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Abstract. Multivariate Quadratic Public Key Schemes (MQPKS) at-
tracted the attention of researchers in the last decades for two reasons.
First they are thought to resist attacks by quantum computers and sec-
ond, most of the schemes were broken. The latter may be the reason
why implementations are rare. This work investigates one of the most
promising member of MQPKS and its variants, namely UOV, Rainbow
and enTTS. UOV resisted all kinds of attacks for 13 years and can be con-
sidered one of the best examined MQPKS. We describe implementations
of UOV, Rainbow and enTTS on an 8-bit microcontroller. To address
the problem of large keys, we used several optimizations and also im-
plemented the 0/1-UOV scheme introduced at CHES 2011. To achieve a
practically usable security level on the selected device, all recent attacks
are summarized and parameters for standard security levels are given.
To allow judgement of scaling, the schemes are implemented for the most
common security levels in embedded systems 264, 280 and 2128 bits sym-
metric security. This allows for the first time a direct comparison of the
four schemes because they are implemented for exactly the same security
levels on the same platform and also by the same developer.

Keywords: Multivariate Quadratic Signatures, MQ, Unbalanced Oil and Vine-
gar, UOV, Rainbow, enTTS, AVR, Embedded Device

1 Introduction

Since Peter Shor published efficient quantum algorithms [20] to solve the prob-
lem of factorization and discrete logarithm in 1995, there is a increasing demand
in investigating possible alternatives. One such class of so-called post-quantum
cryptosystems is based on multivariate quadratic (MQ) polynomials. We know
that solving systems of MQ-polynomials is hard in the worst case, as the cor-
responding MQ-problem is proven to be NP-complete [11]. Unfortunately all
schemes proposed so far also need the Isomorphism of Polynomials (IP) problem
to hide the trapdoor. It is not known how hard this problem is and indeed most
MQ-schemes are broken this way. So for example, the balanced Oil and Vine-
gar scheme [15], Sflash [4] and much more [17, 16, 12, 7, 8, 23]. To encapsulate,



nearly all MQ-encryption schemes and most of the MQ-signature schemes are
broken up to this point. There are only very few exceptions like the signature
schemes HFE−, Unbalanced Oil and Vinegar (UOV) and its layer based variants
Rainbow and enTTS. Well, breaking the first seems to be a matter of time as
some ideas of the attack against Sflash from Asiacrypt 2011 [4] might also be
applicable. On the other hand, UOV resisted all kinds of attacks for 13 years. It
is thought to be the most promising member of the class of MQ-schemes.

Previous Work and Contribution. Rainbow type hardware implementations
got some attention during the last years. An 0.35µm ASIC, which signs in 0.012
ms, is reported in [2]. Further [21] presents an ASIC implementation, taking only
198 clock cycles for a sign operation. An ASIC implementation of enTTS(20,28)
enabling sign in 0.044 seconds running at a slow clock of 100KHz, is reported
in [25]. The authors also report a MSP430 implementation signing in 71 ms and
verifying in 726 ms and a 8051-compatible µC implementation signing in 198ms.
At CHES 2004, Yang et al. describe an implementation of TTS targetting 8051-
compatible µCs [1]. Their implementation of TTS(20,28) signs in 144ms, 170ms,
60ms and for TTS(24,32) they achieve 191ms, 227 ms, 85 ms for an i8032AH,
i8051AH and W77E59, respectively. We are not aware of any implementation of
UOV or Rainbow targeting small microcontrollers.
This work describes implementations of theMQ-signature schemes, UOV, Rain-
bow and enTTS, on an 8-bit microcontroller. Additionally, methods to reduce the
key size are evaluated and a version of UOV published at CHES 2011 (0/1-UOV
[19]) is introduced and also evaluated. To achieve a practically usable security
level on the selected device, recent attacks are summarized and parameters for
standard security levels are given. The actual implementations were all done by
the same developer. This ensures, that we really compare different schemes and
not just different skills of different developers.

Organization. Section 2 introduces MQ-schemes in general and UOV, Rain-
bow and enTTS in special. Section 3 summaries recent attacks and derives pa-
rameter sets to achieve 264, 280 and 2128 bit security. Afterwards, Section 4 de-
scribes our implementations before we present our results in Section 5. Finally,
we conclude in Section 6 and point out some details for future improvements.
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2 Multivariate Quadratic Public Key Cryptosystems

This section provides a brief introduction to UOV [14], 0/1 UOV [19], Rainbow
[9] and enTTS [24]. The general idea of all these MQ-signature schemes is to
use a public multivariate quadratic map P : Fnq → Fmq with

P =

 p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)


and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n
α
(k)
ij xixj = xᵀP(k)x,

where P(k) is the (n × n) matrix describing the quadratic form of p(k) and
x = (x1, . . . , xn)ᵀ. Note that we can neglect linear and constant terms as they
never mix with quadratic terms and thus do not increase the security [5].
The trapdoor is given by a structured central map F : Fnq → Fmq with

F =

 f (1)(u1, . . . , un)
...

f (m)(u1, . . . , un)


and

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n
γ
(k)
ij uiuj = uᵀF(k)u.

In order to hide this trapdoor we choose two secret linear transformations S, T
and define P := T ◦ F ◦ S. See Figure 1 for an illustration.

Fn
q Fm

q

Fn
q Fm

q

P

S T

F

Fig. 1.MQ-Scheme in general.

Unbalanced Oil and Vinegar. For the UOV signature scheme the variables
ui, i ∈ V := {1, . . . , v} are called vinegar variables and the remaining variables
ui, i ∈ O := {v + 1, . . . , n} are called oil variables. The central map F is given
by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V
γ
(k)
ij uiuj +

∑
i∈V,j∈O

γ
(k)
ij uiuj .
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The corresponding matrix F(k) is depicted in Figure 2.

F(k) =

x1 . . . xv . . . xn

0

x1

...

xv

...

xn

︷︸︸︷︷︸︸︷

vinegar variables

oil variables

Fig. 2. Central map F of UOV. White parts denote zero entries while gray parts denote
arbitrary entries.

As we have m equations in m+v variables, fixing v variables will yield a solution
with high probability. Due to the structure of F(k), i.e. there are no quadratic
terms of two oil variables, we can fix the vinegar variables at random to obtain
a system of linear equations in the oil variables, which is easy to solve. This
procedure is not possible for the public key, as the transformation S of variables
fully mixes the variables (like oil and vinegar in a salad). Note that for UOV
we can discard the transformation T of equations, as the trapdoor is invariant
under this linear transformation.

Rainbow. Rainbow uses the same idea as UOV but in different layers. Current
choices of parameters (q, v1, o1, o2) use two layers, as it turned out to be the
best choice in order to prevent MinRank attacks and preserve short signatures
at the same time. We will use q = 28 throughout the paper. The central map F
of Rainbow is divided into two layers F(1), . . . ,F(o1) and F(o1+1), . . . ,F(o1+o2) of
form given in Figure 3.

0

0

0

0

00

v1 o1 o2

for F(1), . . . ,F(o1)

and

0

v1 o1 o2

for F(o1+1), . . . ,F(o1+o2)

Fig. 3. Central map of Rainbow (q, v1, o1, o2). White parts denote zero entries while
gray parts denote arbitrary entries.

To use the trapdoor we first solve the small UOV system F(1), . . . ,F(o1) by ran-
domly fixing the v1 vinegar variables. The solution u1, . . . , uv1+o1 is now used as
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vinegar variables of the second layer. Solving the obtained linear system yields
uv1+o1+1, . . . , uv1+o1+o2 . A formal description of Rainbow is given by the follow-
ing formula.

f (k)(u1, . . . , un) :=
∑

i∈V1,j∈V1

γ
(k)
ij uiuj +

∑
i∈V1,j∈O1

γ
(k)
ij uiuj

for k = 1, . . . , o1

f (k)(u1, . . . , un) :=
∑

i∈V1∪O1,j∈V1∪O1

γ
(k)
ij uiuj +

∑
i∈V1∪O1,j∈O2

γ
(k)
ij uiuj

for k = o1 + 1, . . . , o1 + o2

0/1-Unbalanced Oil and Vinegar. At CHES 2011 Petzold et al. [19] showed
that large parts of the public key are redundant in order to prevent key recovery
attacks. More precisely, S can be chosen of a special structure due to equivalent
keys and thus large parts of the public and secret map are equal. Choosing this
parts of P of a special structure, such that direct attacks on the public key do
not become easier, they were able to reduce the key size and running time of the
verification algorithm.

Enhanced TTS. Enhanced TTS was proposed by Yang and Chen in 2005 [24].
The general idea is the same as for Rainbow, but as TTS was designed for high
speed implementation it uses as few monomials as possible. For the purpose of
evaluating the security we generalize the scheme by adding more monomials. As
soon as a monomial xixj with xi ∈ U and xj ∈ V occur in the original TTS
polynomial, we just assume that all monomials xixj with xi ∈ U and xj ∈ V
occur. This way we easily see that TTS is a very special case of the Rainbow
signature scheme. There are two different scalable central maps given in [24],
one is called even sequence and the other odd sequence. The following equations
show the odd sequence. We restrict our implementation to this case.

f (i) = ui +

2`−3∑
j=1

γijuju2`−2+(i+j+1 mod 2`−1) for 2`− 2 ≤ i ≤ 4`− 4,

f (i) = ui +

`−2∑
j=1

γijui+j−(4`−3)ui−j−2` +

2`−3∑
j=`−1

γijui+j−3`+3ui−j+`−2

for i = 4`− 3, 4`− 2,

f (i) = ui + γi0ui−2`+1ui−2`−1 +

i−1∑
j=4`−1

γi,j−(4`−2)u2(i−j)−(i mod 2)uj + γi,i−4`+2u0ui

+

6`−3∑
j=i+1

γi,j−(4`−2)u4`−1+i−juj for 4`− 1 ≤ i ≤ 6`− 3.
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If we generalize these equations to the Rainbow signature scheme, the central
map is given by Figure 4.

F1, . . . ,F2`−1 F2`,F2`+1 F2`+2, . . . ,F4`

2`− 2 2`− 1 2 2`− 1 2`− 2 2`− 1 2 2`− 1 2`− 2 2`− 1 2 2`− 1

Fig. 4. Secret map F of odd sequence Enhanced TTS generalized.

3 Security in a Nutshell

To provide a fair comparison between UOV, Rainbow and enTTS regarding
memory consumption and running time, we first have to choose parameters of
the same level of security. Therefore we briefly revisit the latest attacks and
choices of parameters of all three schemes.

3.1 Security and Parameters of UOV and 0/1-UOV

Direct Attack. To forge a single signature an attacker would have to solve a
system of o quadratic equations in v variables over Fq. The usual way of finding
one solution is first guessing v variables at random. This preserves one solution
with high probability. The best way of solving the remaining MQ-system of o
equations and variables is to guess a few further variables and then apply some
Gröbner Basis algorithm like F4 (see Hybrid Approach of Bettale et al. [3]).
Recently Thomae et al. showed that we can do better than guessing v variables
at random [22]. Calculating these v variables through linear systems of equations
allows to solve a system of o−

⌊
v
o

⌋
quadratic equations and variables afterwards.

To determine the complexity of solving a MQ-system using a Groebner basis
algorithm like F4 we refer to [3]. In a nutshell, we first have to calculate the
degree of regularity dreg. For semi-regular sequences, which generic systems are
assumed to be, the degree of regularity is the index of the first non-positive
coefficient in the Hilbert series Sm,n with

Sm,n =

∏m
i=1(1− zdi)
(1− z)n ,
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where di is the degree of the i-th equation. Then the complexity of solving a
zero-dimensional (semi-regular) system using F4 [3, Prop. 2.2] is

O
((

m

(
n+ dreg − 1

dreg

))α)
,

with 2 ≤ α ≤ 3 the linear algebra constant. We used α = 2 throughout the
paper.

Key Recovery Attacks. There are two key recovery attacks known so far.
The first is a purely algebraic attack called Reconciliation attack [6]. In order
to obtain the secret key S we have to solve

(
k+1
2

)
o quadratic equations in kv

variables for an optimal parameter k ∈ N. The second attack is a variant of the
Kipnis-Shamir attack on the balanced Oil and Vinegar scheme [15]. The overall
complexity of this attack is O(qv−o−1o4). Note that v = 2o is very conservative
in order to prevent this attack and thus v can be chosen much smaller for o
large enough. As k ≥ 2 even the Reconciliation attack will not badly benefit of
choosing v smaller and direct attacks even suffer of such a choice.

Table 1. Minimal 0/1-UOV parameters achieving certain levels of security. Thereby g
is the optimal number of variables to guess in the hybrid approach and k is the optimal
parameter selectable for the Reconciliation attack.

security parameter (o, v) direct attack Reconciliation Kipnis-Shamir

264 (21, 28) 267 (g = 1) 2131 (k = 2) 266

280 (28, 37) 285 (g = 1) 2166 (k = 2) 283

2128 (44, 59) 2130 (g = 1) 2256 (k = 2) 2134

3.2 Security and Parameters of Rainbow

All attacks against UOV also apply to Rainbow. Additionally the security of
Rainbow relies on the MinRank-problem. Thus we also have to take MinRank
and HighRank attacks, as well as the Rainbow Band Separation attack into
account. See Petzold et al. [18] for an overview of the attacks and the parameters
to choose.

Table 2. Minimal Rainbow parameters achieving certain levels of security. Thereby g
is the optimal number of variables to guess for the hybrid approach.

security (v1, o1, o2) direct attack Band MinRank HighRank Kipnis Reconciliation

264 (15, 10, 10) 267 (g = 1) 270 2141 293 2125 2242 (k = 6)

280 (18, 13, 14) 285 (g = 1) 281 2167 2126 2143 2254 (k = 5)

2128 (36, 21, 22) 2131 (g = 2) 2131 2313 2192 2290 2523 (k = 7)
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3.3 Security and Parameters of Enhanced TTS

All attacks against Rainbow also apply to enTTS. The only attack that seriously
benefit from the changes made between Rainbow and enTTS is the Reconcilia-
tion attack with large k. But as the complexities of this attacks are out of reach
anyway this do not affect the security. Actually the complexity is higher than
the ones of all the other attacks, so we omit it. More important is the slight
benefit of the Band Separation attack. For the odd sequence enTTS we derive
m+ n− 1 quadratic equations in n− 2 instead of n variables.

Table 3. Minimal odd sequence enTTS parameters achieving certain levels of security.
Thereby g is the optimal number of variables to guess for the hybrid approach.

security (`,m, n) direct attack Band MinRank HighRank Kipnis-Shamir

264 (7, 28, 40) 289 (g = 1) 268 2126 2117 2127

280 (9, 36, 52) 2110 (g = 2) 285 2159 2151 2160

2128 (15, 60, 88) 2176 (g = 3) 2131 2258 2249 2259

4 Implementation on AVR Microprocessors

The goal of these implementations is a fair comparison between some of the most
promisingMQ-based post quantum public key schemes. All schemes were anal-
ysed in the previous section and sets of parameters with equivalent security were
defined under considerations of most recent attacks. A problem when compar-
ing such schemes is that every implementation has its own philosophy of what
is most worthy of optimization. Therefore we aim for a comparison with equal
conditions for all schemes such as the same platform and implementation by
the same person, also with nearly the same possible optimizations. Additionally
practical figures are given in a real world scenario for signature verification and
generation time. All the schemes were implemented with runtime optimization
in mind.

4.1 Target Platform and Tools

An ATxMega128a1 on an xplain board was used as target device. This micro
processor has a clock frequency of 32 MHz, 128KB flash program memory and
8KB SRAM. The code was written in C and optimized for embedded use. As
compiler avr-gcc in version 4.5.1 and at some places assembler gcc-as 2.20.1 was
used.
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Polynomial Representation / Key Storage When implementing MQPKS
on microprocessors it is important to construct an efficient way of storing and
reading the keys out of memory. All polynomials of an MQ-scheme are repre-
sented by their coefficients. It is important to decide how this coefficients are
processed during runtime. The coefficients of UOV and Rainbow can be easily
mapped to some readout loops. This is not that easy with enTTS as only a min-
imal count of coefficients are used and this few coefficients are spread over three
layers and six different cyclic structures. As random access on the flash memory
produces a lot of addressing overhead while calculating the address each time
a serial approach was chosen. All coefficients are stored in memory in the same
exact order in which they are read out. There are no gaps or zeros in memory
which is also memory efficient. This memory architecture allows us to read out
the keys directly and simply increment the address to reach the next coefficient.
The AVR instruction set allows a memory readout with a post increment in
one clock cycles from SRAM or two clock cycles from Flash memory. There-
fore no additional address calculation is needed. The number of coefficients to
store and thus the memory consumptions in bytes is o

(
ov + v(v+1)

2

)
for UOV,

o1

(
o1v + v(v+1)

2

)
+o2

(
o2(v + o1) + (v+o1)(v+o1+1)

2

)
for Rainbow and 8l2−6l−3

for enTTS. The resulting memory requirements for specific security parameters
are given in Table 5.

4.2 Arithmetic and Field

As the used microprocessor is based on an 8 bit architecture, working in F28

is optimal. Multiplication is done by a table look up, each element is brought
to its exponential representation, processed and then transformed back to the
normal polynomial representation. Every transformation from the exponential
to the basis representation costs one memory access, therefore in all implemen-
tations the exponential representation is kept as long as no F28 addition takes
place, which is a bitwise exclusive OR operation of two coefficients in the basis
representation. As the coefficients of the keys are first read in by a multiplica-
tion, all keys are already stored in the exponential form. Random numbers are
generated by the rand() gcc pseudo random number generator. This function is
seeded with a value derived from uninitialized SRAM blocks which are arbitrary
on every start up.

Inverting the Layers All schemes require the inversion of multivariate sys-
tems of equations. As only linear systems of equation can be solved efficiently,
we have to fix variables until the system gets linear and then perform a simple
Gaussian elimination using LU decomposition. Here the exponential representa-
tion is also used where possible. For example the lower matrix and all variables
were saved in exponential form. In enTTS the middle layer consists only of poly-
nomials depending on already known variables. Therefore these polynomials can
be inverted directly.
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4.3 Key Size and Signature Runtime Reduction

The main problem of MQ-schemes are large keys, as storage space is limited
on embedded devices. Large private keys come also together with long signature
time, due to the processing of more data. As the signature for a fixed message
is not unique, there is a lot of redundancy that can be used to reduce the secret
key S (cf. theory of equivalent keys). We used such minimal keys for UOV as
well as for Rainbow. Note that there are no equivalent keys known for enTTS
and thus the whole matrix S has to be stored. The special form of S has two
additional side effects in addition to less space. First, also the signature time is
reduced. The multiplication with the identity matrix corresponds to a copy of
the signature so that only the multiplication with the remaining coefficients has

to be done. For UOV this saves us (v−1)·v
2 + (o−1)·o

2 equations and for Rainbow
(v−1)·v

2 + (o1−1)·o1
2 + (o2−1)·o2

2 . The second observation is that due to the identity
matrix in the vinegar × vinegar part, large parts of P and F are equal. They
do not increase security an can be seen as a system parameter (cf. [19]). As
required by the authors of [19] for 0/1-UOV, also a different monomial ordering
was chosen according to a minimal Turán graph. This reordering prevent easier
attacks on the public key. The same procedure is probably possible for Rainbow.
But as no publication exists which investigated this case, it was not implemented.
For enTTS this is not possible as the Tame equations in the middle layer cause
to blur the variable structure and no equivalent keys are known.

4.4 Verify Runtime Reduction

In the case of 0/1-UOV, choosing the coefficient from F2 has another advantage
besides of less memory consumption. The verification and signature generation
time can be reduced. As we know that the majority of coefficients are from F2,
we can check for a one or a zero, which leads to a copy instruction in the case
of one or a skip instruction in case of zero. Only otherwise we have to perform a
costly multiplication in F28 . The effect is in our implementation not marginally
visible, because the used table look up method is fast compared to a schoolbook
multiplication method.

4.5 RAM Requirements

MQ-schemes do not need a lot of RAM, in contrast to the persistent flash mem-
ory requirements. In Table 4 the requirements are listed. Besides RAM needed
for persistent, counting or temporary variables, only the Gaussian elimination
algorithm needs a noticeable amount of RAM. As the inversion is computed in
place, only one quadratic systems at time has to be stored in RAM. In case of
multiple layers the maximal requirements are defined by the largest system of
equations to be solved.
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security 264 280 2128 general

UOV 441 784 1936 m2

Rainbow 400 729 1849 (o1 + o2)2

enTTS 169 289 841 (2l − 1)2

Table 4. Minimal Ram Requirements for LES Solving in Bytes

4.6 Key Generation

The keys for all schemes are generated on a standard PC using a C program.
Basically T ◦ F ◦ S = P has to be computed. Using the quadratic form, the
composition can be written as in (1). An overview of the key generation process
of 0/1 UOV with small parameters can be found in the appendix.

P(i) =

m∑
j=1

tijS
ᵀF(j)S (1)

Another way to generate an UOV key is described in [19]. It can be done by
transforming the matrix S into a matrix Auov and write all coefficients of f (i)

ordered lexicographically to the rows of Q. Then the following equation holds:
Auov ·Q = STF(i)S. With this relation inverting Auov is possible and therefore
a inverse approach, choosing first P and then applying Auov to get F . For the
runtime optimization the reordering of monomials can take place in Auov instead
of reorder the monomials in P and F .

5 Results

Table 5 shows our achieved results. They are easy to compare because schemes
are grouped by security level. For all schemes key size, runtime and code size
are given. Where applicable the system parameter size is also included. The
public and secret key sizes can be easily calculated. One element responds to
one byte and no other overhead needs to be saved so the keys consists only of
the coefficients of the public or secret maps and the linear transformations. In
the case of 0/1-UOV a large part is fixed and declared as a system parameter,
but it must be anyway saved or be easy to generate in a real world scenario,
therefore thus size is also listed.
Clock cycles were count internally with two concatenated 16 bit counters which
are enabled to count on every clock cycle. As the count of verify operations

scales with (n·(n+1)
2 ·m) the measured times do not surprise. As enTTS uses the

largest numbers of n and m it has the lowest verify performance and the largest
public keys. Rainbow is the fastest as the parameters can be chosen relatively
low. The big advantage of enTTS is the small private key. Large parts of the
central map are zero and have not to be saved. In terms of theoretical public
key size 0/1-UOV performs the best. If the possibility to generate the system
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parameter on the device would exist, it would ensure the smallest public key.
The gain of verification and signature time in comparison to the standard UOV
is only minimal as the multiplication by table look up has no significant runtime
difference in comparison to a multiplication with 0 or 1 as the 0 case is a special
case and is checked anyway every time in a normal multiplication in F28 . When
measuring scalability for secret/public key size at the step from 264 to 2128,
UOV has a increase factor of 9/9, 0/1-UOV of 9/9, Rainbow 10/11 and enTTS
of 4/10. UOV scales the best in public key size, enTTS the best in private key
size. Regarding the signature size, UOV has the highest expansion factor, with
a message to signature ratio of approximately 2.3, followed by Rainbow with 1.7
and enTTS with 1.4.
As a comparison of an µC with an ASIC or PC implementation is meaningless,
the only MQ implementation we can compare with is the one from [25]. The
authors implemented enTTS(5, 20, 28) on a MSP430 running at 8 MHz. Signing
requires 17.75 ms and verifying 181.5 ms, when scaled up to our clock frequency.
Although, the MSP430 is a 16 bit CPU, our implementation is a factor of 3.7
faster in signing and 5.1 times faster in verifying.

Also when comparing our work with implementations of the classical signature
schemes RSA and ECDSA, all four schemes perform well. E.g. for 280 bit se-
curity [13] reports 203ms for a ECC sign operation, where our implementations
are two to ten times faster. For the verifying operation our work is up to three
times faster. Due to the short exponent in RSA-verify, [13] verifies in the same
order of magnitude. But the RSA-sign operation is at least a factor of 25 slower
than our work. Table 6 summarizes other implementations on comparable 8 bit
platforms.

Table 6. Overview of other implemenatations on compara-
ble platforms.

Method Time[ms]@32MHz
sign verify

enTTS(5, 20, 28)[25] 17.751 181.51

ECC-P160 (SECG) [13] 2031 2031

ECC-P192 (SECG) [13] 3101 3101

ECC-P224 (SECG) [13] 5481 5481

RSA-1024 [13] 2,7481 1081

RSA-2048 [13] 20,8151 4851

NTRU-251-127-31 sign [10] 1431 -

1 For a fair comparison with our implementation running
at 32MHz, timings at lower frequencies were scaled ac-
cordingly.
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6 Conclusion

In this work we present the first µC implementations of the three most common
MQPKS since nearly 10 years. Additionally, we implemented for the first time
0/1-UOV on a constrained device. All recent attacks were summarized and we
proposed current security parameters for 264, 280 and 2128 bit symmetric security.
Additionally, we showed that choosing v = 2o for UOV is outdated. When
comparing with existing MQ implementations, ours are a factor of three and five
times faster in signing and verifying, respectively. We hope our implementations
will inspire follow up work, to improve acceptance of MQPKS in constrained
environments.

6.1 Further Improvements

There is still space for improvements and the upper limit is not reached yet.
A few ideas were not implemented in this work. Saving the system parameters
is not optimal. Here a replacement by a pseudo random number generator or
an other generator function would reduce the public key drastically, even if
verification time would be increased. In our implementation all elements of F2 are
saved as a byte value. It would be possible to achieve smaller keys when saving
8 elements in one byte, combined with a verification function which utilizes
assembler instructions maybe even a faster verification could be possible. An
overall time vs. code size trade-off is still a topic to investigate. MQ-schemes
are very well scalable in regard to this trade-off.
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A Toy example of 0/1 UOV Key Generation
Step 1: Choose parameters o, v and generate S and B.

01 47 A8 9E

01 A1 55 AD

01 3D F4 0A

01 C2 9F 2B

01 8E 01 C5

01 54 83 12

01

01

01

S = S−1 = n

n

01 01 00 00 00 01 00 00 01 00 00 01 00 00 00 01 00 01 01 00 01 00 00 00 01 01 01 00 01 00 01 01 01 01 01 00 00

01 00 01 00 00 00 01 00 01 01 01 00 00 00 01 00 00 00 00 00 00 01 00 00 01 01 00 01 01 01 01 01 01 01 00 00 01

01 00 00 01 01 00 00 00 01 00 00 01 00 00 00 00 00 00 00 01 01 00 00 00 01 01 01 00 01 01 00 00 00 00 00 01 01

B = m

D

(o, v) = 3, 6
n = o+ v = 9
D = v·(v+1)

2 + o · v = 39

D2 = o·(o+1)
2 = 6

D′ = D +D2 = 45

Step 2: Generate AUOV and permutate rows.

01

01

01

01

01

01

43 AC 01 FF 7C 01

7A 2F DE 97 02 01

A3 3D FA C7 2E 01

01

01

01

01

01

96 AC 01 FF 7C 01

4D 2F DE 97 02 01

75 3D FA C7 2E 01

01

01

01

01

96 43 01 FF 7C 01

4D 7A DE 97 02 01

75 A3 FA C7 2E 01

01

01

01

96 43 AC FF 7C 01

4D 7A 2F 97 02 01

75 A3 3D C7 2E 01

01

01

96 43 AC 01 7C 01

4D 7A 2F DE 02 01

75 A3 3D FA 2E 01

01

96 43 AC 01 FF 01

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

1A C9 4D 96 11 6A 96 C8 A1 43 2D F2 43 37 AC 84 FD AC 01 FF 7C 01 E2 9C FF F4 7C 01

44 51 FD 32 11 4D 96 4C 9C 2E 67 7A 43 23 1B D0 2F AC 1C D9 DE 01 F5 97 FF 02 7C 01

DF CA 90 BF EF 75 96 E1 DC 2B 6E A3 43 9F E9 1C 3D AC 01 23 FA 01 F6 C7 FF 2E 7C 01

9C 93 F9 A6 13 9A 4D E0 77 25 43 F4 7A 21 5C 19 5E 2F 97 6E A1 DE 1B 33 97 04 02 01

A7 18 61 50 5E 75 4D 96 B9 B4 56 A3 7A F5 73 74 3D 2F 89 6B FA DE 1D C7 97 2E 02 01

B5 81 36 74 42 AA 75 62 5F FD A2 45 A3 38 9B A3 88 3D F3 68 93 FA CB 1B C7 20 2E 01

AUOV =

D′

01

01

01

01

01

01

1A C9 4D 96 11 6A 96 C8 A1 43 2D F2 43 37 AC 84 FD AC 01 FF 7C 01 E2 9C FF F4 7C

9C 93 F9 A6 13 9A 4D E0 77 25 43 F4 7A 21 5C 19 5E 2F 97 6E A1 DE 1B 33 97 04 02

B5 81 36 74 42 AA 75 62 5F FD A2 45 A3 38 9B A3 88 3D F3 68 93 FA CB 1B C7 20 2E

01

01

01

43 AC 01 FF 7C 01

7A 2F DE 97 02 01

A3 3D FA C7 2E 01

01

01

01

96 AC 01 FF 7C 01

4D 2F DE 97 02 01

75 3D FA C7 2E 01

01

01

01

96 43 01 FF 7C 01

4D 7A DE 97 02 01

75 A3 FA C7 2E 01

01

96 43 AC FF 7C 01

4D 7A 2F 97 02 01

75 A3 3D C7 2E 01

01

96 43 AC 01 7C 01

4D 7A 2F DE 02 01

75 A3 3D FA 2E 01

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

44 51 FD 32 11 4D 96 4C 9C 2E 67 7A 43 23 1B D0 2F AC 1C D9 DE 01 F5 97 FF 02 7C

DF CA 90 BF EF 75 96 E1 DC 2B 6E A3 43 9F E9 1C 3D AC 01 23 FA 01 F6 C7 FF 2E 7C

AUOV
′ =

D

Step 3: Invert AUOV
′

01

01

01

01

01

01

1A C9 4D 96 11 6A 96 C8 A1 43 2D F2 43 37 AC 84 FD AC 01 FF 7C 01 E2 9C FF F4 7C

9C 93 F9 A6 13 9A 4D E0 77 25 43 F4 7A 21 5C 19 5E 2F 97 6E A1 DE 1B 33 97 04 02

B5 81 36 74 42 AA 75 62 5F FD A2 45 A3 38 9B A3 88 3D F3 68 93 FA CB 1B C7 20 2E

01

01

01

43 AC 01 FF 7C 01

7A 2F DE 97 02 01

A3 3D FA C7 2E 01

01

01

01

96 AC 01 FF 7C 01

4D 2F DE 97 02 01

75 3D FA C7 2E 01

01

01

01

96 43 01 FF 7C 01

4D 7A DE 97 02 01

75 A3 FA C7 2E 01

01

96 43 AC FF 7C 01

4D 7A 2F 97 02 01

75 A3 3D C7 2E 01

01

96 43 AC 01 7C 01

4D 7A 2F DE 02 01

75 A3 3D FA 2E 01

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

44 51 FD 32 11 4D 96 4C 9C 2E 67 7A 43 23 1B D0 2F AC 1C D9 DE 01 F5 97 FF 02 7C

DF CA 90 BF EF 75 96 E1 DC 2B 6E A3 43 9F E9 1C 3D AC 01 23 FA 01 F6 C7 FF 2E 7C

AUOV
′ =

01

EC D5 66 4C 5B E7 7E B3 91 48 67 8D 72 8F B7 71 80 84 2B 6A 69 63 36 AD 58 33 64 C8 A0 AA 4C 4B

9D 7F 94 0A 69 EF CB E8 17 DA FD 2D 42 79 78 58 5E 9C 82 8B ED CA AD 04 BA 98 2D 2F FD A2 71 BC A3 A5 04 47 41 68 B6

01

01

01

01 15 08 5E F7 38 73 81 62 9A 11 26 66 9C 9B 51 1E 1B DE 1F F2 94 9B 8A EA 8B 0B AA 81 AA 30 4E 54 06 BF B9 D2 5B 83

FB B8 68 2A 25 51 A5 E8 4A 7C 2F 16 E2 10 6E 18 DB C6 7E 88 7D 2A 61 BC 66 B1 7F BC 3A C0 2B 6B 60 E1 6B F2 13 0A 2D

D2 A2 E8 14 A8 61 D9 1E C4 90 31 D9 A6 F8 77 CF 40 5E 64 09 83 9F 24 F4 60 E9 CF 11 A6 B4 3C D2 9C 11 69 D2 76 95 47

01

49 69 A8 7E E8 8A 64 FB FF F1 85 77 39 A1 E9 F3 34 C6 6F 2F B5 F7 50 9D A9 08 F9 91 48 FB 34 98 7B 72 F9 7E CF 2F F2

01

01

01

CE 1A BD B2 3D 44 A6 55 5D 9D 1C 81 7F E5 84 BD 19 B7 B9 1A 2C 8D 5A AD 11 09 4B 25 BF FF 67 B4 9B 3D 53 AC 86 A6

88 EF F2 87 2C AE 72 FC 95 DD 75 80 76 79 37 BB 7E B8 4E F0 F9 9F C5 22 DD 65 18 1B 42 04 D5 ED 7E C4 A9 D7 6D F0 23

67 6B ED AD 5C 7B B8 03 D0 47 A1 10 E7 C6 EA E2 4B A8 9F A3 48 A7 0C 20 D0 F5 DC D1 9B 80 DD 69 D7 46 47 9A 2D FF 72

01

01

01

01

15 29 9B 81 B6 3A 45 7D 7D 4A 68 12 F2 4F F6 21 B1 6F 9E C1 31 49 6D 30 79 AF BD 2B 0F E6 87 A4 6A 58 D8 DF 19 E3 70

BD 6A 03 DD CC D2 83 B5 FE DD 60 FB B5 0E 5F FA 12 B7 4F BB CC A6 A5 6B CD 49 C6 BB 38 D7 EB 0C 51 6F 8C 41 4B DA D7

55 74 39 6D B4 A2 C4 C3 BD 06 74 EF 0F CA 61 AF 2E 5C BB EE 4C 12 A7 22 30 E5 31 DD FC AA F1 8B 9C 6D CC 52 AA 63 B2

01

2E EC C5 B4 77 32 3D A8 45 49 34 75 B8 D4 09 75 1A 5E 90 98 49 DF BC 8A 55 9C 23 32 B2 16 F0 52 CA 92 CB AA B5 45 A9

01

05 B5 77 64 2B 3E 52 5F 15 F3 06 C8 14 C3 54 8B 03 E9 29 82 65 D8 CF 2A 5E 59 8A 42 5D 73 8E 99 1B CA E4 BC 9B 15 A0

8E CF 83 A8 7E A1 AF 87 DF 38 F4 4D 02 91 5B 37 7A 32 D9 15 75 D6 64 A3 5A 73 B3 A3 FD D1 E0 98 8D EA 1A B4 3F DF 10

1B 2C 58 21 D1 BA A3 80 6B 53 12 42 6C 73 B1 E1 09 A5 DF A9 26 6C 57 D6 87 92 91 94 89 44 8C E8 41 4C 86 13 E6 6B 47

01

01

2E EC C5 B4 77 32 3D A8 45 49 A2 75 B8 D4 09 75 59 5E 90 98 49 DF 10 8A 55 9C 23 32 B2 16 F0 2E CB 92 CB AA B5 45 A9

82 95 37 D3 1A 02 9C 53 18 F9 B1 BB 32 88 60 BB 04 B8 4E F0 F9 49 42 30 79 AF BD 02 2D 9F 15 5B A9 EE 77 F2 0D 18 8D

93 CE 81 3A 9D C4 9B 6D 59 15 97 74 76 60 79 74 D2 D2 C3 40 15 F0 84 B2 42 8F 25 C4 1C 3D 99 B0 DE 2A 25 84 C0 59 97

01

E8 96 58 AC 2F CD E5 64 40 27 B0 43 87 DB 0D F0 63 C6 60 0F 59 51 57 7A 87 92 91 52 E2 4F 63 7B BE D9 FB FD E1 4B 0F

4D 7A 2F DE 97 01

75 A3 3D FA C7 01

(AUOV
′)−1 =

Step 4: Compute F and P

01 3D 26 00 01 00 A8 8D E5

00 B1 00 00 01 E4 B6 CB

00 00 01 00 0E C8 38

01 3E 01 33 09 D8

00 00 05 80 C1

00 4E A5 58

00 27 57 00 01 01 E7 1D C1

01 5F 00 01 00 3D 51 DD

00 00 00 01 FD 66 04

00 82 01 FD 6C 8F

01 01 2A BA C8

00 6E 2A 75

00 7E BF 00 01 00 47 76 66

00 94 00 00 00 53 D2 4D

01 01 01 00 CE 90 EF

00 A4 01 FE 00 DF

00 01 E2 D2 47

01 60 49 3D

f1, f2, f3 =

01 3D 26 00 01 00 00 01 00

00 B1 00 00 01 00 01 01

00 00 01 00 00 00 01

01 3E 01 01 00 01

00 00 01 01 01

00 0C 01 01

00 00 00

01 AE

00

00 27 57 00 01 01 01 00 00

01 5F 00 01 00 00 00 00

00 00 00 01 00 00 01

00 82 01 00 01 01

01 01 01 01 01

00 AA 01 00

00 00 01

00 4F

01

00 7E BF 00 01 00 00 01 00

00 94 00 00 00 00 00 00

01 01 01 00 00 00 01

00 A4 01 01 00 01

00 01 00 00 00

01 9E 00 00

01 01 01

00 45

00

p1, p2, p3 =

F = B · (AUOV
′
)
−1 P = F ·AUOV

Fig. 5. 0/1 UOV Key Generation. For details see [19].


