithm, one may note that the
solution sets for these equations can be evolved rapidly by Hensel lifting. These
are actually used in the time of inverse calculations in our strategy. In this case
also, we did not obtain major improvements in running time.

5 Conclusion

In this paper, first we apply the recently proposed error correction strategy (mo-
tivated from cold-boot attack) for RSA secret keys [13] to actual cryptanalysis
of CRT-RSA under certain conditions. We studied two kinds of schemes. The
first one considers the CRT-RSA decryption keys of low weight as in [21, 11]. In
these cases, we demonstrate complete break in a few minutes for 1024 bit RSA
moduli. The next one considers the scenario when the decryption exponents are
not of low weight, but they contain large low weight factors [22]. Though this
scheme seems more resistant to our method than the ones in [21, 11], it [22] is
also prone to cryptanalysis with much lower complexity than what claimed in
the paper [22].

Further, we had a detailed look at the actual error correction algorithm of [13]
and provided significant improvements as evident from experimental results. The
experimental results are significantly better than the ones presented in [13] and
more importantly, we could demonstrate that the theoretical bound of [13] can
also be crossed using our heuristic. These results can directly be applied to
cold-boot attack, in general, on RSA and its variants.

Acknowledgments: The authors like to thank the Centre of Excellence in
Cryptology, Indian Statistical Institute for relevant support towards this re-
search.
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Appendix A

In Section 2, we have described Algorithm 1 towards cryptanalysis of CRT-RSA
schemes with low weight decryption exponents when the encryption exponent
is small. The theoretical result related to the algorithm has been presented in
Theorem 1. Theorem 1 follows directly from the analysis of [13]. Still we explain
this in detail for completeness.

We refer to Algorithm 1. Let us define a random variable Xc for the total
number of 0’s in the binary representation of d′p and d′q from the position b to
b + a − 1, where d′p, d

′
q are correct partial solution of dp, dq. Clearly Xc follows

binomial distribution with parameters 2a and probability 1− δ. Hence

P (Xc = γ) =

(
2a

γ

)
(1− δ)γδ2a−γ ,

for γ = 0, . . . , 2a.
Now assume one can expand some incorrect partial solutions (p′, q′) and

obtain d′p, d
′
q. Let Xb be the number of 0’s in the expanded 2a many bits in d′p, d

′
q.

To study the distribution of Xb, we consider the following heuristic assumption
that every solution generated from incorrect partial solution consists of randomly
chosen bits. Thus,

P (Xb = γ) =

(
2a

γ

)
2−2a.

We have to choose a threshold C such that the two distributions Xc and Xb are
sufficiently separated.



Take C = a + 2aγ0 where γ0 =
√

(1 + 1
a ) log 2

4 . Let the random variable Yi
represent the number of incorrect partial solutions that pass the threshold bound
C at i-th stage. Then one can get the following result.

Lemma 1. The expectation E[Yi] of Yi is less than 2a+1.

Proof. Let us denote Zg as the number of incorrect candidates from the partially
correct solution and let Zb give the count of the number of incorrect candidates
from each partially incorrect solution. Thus, we have

E[Y1] = E[Zg],

E[Y2] = E[Zg] + E[Zb]E[Y1],

...

E[Yi] = E[Zg] + E[Zb]E[Yi−1]

= E[Zg] + E[Zb] (E[Zg] + E[Zb]E[Yi−2])

= · · ·

= E[Zg]

i−1∑
k=0

E[Zb]
k

= E[Zg]
1− E[Zb]

i

1− E[Zb]
.

Now define 2a random variables corresponding to i = 1, · · · , 2a such that

Zib =

{
1 if i-th bad candidate passes the threshold
0 otherwise

Clearly, Zb =

2a∑
i=1

Zib. So,

E[Zb] = 2aE
[
Zib
]

= 2aPr
[
Zib = 1

]
= 2aPr [Xb ≥ C]

= 2aPr

[
Xb ≥ 2a

(
1

2
+ γ0

)]
From Hoeffding’s inequality [15] we know,

Pr

[
Xb ≥ 2a

(
1

2
+ γ0

)]
≤ e−4aγ

2
0 = e−4a(1+

1
a ) log 2

4

= 2−a−1.



Hence E[Zb] ≤ 2a · 2−a−1 = 1
2 < 1. So,

E[Yi] <
E[Zg]

1− E[Zb]
≤ 2E[Zg] ≤ 2(2a − 1) as E[Zg] ≤ 2a − 1

< 2a+1.

ut

To have the time complexity of Algorithm 1 polynomial in `N , one can take, for
example, a = d ln `N4ε2 e and δ ≤ 1

2 − γ0 − ε. Then we get the following result.

Lemma 2. Algorithm 1 succeeds with probability greater than 1− ε2

`N
− 1

`N
.

Proof. The probability of pruning the correct partial solution at one step is given
by Pr[Xc < C]. Now

Pr[Xc < C] = Pr[Xc < 2a(
1

2
+ γ0)] ≤ Pr[Xc < 2a(1− δ − ε)] ≤ e−4aε

2

≤ 1

`N
.

Thus,

Pr[success] = (1− Pr[Xc < C])d
`N
2a e ≥ (1− Pr[Xc < C])

`N
2a +1

≥ (1− 1

`N
)
`N
2a +1 ≥ 1−

`N
2a + 1

`N
≥ 1− 1

2a
− 1

`N
≥ 1− 2ε2

ln `N
− 1

`N
.

ut

Using same idea of [13], it can be shown that the time complexity of our idea is

O(`
2+ log 2

2ε2

N ). Hence from Lemma 1 and Lemma 2, we get Theorem 1 (Section 2.1)
as follows.

Theorem 1. Let a = d ln `N4ε2 e, γ0 =
√

(1 + 1
a ) ln 2

4 and C = a + 2aγ0. We also

consider that the parameters kp, kq of CRT-RSA are known. Then one can obtain

p in time O(l
2+ ln 2

2ε2

N ) with success probability greater than 1 − 2ε2

ln `N
− 1

`N
if δ ≤

1
2 − γ0 − ε.


