
Low-Latency Encryption
– Is “Lightweight = Light + Wait”??

Miroslav Knežević, Ventzislav Nikov, and Peter Rombouts

NXP Semiconductors, Leuven, Belgium

Abstract. The processing time required by a cryptographic primitive implemented in hardware
is an important metric for its performance but it has not received much attention in recent
publications on lightweight cryptography. Nevertheless, there are important applications for
cost effective low-latency encryption. As the first step in the field, this paper explores the low-
latency behavior of hardware implementations of a set of block ciphers. The latency of the
implementations is investigated as well as the trade-offs with other metrics such as circuit area,
time-area product, power, and energy consumption. The obtained results are related back to the
properties of the underlying cipher algorithm and, as it turns out, the number of rounds, their
complexity, and the similarity of encryption and decryption procedures have a strong impact on
the results. We provide a qualitative description and conclude with a set of recommendations
for aspiring low-latency block cipher designers.

1 Introduction

As cryptography is becoming ever more pervasive in modern technology, new applications
regularly emerge. Some of these new applications also introduce new requirements on the
implementation such as ultra fast response times. Applications such as Car2X communication
(e.g. automotive road tolling, intelligent transport systems), high speed networking (optical
links), and secure storage devices (e.g. memories, solid-state disks, super-speed USB 3.0), just
to name a few, all require an instant response. Besides these there are also applications that
require moderately high throughput but have limited maximum clock frequencies, e.g. FPGA,
or strict area requirements that preclude the use of highly pipelined architectures.

Cryptographic primitive design is a balancing act between several aspects such as cryp-
tographic strength, implementation cost, execution speed, power consumption, etc. Which
trade-offs are the right ones to make is determined by the application. In the past, differ-
ent applications have led to different corners of the design space to be explored. The most
important of these are depicted in Fig. 1.

Government applications have typically favored cryptographic strength over aspects such
as cost and speed, although these aspects usually do play an important role in selection
processes like the former AES competition [1] and currently the SHA-3 competition [27].
The use of these algorithms in applications such as mainframe systems has resulted in the
development of high throughput implementations, both in hardware and software.

More recently the advent of RFID and other wireless technologies sparked an interest in
a new field: low-power and low-cost cryptography. The first primitives to be explored were

? The authors would like to thank Bruce Murray for his valuable comments and suggestions to improve the
work. The authors also thank Hans De Kuyper for his valuable inputs. The work has been supported by the
European Commission through the ICT program under contract ICT-2007-216646 (European Network of
Excellence in Cryptology – ECRYPT II), through the Tamper Resistant Sensor Node (TAMPRES) project
with contract number 258754 and through the Internet of Things - Architecture (IoT-A) project with
contract number 257521.

Security

Speed
Area
Power

Conventional

Li
gh

tw
ei
gh

tLow
Latency

Fig. 1: Typical trade-offs in cryptography.

stream ciphers, for example in the eSTREAM project [11], followed by a whole range of block
ciphers such as tea [33], noekeon [9], mini-aes [8], mcrypton [25], sea [32], hight [19],
desxl [23], clefia [31], present [5], mibs [20], katan/ktantan [6], printcipher [22],
klein [14], led [16], piccolo [30], and others. The field has recently been expanded by
the introduction of several new low-cost hash functions such as dm-present [16], keccak-
f[400]/-f[200] [3, 21], quark [2], photon [15], and spongent [4].

We have identified a new range of applications; those that require very fast response
times and for which there is no established research field yet. Note that although most of the
high-speed implementations available in literature do achieve tremendous throughput, their
response time is generally not that fast. This is due to their extensive use of pipelining which
enables them to process multiple messages at the same time, but in order to encrypt a single
message block, this type of implementation still needs multiple clock cycles, i.e. typically
more than 20. An example of this is a recent work from Mathew et al. [26], presenting a
reconfigurable AES encrypt/decrypt hardware accelerator targeted for content-protection in
high-performance microprocessors which, manufactured in 45 nm CMOS technology, achieves
53 Gb/s throughput. Another example comes from Hodjat and Verbauwhede [18] where area-
throughput trade-offs of a fully pipelined AES implementation are described and a throughput
of 30 Gb/s to 70 Gb/s is achieved.

In other words, a high throughput is usually achieved by common signal processing tech-
niques such as pipelining and parallel processing, while achieving a low latency, on the other
hand, still remains a challenge. As a consequence one could ask the following questions: What
is the minimum achievable latency for a given security level? Do designs that inherently have
lower latency also achieve higher throughput when implemented in a pipelined fashion? And
does “lightweight” necessarily mean “light + wait?” These are all interesting questions and
as it seems there are a lot of compelling reasons to take a closer look at the latency behavior
of cryptographic primitives.

Our Contribution. We introduce the new field of low-latency encryption; highlight the
differences with lightweight and classical cryptography, and by bringing several important
applications to light we try to motivate further research in this field.

We identify several well-known lightweight block ciphers as possible candidates to yield
low-latency implementations. By examining this set of ciphers in the context of low-latency

encryption, our work provides the first results in the field. We therefore develop a framework
that examines the low-latency behavior of cryptographic primitives on the following aspects:

• Minimal achievable latency.
• Its impact on the circuit size.
• Its impact on the power and energy consumption.

We link the collected data to the cipher design decisions and show that results are strongly
influenced by their properties. More specifically, the number of rounds, the round’s complexity
(e.g. the S-box size, MDS (Maximum Distance Separable) matrices defined over different
fields versus binary matrix), and the similarity of encryption and decryption procedures have
a significant influence on the algorithm’s performance. Our work concludes with a set of
recommendations for aspiring low-latency block cipher designers.

Organization of the Paper. The remainder of this paper is organized as follows. In Sec-
tion 2, we provide a short description of the block ciphers we have chosen to investigate.
Our contributions – the implementation results, comparisons, and discussion – are presented
in Sections 3 and 4. We first investigate the minimum achievable latency in Section 3.1 and
then evaluate the impact optimization for low latency has on area in Section 3.2. Our study
continues by combining the two previously described metrics in section Section 3.3 where
the results for the time-area product are presented and in Section 3.4, we have a closer look
at the impact low-latency implementations have on the power and energy consumption. We
elaborate more on our results and conclude in Section 4.

2 Preliminaries

There are many algorithms to choose from for a comparative study of low-latency behavior,
but in order to draw meaningful conclusions about hardware performance a set of candidate
algorithms should be chosen with similar properties. We therefore focus on algorithms that are
expected to result in low-latency implementations. Since hardware implementations of hash
functions generally require more area to implement [12] and stream ciphers usually need a large
number of initialization rounds [7,17] we chose to focus on block ciphers only. Furthermore, it
is expected that lightweight block ciphers yield good results in terms of implementation cost,
even in a fully-unrolled implementation. Besides latency as our primary goal, we consider
silicon area as a very important factor in practical implementations of encryption algorithms
and, therefore, we restrict our candidates to lightweight block ciphers but include aes as the
reference cipher. In order to reduce the number of candidates to a manageable number, we
further restrict the set to ciphers with the well-studied SPN structure.

This results in the following list of seven lightweight SPN block ciphers: aes [10, 28],
klein [14], led [16], mcrypton [25], mini-aes [8], noekeon [9], present [5]. We provide a
brief description of each cipher and refer for more details to their original descriptions in the
literature.

AES [10, 28], designed by Daemen and Rijmen in 1997, has become not only a NIST
standard but also the most used block cipher nowadays. The cipher has not been considered
lightweight until the work of Feldhofer et al. [13] who provided the smallest implementation
at the time, requiring only 3400 GE.1 aes is an iterated block cipher with a block-size of 128

1 The current smallest implementation of AES comes from Poschmann et al. [29] and consumes only 2400
GE, which is comparable to the size of some of the first proposed lightweight block ciphers.

bits and three possible key lengths of 128, 192, and 256 bits. In this work, we consider only the
128-bit key version which consists of 10 rounds. The word size is 8 bits, i.e. the data elements
are considered as elements of the field GF(28). Each round of aes consists of the following
operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The operation SubBytes
(S-layer) is defined as the simultaneous application of the S-Box (inversion in GF(28)) to each
element of the state. The permutation layer (P-layer) consists of ShiftRows and MixColumns
operations. The ShiftRows operation is defined as the simultaneous left rotation of the row i of
the state by i positions. The MixColumns operation pre-multiplies each column of the state by
an MDS matrix defined over GF(28). The KeySchedule derives the round key from the secret
key, by applying once the S-Box and some simple linear operations. Finally, AddRoundKey
XORs the round key to the current state.

NOEKEON [9] is a 128-bit block cipher with a 128-bit key, proposed by Daemen, Peeters,
Van Assche, and Rijmen in 2000. noekeon is a self-inverse, bit-sliced cipher and can be
considered as the predecessor of modern lightweight block ciphers. It has 16 rounds and each
of them consists of the following operations: Theta, Pi1, Gamma, and Pi2. The operation
Gamma is an involutive non-linear mapping (S-layer), in which S-boxes operate independently
on 32 4-bit tuples. Pi1 and Pi2 perform simple cyclic shifts. Theta is a linear mapping that
first XORs the working key to the state and then performs a simple linear transformation
of the state. Therefore, Theta acts partially as AddRoundKey and, together with Pi1 and
Pi2, forms the P-layer of the cipher. The KeySchedule is very simple – a so-called working
key is derived from the secret key and then XORed to the state at each round. For the
encryption procedure, the working key is simply equal to the secret key. Note that the self-
inverse property of the cipher has big advantages when both encryption and decryption need
to be implemented on the same circuit.

MINI-AES [8], or a small scale variant of aes, has been described by Cid, Murphy, and
Robshaw in 2005 in order to provide a suitable framework for comparing different cryptan-
alytic methods. In this paper, we consider a 10-round mini-aes with a block-size of 64 bits,
a key length of 64 bits, and a word size of 4 bits. The main difference between aes and the
version of mini-aes we chose to examine is that the S-box and the MDS matrix are defined
over the field GF(24). Therefore, the selected instance of mini-aes can be considered as a
lightweight version of the aes cipher.

MCRYPTON [25] is a 64-bit block cipher supporting three different key length (64,
96, and 128 bits), designed by Lim and Korkishko in 2006 and is one of the first lightweight
SPN block ciphers. Each round of mcrypton consists of the following operations: NonLinear
Substitution γ, Column-wise bit Permutation π, Column-to-row Transposition τ , and Key
Addition σ. The operation γ (S-layer) consists of 16 nibble-wise substitutions using four 4-
bit S-boxes (S0, S1, S2, S3, all affine equivalents to the inversion in GF(24) and such that
S2 = S−1

0 and S3 = S−1
1). The P-layer consists of π and τ operations. The π operation is

an involutional bit-wise matrix multiplication. The τ operation simply transposes the state
and is thus an involution. The KeySchedule is simple and consists of two stages: a round key
generation through a nonlinear S-box transformation and a key variable update through a
simple rotation. Finally, the σ operation XORs the round key to the state. Independent of the
key length, mcrypton always uses 12 rounds with a slightly different KeySchedule. Note that
decryption and encryption can share most of the round operations and that the KeySchedule
allows a direct derivation of the last round key.

PRESENT [5], designed by Bogdanov et al., was proposed in 2007 and established itself
as one of the most prominent lightweight block ciphers. It has recently been adopted as a

standard in ISO/IEC 29192-2. The 31-round cipher has a block-size of 64 bits and comes
with an 80-bit or 128-bit key. Each round of present consists of the following operations:
sBoxLayer, pLayer and AddRoundKey. The sBoxLayer is defined as the simultaneous appli-
cation of a very light 4-bit S-Box to each nibble of the state. The pLayer is a simple bitwise
permutation. The KeySchedule rotates the key variable, XORs a constant and applies the S-
box to the key variable. AddRoundKey XORs the 64 most significant bits of the key variable
to the state. Note that the pLayer provides a rather slow diffusion of the cipher, which results
in the considerably high number of rounds.

KLEIN [14] is a rather young lightweight cipher proposed by Gong, Nikova, and Law
in 2010. It is a block cipher with a fixed 64-bit block-size and a variable key length of 64,
80 or 96 bits. Each round of the cipher consists of the following operations: SubNibbles,
RotateNibbles, MixNibbles, and AddRoundKey. The operation SubNibbles (S-layer) is defined
as the simultaneous application of an involutive 4-bit S-Box to each element of the state. The
P-layer consists of RotateNibbles and MixNibbles operations. The RotateNibbles operation
rotates the state two bytes to the left. The MixNibbles coincides with the aes MixColumns
operation, i.e. pre-multiplies each column of the state by an MDS matrix defined over GF(28).
The KeySchedule derives the round key from the secret key, by applying two S-Boxes and
some simple linear operations. Finally, the AddRoundKey XORs the round key to the state.
klein-64/80/96 uses 12/16/20 rounds respectively.

LED [16], designed by Guo, Peyrin, Poschmann, and Robshaw in 2011, is one of the most
recent lightweight ciphers. It is a nibble-based 64-bit block cipher with two variants taking
64-bit and 128-bit keys. Each round of led consists of the following operations: AddCon-
stants, SubCells, ShiftRows, and MixColumnsSerial. Once every 4 rounds the AddRoundKey
operation is applied. The SubCells (S-layer) reuses the present S-box and applies it to each
4-bit element of the state. MixColumnsSerial uses an MDS matrix defined over GF(24) for
linear diffusion that is suitable for compact serial implementation since it can be represented
as a power of a very simple binary matrix. AddConstants XORs a constant to the state at
each round. ShiftRows operates by rotating row i of the array state by i cell positions to the
left. AddConstants, ShiftRows, and MixColumnsSerial form the P-layer of the cipher. The 64-
bit key variant consists of 32 rounds while the 128-bit key variant consists of 48 rounds. The
cipher has no KeySchedule, meaning the same key is XORed to the state using AddRoundKey,
once every 4 rounds.

The resulting set of block ciphers represents a wide spectrum of building blocks for the
S-layer, P-layer, and the key schedule. In summary, aes is (the only) byte-oriented block
cipher (i.e. byte-based S- and P-layers) with an MDS P-layer; noekeon has a nibble-based
S-layer, a bit-based P-layer and it is a self-inverse bit-sliced cipher; mini-aes is a nibble-
oriented cipher (i.e. nibble-based S- and P-layers) with an MDS P-layer; mcrypton has a
nibble-based S-layer, a bit-wise matrix for the P-layer with a specific key schedule; present
has a nibble-based S-layer and a very simple bit permutation for the P-layer; klein has a
nibble-based S-layer and a byte-based MDS P-layer (equivalent to aes); finally, led is a
nibble-oriented block cipher (i.e. nibble-based S- and P-layers) with an MDS P-layer and no
key schedule.

Note that klein and aes share the same MDS matrix; led and present share the same
S-layer; mini-aes and led have different nibble oriented MDS matrices; and the S-layer of
mini-aes and mcrypton are close (affine equivalents) to each other. Therefore, we have a
variety of building blocks: bit-, nibble- and byte-oriented blocks; different complexity of S-
boxes; either simple matrices, the MDS ones, or just a simple permutation as the P-layer. All

this allows us to investigate how different elements influence the overall performance when
low-latency encryption is the ultimate goal.

3 Hardware Evaluation

In this section, we provide an extensive hardware evaluation of the seven block ciphers which
we identified in the previous section. Besides the cryptographic properties of a cipher, the
chosen architecture has a significant influence on the overall performance. As our goal is to
evaluate designs with the lowest achievable latency, we mainly focus on 1-cycle and 2-cycle
based architectures. More specifically, a 1-cycle based architecture represents a fully-unrolled
architecture which requires a single clock cycle for its execution. Similarly, a 2-cycle based
architecture needs two clock cycles in order to execute its computation. Since the term low-
latency implies a low number of clock cycles for the algorithm execution (recall the systems
with a limited clock frequency), we do not evaluate architectures that require three or more
clock cycles.

We then distinguish between encryption (ENC) only and encryption/decryption (ENC/DEC)
architectures. Moreover, as will become apparent later, some of the implemented ciphers be-
nefit from the inherent similarities between encryption and decryption datapaths. In these
cases, we also provide figures for a more compact but still slightly slower implementation
that shares the datapath. Figure 2 depicts all the evaluated architectures, however for read-
ability we only report results for (ENC/DEC) architectures. The results for the architectures
supporting encryption only are provided in Appendix B.

R
1

R
2

R
n

…

R
1

R
n/2

…

R
1

R
2

R
n

…

R
n

R
n -1

R
1

…

-1

-1

-1

R
1

R
n/2

…

R
n/2

R
1

…

-1

-1

R
1
/R

n

…

…

-1

R
2
/R

n -1
-1

R
n

/R
1

-1

R
1
/R

n/2

-1

R
n /2

/R
1

-1

(a) (b) (c) (d) (e) (f)

Fig. 2: Six evaluated architectures: (a) 1-cycle based, ENC-only. (b) 2-cycle based, ENC-only.
(c) 1-cycle based, ENC/DEC. (d) 2-cycle based, ENC/DEC. (e) 1-cycle based, ENC/DEC,
shared datapath. (f) 2-cycle based, ENC/DEC, shared datapath.

The presented results are obtained in 90 nm CMOS technology, synthesized with the
Cadence RTL compiler version 10.10-p104. In order to have a better overview on the hardware
performance, we always provide figures for both time-constrained and unconstrained designs.
By time-constrained, we mean a design that achieves the minimum possible critical path
at the expense of a large area overhead. An unconstrained design consumes the minimum

possible area with the drawback of being a slower circuit. In both cases, this only refers to the
synthesis tool constraints and not to the actual RTL code, which in fact remains the same.
The code of all designs is written in Verilog and tested against the available test vectors. The
data showing the implementation results is provided in Table 1, Appendix A.

Although we rank the ciphers according to their hardware performance, we do not attempt
to define the most efficient one with respect to all evaluated criteria. We believe that depend-
ing on the application requirements, the selection of the most efficient design could be based
on any of the following criteria: area, latency, time-area product, power, or energy. Moreover,
if more than one criterion influences the final decision, we believe that it is rather trivial to
combine the presented data and obtain a unique benchmark. As the evaluated ciphers provide
different security levels, there is no easy way to fairly compare them against each other. While
it is rather obvious that a cipher with a block-size of 64 bits will perform better in terms of
area than one with 128 bits, the influence of the key length remains rather vague. With this
evaluation, we bring to light the influence of similar and other design decisions on the final
hardware performance.

Recall that all the evaluated ciphers have a block-size of 64 bits, except aes and noekeon
which have a 128-bit block-size. Some ciphers support different key lengths and therefore we
evaluate 128-bit key aes; 64-bit, 80-bit, and 96-bit key klein; 64-bit and 128-bit led; 64-bit,
96-bit, and 128-bit key mcrypton; 64-bit key mini-aes; 128-bit key noekeon; and 80-bit
and 128-bit key present. Finally, as most of the obtained results will be highly correlated
with the number of cipher rounds, we provide Fig. 3, which visualizes this metric.

0

10

20

30

40

50

60

N
u

m
b
er

 o
f

R
o
u

n
d

s

Fig. 3: Number of rounds of the tested ciphers.

3.1 Latency

We define latency as a measure of time needed for a certain design to complete a defined
(computational) task. In our context, the computational task is defined as an encryption of
a single message block and the latency is calculated as:

Latency = N · tcp ,

where N is the number of clock cycles needed for the encryption of a single message block
and tcp is the critical path of the circuit. In order to highlight the difference between latency
and throughput, we outline that the latency truly depends on the inherent properties of a
cryptographic algorithm, while the throughput does not – it can be simply increased using
the common signal processing techniques such as pipelining and parallel computations.

Figure 4 shows the minimum achievable latency for the ENC/DEC module of all the
evaluated ciphers. noekeons-128 denotes a noekeon implementation with a shared datapath
for encryption and decryption, and it is clearly marked in gray to set it apart from the other
designs. The figure further reveals that, in general, there is only a slight advantage of 1-cycle
based architectures over 2-cycle based ones, but minimal latency is obtained with a 1-cycle
based architecture as expected. The designs that show the highest performance are certainly
mini-aes and mcrypton (all key lengths). Being around 30 % slower, klein-64 is the third
best candidate. The lowest performance comes from led-128, which is more than 5 times
slower than mini-aes. aes, for example, achieves 70 % slower critical path than mini-aes.

What is interesting to observe is that the latency of certain designs, i.e. klein and led,
depends on the key length, while for others, i.e. mcrypton and present, this is not the
case. This links directly to the number of rounds, which in case of klein and led increases
for larger key lengths, while it remains constant for mcrypton and present (recall Fig. 3).

In Appendix B, we provide the results for ENC-only architectures (see Fig. 12) The results
show that the performance of certain designs, e.g. klein-64 and mini-aes, certainly degrades
when the decryption path is embedded into the design. In order to explain this in more
detail, we provide Fig. 5 where we depict the average latency per round of each cipher for
both ENC-only and ENC/DEC architectures. It is easy to see that the decryption datapath
of aes, klein, and mini-aes is considerably slower than that of the encryption. To a lesser
extent this also holds for led, mcrypton, and present. noekeon is the only cipher that
does not suffer from this property. We also observe a clear correlation between the average
latency per round and the complexity of the round.

(a) (b)

1-cycle

2-cycle

La
te

n
cy

 [
n

s]

0

10

20

30

40

50

60

La
te

n
cy

 [
n

s]

0

20

40

60

80

100

120

Fig. 4: Minimum latency [ns] for ENC/DEC module: (a) Time-constrained. (b) Unconstrained.

An unconstrained design of present, on the other hand, shows a somewhat unexpected
result. Its unconstrained ENC-only architecture (see Fig. 12, Appendix B) seems to be slower
than its ENC/DEC architecture. This result is explained by the fact that, when unconstrained,
the synthesis tool optimizes designs for area while the timing is less important. When time-
constrained, however, the synthesis tool makes a significant effort to optimize for timing
and therefore the ENC/DEC architecture of present becomes slower than its ENC-only
architecture.

Finally, we note that the ratio between the latency of the unconstrained and time-
constrained designs ranges from 2.63 for aes (ENC/DEC) to only 1.30 for noekeon (ENC-
only, Fig. 12, Appendix B), which illustrates the elasticity of the design’s latency.

(a) (b)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

La
te

n
cy

 p
er

 R
o
u

n
d

[n
s]

ENC

ENC/DEC

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

La
te

n
cy

 p
er

 R
o
u

n
d

[n
s]

Fig. 5: Average latency [ns] per round: (a) Time-constrained. (b) Unconstrained.

3.2 Area

Similar to the previous subsection, we first provide results for the circuit size of all the
evaluated cipher variants. Secondly, we elaborate on the area per round distribution, where
we observe several interesting results. Note that the area is expressed in gate equivalence
(GE) units, representing the relative size of the circuit compared to a simple 2-input NAND
gate.

Figure 6 illustrates the area for ENC/DEC architectures. In contrast to the latency figures,
the advantage for 2-cycle based architectures is clear: 2-cycle based architectures consume ap-
proximately half of the area of the 1-cycle based architectures. We also observe a significant
correlation between the number of cipher rounds and the circuit size. mini-aes and mcrypton
again show the best result, followed by the approximately 25 % larger klein-64 implementa-
tion. present comes as the next one with about 60 % overhead. Not surprisingly, the largest
circuit size is shown by aes, which is more than 9 times larger than mini-aes. From the
lightweight ciphers, led-128 consumes the biggest area and it is more than 4 times larger
than mini-aes.

1-cycle

2-cycle

(a) (b)

A
re

a
 [

k
G

E]

A
re

a
 [

k
G

E]

0
50

100
150
200
250
300
350
400

0

50

100

150

200

250

Fig. 6: Minimum area [kGE] for ENC/DEC module: (a) Time-constrained. (b) Unconstrained.

An interesting property can be observed in noekeon where due to their inherent similarity
the datapaths for encryption and decryption can be shared. Denoted with noekeons-128
(grayed) in Fig. 6 it can be seen that an implementation with shared datapath results in
significant area savings (about 50 %), while not influencing the latency as much, i.e. only
about 5 % increase (recall Fig. 4). A similar observation, still to a lesser degree, is true for
mcrypton. When implemented with a shared datapath (not depicted) this results in about

30 % area savings with about 20 % timing overhead compared to the results depicted in
Fig. 4. Although encryption and decryption look quite similar for mcrypton, two layers of
multiplexors per round are needed in the shared datapath in order to choose the correct S-
boxes. This extra logic multiplied by the unrolling factor results in quite a significant latency
and area overhead for the total design.

(a) (b)

ENC

ENC/DEC

A
re

a
 p

er
 R

o
u

n
d

[G
E]

A
re

a
 p

er
 R

o
u

n
d

[G
E]

0

1000

2000

3000

4000

5000

6000

7000

0

500

1000

1500

2000

2500

3000

3500

Fig. 7: Average area [GE] per round: (a) Time-constrained. (b) Unconstrained.

Figure 7, which illustrates the average area per round for each cipher (except aes, since
its round size goes well beyond the other values – 23 kGE for unconstrained and 37 kGE for
time-constrained), shows that present has the smallest round amongst all ciphers, which
is not surprising, as its round consists of an S-layer and a very light P-layer (wiring only).
The P-layers of other ciphers involve more complex operations such as multiplication with
an MDS matrix for mini-aes, for example, or variations thereof for other ciphers. Note also
that the average area per round of noekeon is relatively large. This is due to its block size of
128 bits; twice that of the other ciphers. This only confirms our initial assumption that both
the number of cipher rounds and their complexity have a significant influence on hardware
performance.

There are a number of observations about the area per round distribution that we illustrate
here using klein-80 as an example (see Fig. 8); although the same observation holds to a
higher or lesser extent for most of the evaluated ciphers. The first is that due to the higher
complexity of decryption, the critical path passes through the decryption datapath, which
therefore becomes considerably larger than the encryption datapath when time-constrained.
noekeon is the only cipher exempt from this effect, while the effect is barely noticeable
in the case of led. When constraints are relaxed, this effect naturally fades away, although
remaining slightly noticeable even in unconstrained implementations.

Another observation that can be made for both time-constrained and unconstrained im-
plementations, and holds over all the evaluated ciphers, is the considerably smaller area taken
by the last few rounds of an unrolled design. For example in the time-constrained implemen-
tation of klein-80, the last round is more than 25 % smaller in size than the largest (in
this case the second) round. For all other ciphers this difference always remains above 20 %.
This phenomenon is explained by the fact that the logic gates used in the last rounds require
considerably lower driving strength since they drive less logic than the middle rounds and can
therefore be smaller. We further address this observation in Section 4.

The third observation that could be drawn from Fig. 8 is a noticeable swing in area in the
first 13 rounds of the time-constrained klein-80 implementation (similar observation holds
for all other ciphers as well). This is however an effect introduced by the synthesis tool and

is caused by insertion of a significant number of buffer cells in order to strengthen (and thus
speed up) the signal propagation throughout the combinational network of the circuit which
happens periodically, several rounds after each other.

(a) (b)

A
re

a
 p

er
 R

o
u

n
d

[G
E]

ENC

DEC

Total

A
re

a
 p

er
 R

o
u

n
d

[G
E]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 8: Area distribution [GE] per round of klein-80: (a) Time-constrained. (b) Uncon-
strained.

The ratio between the size of time-constrained and unconstrained designs spans the range
from 1.66 for klein-80 to 2.22 for noekeons. This ratio defines the elasticity of the design’s
area and is an indication of the overhead in area needed to achieve the smallest possible
critical path of the design.

3.3 Time-Area Product

Although it is a simple combination of the two previously described metrics, we still provide
graphs for the time-area product as this is an often used criterion for selecting the final
implementation. Figure 9 illustrates the time-area product for the ENC/DEC architecture.

(a) (b)

1-cycle

2-cycle

T
im

e-
A

re
a

 [
m

s*
G

E]

T
im

e-
A

re
a

 [
m

s*
G

E]

0
1
2
3
4
5
6
7
8
9

10

0

2

4

6

8

10

12

Fig. 9: Minimum time-area product [ms·GE] for ENC/DEC module: (a) Time-constrained.
(b) Unconstrained.

Again, the highest performance with respect to this criterion is shown by mini-aes and all
the versions of mcrypton. With more than 60 % overhead, klein-64 takes the third place,
while the lowest performance is again shown by led-128. For all the tested ciphers it holds
that the 2-cycle based architecture provides between 40 % and 45 % more efficiency with
respect to this metric.

When moving from unconstrained to time-constrained designs the highest gain is shown
by AES with 40 % decrease of the time-area product, while noekeons achieves even a neg-
ative gain with 8 % increase of the time-area product. In general this ratio (time-area of
unconstrained versus time-area of time-constrained designs) ranges between 0.85 and 1.00
which reflects in a rather small overall improvement.

3.4 Power and Energy

The results for the average power consumption are obtained by taking into account the
switching activity of the circuit and are based on synthesis results. While accurate power
measurement is only possible once the circuit is manufactured, we believe that our estimates
are still reliable when it comes to comparing the power consumption between different designs.
We note here that the term average is relative, since we consider designs with very low latency.
Therefore, when considering a fully unrolled design (1-cycle), the average power is measured,
and hence averaged, over a single clock cycle which in fact reflects the instantaneous power
consumption. For the 2-cycle based designs, the power is averaged over two clock cycles. In
order to eliminate the data dependency, we average the power consumption over 100 random
vector inputs for each measurement.

Since the power consumption is linearly related to the operating frequency, this metric
directly influences the value of the measured power. Our strategy of setting the operating
frequency is simple in this case – we set the frequency as the reciprocal of the critical path.
Therefore, the power consumption of each design is measured during its shortest possible
execution time. The energy consumption is normalized over the number of processed bits, i.e.
the message block-size, and calculated as:

E =
P · Latency

B
=
P ·N · tcp

B
,

where P is the average power, N is the number of clock cycles needed for the encryption of
a single message block, tcp is the critical path of the circuit, and B is the message block-size.

Figures 10 – 11 illustrate the power and energy consumption, respectively. The most
power and energy efficient designs are again mini-aes, mcrypton, and klein-64, while led
consumes the most. Surprisingly, a large design such as aes consumes much less energy than
most of the lightweight ciphers. This in fact relates to the number of rounds, which in case
of aes is only 10, as well as to its block size of 128 bits (energy is normalized over the block
size).

4 Discussion and Conclusions

The ciphers we have evaluated within our framework are mainly designed for lightweight ap-
plications. They were not designed to satisfy the low-latency requirement imposed by new
applications. Therefore, some of the ciphers which provide very good lightweight properties,
e.g. led and present, demonstrate quite a low hardware performance when it comes to the
low-latency behavior. Still, we believe that by looking at the solutions offered by lightweight
cryptography and understanding how their inherent properties influence the low-latency be-
havior one makes the very first step towards building an efficient low-latency cryptographic
primitive. We summarize our results and give some guidelines for designing low-latency algo-
rithms. In this context, we mainly address hardware properties of the algorithms.

(a) (b)

1-cycle

2-cycle

0
100
200
300
400
500
600
700
800
900

1000

P
o

w
er

 [
µ

W
]

0
20
40
60
80

100
120
140
160

P
o

w
er

[µ
W

]

Fig. 10: Power consumption [µW] for ENC/DEC module: (a) Time-constrained. (b) Uncon-
strained.

1-cycle

2-cycle

(a) (b)

0
100
200
300
400
500
600
700
800

En
er

g
y

[f
J/

b
it

]

0

50

100

150

200

250

300

En
er

g
y

[f
J/

b
it

]

Fig. 11: Energy consumption [fJ/bit] for ENC/DEC module: (a) Time-onstrained. (b) Uncon-
strained.

S-box. aes is the only cipher with an 8-bit S-box which is significantly larger than the
4-bit S-boxes used by the other ciphers. In theory, a cryptographically strong 8-bit S-box is
on average 32 times larger than a cryptographically strong 4-bit S-box. In practice, due to the
characteristics of standard cell libraries, this ratio is smaller but remains around 20. This fact
strongly encourages the use of cryptographically strong 4-bit (or even 3-bit) S-boxes where
possible. We stress here that even among the 4-bit (or 3-bit) S-boxes there are significant
differences in circuit size [24].

Number of rounds. Although both led and present use 4-bit S-boxes, thus having a
relatively lightweight round, the number of rounds they consist of is considerably large (see
Fig. 3). When a design is (partially) unrolled, the number of rounds becomes a significant
factor in the algorithm’s performance. While this is obvious in the context of the circuit’s
latency, once we target low-latency design, also the area overhead becomes significant. This
implies a higher power and energy consumption as well. We therefore suggest to minimize the
number of rounds of the cryptographic algorithm.

Round complexity. An interesting conclusion comes from comparing for example the
mini-aes and present algorithms. While the present round is very lightweight (it consist of
the S-layer and the P-layer, which is in fact only wiring in hardware), the algorithm still needs
a relatively large number of rounds in order to achieve good cryptographic properties. mini-
aes, on the other hand, has only 10 rounds and achieves good cryptographic properties by
having a heavier P-layer, i.e. an MDS matrix, which efficiently increases the number of active
S-boxes at low-cost. To illustrate, the P-layer of mini-aes is about 30 % larger than its S-layer
and therefore 10 rounds of mini-aes versus 31 rounds of present seem to be a very good

design choice. We, therefore, suggest to reduce the number of rounds at the cost of (slightly)
heavier round. Finding a lightweight P-layer with good cryptographic properties is of a high
importance here. Similar to mini-aes, mcrypton demonstrates a very good selection for the
P-layer (a bitwise matrix multiplication) while klein’s P-layer (a byte oriented MDS) seems
to be rather heavy.

Key schedule. When comparing klein and led on one side with mcrypton and pre-
sent on the other, we observe that the number of rounds of klein and led increases with
the key length, which is certainly an undesired property. This is not the case with mcrypton
and present where the number of rounds remains constant even if the key length changes.
Additionally, led and noekeon ciphers come without key schedule, i.e. the same round key
is used in all rounds. Although the key schedule is not within the critical path, this feature
reduces the complexity of the circuit and it is, therefore, beneficial for the implementation
cost of low-latency designs.

Heterogenous constructions. As we already observed in Fig. 8, the last few rounds
of the unrolled implementations are smaller in area than the middle ones. This leads to
an interesting conclusion: we suggest to design cryptographic primitives with heterogenous
rounds. Namely, designing the algorithm such that the last few rounds are more complex,
and thus larger in area, would reduce the number of rounds and reduce the complexity of
the whole design. This would, obviously, have consequences for lightweight (round-based)
implementation of the algorithm, but here we only consider the low-latency requirements.
To further illustrate this observation, we provide Fig. 17 in Appendix C, where the area per
round distribution is given for the present-80 block cipher assuming several different timing
constraints.

Encryption and decryption procedures. Although Fig. 8 shows only the results for
klein, it illustrates a trend common to all ciphers (except noekeon). The figure clearly
shows that there is a noticeable imbalance between the encryption and decryption datapaths
for most of the tested ciphers. The explanation of this phenomenon is rather simple. Most of
the ciphers are designed with the efficiency of the encryption procedure in mind. Therefore,
the S-box and the P-layer are often chosen such that their complexity is smaller than that of
their inverses. This fact indeed favors the approach of noekeon, where the same hardware
resources can be reused for both encryption and decryption. This approach not only saves a
significant amount of area, but also reduces the latency of the implementation. We also observe
that although mcrypton has (nearly) involutional layers there is a non-negligible cost to reuse
them for both encryption an decryption (due to the required insertion of multiplexors).

Conclusion. We have introduced the domain of low-latency encryption, clearly distin-
guishing it from the domains of lightweight and conventional encryption. Six well-known
lightweight SPN block ciphers, including aes, were selected based on their properties and
identified as possible candidates to yield good low-latency behavior. We evaluated their hard-
ware performance within the context of low-latency encryption, thereby providing the first
results in the field. It has been shown that the obtained results (i.e. latency, area, power, and
energy consumption) are strongly influenced by the design properties such as the number of
rounds, the round’s complexity, and the similarity between encryption and decryption pro-
cedures. We hope that our results will inspire others to design new and efficient low-latency
cryptographic primitives.

References

1. FIPS Pub. 197: Specification for the AES, Nov. 2001. http://csrc.nist.gov/pub-lications/fips/

fips197/fips-197.pdf.

2. J.-P. Aumasson, L. Henzenz, W. Meier, and M. Naya-Plasencia. Quark: a lightweight hash. In Cryp-
tographic Hardware and Embedded Systems — CHES 2010, volume 6225 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2010.

3. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak sponge function family main document
(version 2.1), 2010. Submission to NIST http://keccak.noekeon.org/Keccak-main-2.1.pdf.

4. A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. SPONGENT: A lightweight
hash function. In Cryptographic Hardware and Embedded Systems — CHES 2011, volume 6917 of Lecture
Notes in Computer Science, pages 312–325. Springer, 2011.

5. A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkel-
soe. PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware and Embedded Systems
— CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

6. C. D. Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN – A Family of Small and Effi-
cient Hardware-Oriented Block Ciphers. In Cryptographic Hardware and Embedded Systems — CHES 2009,
volume 5747 of Lecture Notes in Computer Science, pages 272–288. Springer, 2009.

7. C. D. Cannière and B. Preneel. Trivium. In The eSTREAM Finalists, volume 4986 of Lecture Notes in
Computer Science, pages 244–266. Springer, 2008.

8. C. Cid, S. Murphy, and M. J. Robshaw. Small Scale Variants of the AES. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption, 12th International Workshop — FSE 2005, volume 3557 of Lecture Notes
in Computer Science, pages 145–162. Springer, 2005.

9. J. Daemen, M. Peeters, V. Rijmen, and G. V. Assehe. Nessie Proposal: Noekeon, 2000. http://gro.

noekeon.org/.

10. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,
2002.

11. European Network of Excellence in Cryptology – ECRYPT. The eSTREAM Project, 2004. http://www.

ecrypt.eu.org/stream/.

12. M. Feldhofer and C. Rechberger. A case against currently used hash functions in rfid protocols. In
R. Meersman, Z. Tari, and P. Herrero, editors, On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, volume 4277 of Lecture Notes in Computer Science, pages 372–381. Springer Berlin /
Heidelberg, 2006.

13. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of Sand. IEE Proceedings
Information Security, 152(1):13–20, 2005.

14. Z. Gong, S. Nikova, and Y. W. Law. KLEIN: A New Family of Lightweight Block Ciphers. In RFIDSec
2011, number 7055 in Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, 2011.

15. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash Functions. In Advances
in Cryptology — CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 222–239.
Springer, 2011.

16. J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The LED Block Cipher. In Cryptographic Hardware
and Embedded Systems — CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2011.

17. M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain Family of Stream Ciphers. In The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages 179–190. Springer, 2008.

18. A. Hodjat and I. Verbauwhede. Area-Throughput Trade-offs for Fully Pipelined 30 to 70 Gbits/s AES
Processors. In IEEE Transactions on Computers, number 55(4), pages 366–372, 2006.

19. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim,
and S. Chee. HIGHT: A New Block Cipher Suitable for Low-Resource Device. In Cryptographic Hardware
and Embedded Systems — CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 46–59.
Springer, 2006.

20. M. Izadi, B. Sadeghiyan, S. Sadeghian, and H. Khanooki. MIBS: A New Lightweight Block Cipher. In
Cryptology and Network Security, volume 5888 of Lecture Notes in Computer Science, pages 334–348.
Springer, 2009.

21. E. Kavun and T. Yalcin. A Lightweight Implementation of Keccak Hash Function for Radio-Frequency
Identification Applications. In Radio Frequency Identification: Security and Privacy Issues 2010, number
6370 in Lecture Notes in Computer Science, pages 258–269. Springer-Verlag, 2010.

http://csrc.nist.gov/pub-lications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/pub-lications/fips/fips197/fips-197.pdf
http://keccak.noekeon.org/Keccak-main-2.1.pdf
http://gro.noekeon.org/
http://gro.noekeon.org/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

22. L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw. PRINTcipher: A Block Cipher for IC-Printing.
In Cryptographic Hardware and Embedded Systems — CHES 2010, volume 6225 of Lecture Notes in Com-
puter Science, pages 16–32. Springer, 2010.

23. G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight DES Variants. In Fast Software
Encryption, 14th International Workshop — FSE 2007, volume 4593 of Lecture Notes in Computer Science,
pages 196–210. Springer, 2007.

24. G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In Arithmetic of Finite Fields,
First International Workshop — WAIFI 2007, volume 4547 of Lecture Notes in Computer Science, pages
159–176. Springer, 2007.

25. C. Lim and T. Korkishko. mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags
and Sensors. In Information Security Applications, 6th International Workshop — WISA 2005, volume
3786 of Lecture Notes in Computer Science, pages 243–258. Springer, 2006.

26. S. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. Hsu, H. Kaul, M. Anders, and R. Kr-
ishnamurthy. 53 Gbps Native GF (24)2 Composite-Field AES-Encrypt/Decrypt Accelerator for Content-
Protection in 45 nm High-Performance Microprocessors. In IEEE Journal of Solid-State Circuits, number
46(4), pages 767–776, 2011.

27. National Institute of Standards and Technology (NIST). Cryptographic Hash Algorithm Competition.
Available at http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

28. National Institute of Standards and Technology (NIST). FIPS 197: Advanced Encryption Standard,
November 2001.

29. A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling. Side-Channel Resistant Crypto
for Less than 2,300 GE. Journal of Cryptology, 24:322–345, 2011.

30. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, , and T. Shirai. Piccolo: An Ultra-Lightweight
Blockcipher. In Cryptographic Hardware and Embedded Systems — CHES 2011, volume 6917 of Lecture
Notes in Computer Science, pages 342–357. Springer, 2011.

31. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, , and T. Iwata. The 128-bit blockcipher CLEFIA. In
Fast Software Encryption, 14th International Workshop — FSE 2007, volume 4593 of Lecture Notes in
Computer Science, pages 181–195. Springer, 2007.

32. F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. SEA: A Scalable Encryption Algorithm
for Small Embedded Applications. In Smart Card Research and Advanced Applications — CARDIS 2006,
volume 3928 of Lecture Notes in Computer Science, pages 222–236. Springer, 2006.

33. D. Wheeler and R. Needham. TEA, a Tiny Encryption Algorithm. In Fast Software Encryption, Second
International Workshop — FSE ’94, volume 1008 of Lecture Notes in Computer Science, pages 363–366.
Springer, 1995.

A Hardware Performance (Data)

In Table 1, we summarize hardware figures for all the tested block ciphers. The best (small-
est) values in each column are marked in bold. Since all the values are obtained based on
synthesis results, we believe that the metrics including area, latency, and time-area product
are estimated with a good accuracy. On the other hand, we believe that accurate power and
energy estimation can only be done after place and route is performed and, therefore, we do
not provide a detailed report on these two metrics.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Table 1: Hardware performance of all the tested ciphers (90 nm CMOS, synthesis results).

Time-constrained

1-cycle 2-cycle

ENC ENC/DEC ENC ENC/DEC

L A T-A L A T-A L A T-A L A T-A

aes-128 14.8 218.1 3.227 17.8 366.6 6.525 16.6 118.1 1.961 20.2 191.8 3.874
klein-64 11.2 29.0 0.325 15.3 48.2 0.737 12.2 14.6 0.179 16.4 24.9 0.409
klein-80 14.8 39.0 0.577 20.3 63.7 1.293 15.8 19.6 0.310 21.4 32.6 0.697
klein-96 18.4 48.6 0.893 25.3 79.9 2.021 19.6 24.5 0.481 26.4 41.3 1.089
led-64 30.9 62.0 1.917 31.2 128.7 4.014 32.2 32.2 1.038 32.8 63.5 2.081
led-128 46.0 93.4 4.296 46.6 193.1 8.999 47.4 47.9 2.269 48.2 96.0 4.625
mcrypton-64 9.7 22.5 0.218 9.8 41.3 0.405 10.4 11.7 0.124 10.8 20.9 0.225
mcrypton-96 9.7 22.7 0.221 9.8 40.4 0.396 10.4 12.1 0.126 10.8 21.1 0.228
mcrypton-128 9.7 23.2 0.225 9.8 41.4 0.406 10.4 12.1 0.125 11.0 21.0 0.231
mini-aes-64 8.6 23.0 0.198 9.9 40.0 0.396 10.4 12.5 0.130 12.0 22.0 0.265
noekeon-128 14.9 50.0 0.745 14.8 102.5 1.517 16.6 26.1 0.433 17.0 49.6 0.844
noekeons-128 - - - 15.5 49.5 0.768 - - - 17.4 27.1 0.471
present-80 14.3 36.9 0.528 14.8 72.3 1.070 16 19.2 0.308 16.4 37.6 0.616
present-128 14.3 38.1 0.544 14.7 73.8 1.084 16 19.6 0.313 16.6 37.1 0.615

Unconstrained

1-cycle 2-cycle

ENC ENC/DEC ENC ENC/DEC

L A T-A L A T-A L A T-A L A T-A

aes-128 45.5 103.6 4.715 46.6 232.2 10.820 43 62.3 2.677 51.6 122.0 6.293
klein-64 20.4 11.8 0.240 31.9 28.8 0.918 25.2 7.7 0.194 35.2 15.7 0.553
klein-80 26.9 15.7 0.422 42.1 38.2 1.610 32.2 10.1 0.325 46.0 20.7 0.951
klein-96 33.5 19.7 0.659 53.1 47.9 2.544 39.6 12.6 0.500 57.0 25.8 1.470
led-64 68.8 24.5 1.688 68.5 58.9 4.038 71 14.8 1.053 71.0 29.7 2.109
led-128 102.5 36.6 3.754 100.6 88.1 8.858 103.2 21.9 2.258 105.0 44.1 4.629
mcrypton-64 20.2 11.7 0.235 20.7 20.6 0.427 22 6.6 0.146 23.4 11.3 0.264
mcrypton-96 19.9 11.8 0.235 20.1 20.8 0.418 21 6.8 0.143 22.6 11.5 0.259
mcrypton-128 20.2 12.0 0.242 20.0 21.0 0.419 21.2 7.0 0.148 22.8 11.6 0.265
mini-aes-64 19.6 9.4 0.184 20.9 23.0 0.481 21.6 6.7 0.145 25.8 13.0 0.335
noekeon-128 27.6 21.3 0.587 27.9 51.6 1.438 32.4 13.8 0.446 33.0 26.6 0.878
noekeons-128 - - - 31.8 22.3 0.710 - - - 33.6 15.1 0.507
present-80 36.6 15.0 0.548 31.0 34.8 1.078 33.6 9.2 0.308 36.0 18.9 0.682
present-128 35.9 15.7 0.564 30.8 36.3 1.117 33.6 9.7 0.327 34.2 20.0 0.685

L – Latency [ns]
A – Area [kGE]

T-A – Time-Area product [ms×GE]

B Hardware Performance for ENC-only Modules

(a) (b)

0
5

10
15
20
25
30
35
40
45
50

La
te

n
cy

 [
n

s]

1-cycle

2-cycle

0

20

40

60

80

100

120

La
te

n
cy

 [
n

s]

Fig. 12: Minimum latency [ns] for ENC-only module: (a) Time-constrained. (b) Unconstrained.

1-cycle

2-cycle

(a) (b)

A
re

a
 [

k
G

E]

A
re

a
 [

k
G

E]

0

50

100

150

200

250

0

20

40

60

80

100

120

Fig. 13: Minimum area [kGE] for ENC-only module: (a) Time-constrained. (b) Unconstrained.

(a) (b)

1-cycle

2-cycle

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

T
im

e-
A

re
a

 [
m

s*
G

E]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

T
im

e-
A

re
a

 [
m

s*
G

E]

Fig. 14: Minimum time-area product [ms·GE] for ENC-only module: (a) Time-constrained.
(b) Unconstrained.

(a) (b)

1-cycle

2-cycle

0
50

100
150
200
250
300
350
400
450
500

P
o
w

er
 [

µ
W

]

0

10

20

30

40

50

60

P
o
w

er
 [

µ
W

]

Fig. 15: Power consumption [µW] for ENC-only module: (a) Time-constrained. (b) Unconstrained.

(a) (b)

1-cycle

2-cycle

0

50

100

150

200

250

300

350

En
er

g
y

[f
J/

b
it

]

0
10
20
30
40
50
60
70
80
90

En
er

g
y

[f
J/

b
it

]

Fig. 16: Energy consumption [fJ/bit] for ENC-only module: (a) Time-constrained. (b) Unconstrained.

C Area per Round Distribution of present-80 ENC-only

0

200

400

600

800

1000

1200

1 15 31

20 ns

0

200

400

600

800

1000

1200

1 15 31

14.3 ns

0

200

400

600

800

1000

1200

1 15 31

37 ns

0

200

400

600

800

1000

1200

1 15 31

35 ns

0

200

400

600

800

1000

1200

1 15 31

33 ns

0

200

400

600

800

1000

1200

1 15 31

25 ns

Fig. 17: Area [GE] per round distribution of the present-80 ENC-only architecture.

	Low-Latency Encryption – Is ``Lightweight = Light + Wait"?
	Miroslav Kneževic, Ventzislav Nikov, and Peter Rombouts

