
Solving Quadratic Equations with XL on Parallel
Architectures

Chen-Mou Cheng1, Tung Chou2, Ruben Niederhagen2, and Bo-Yin Yang2

1 Intel-NTU Connected Context Computing Center, National Taiwan University,
Taipei, Taiwan, doug@crypto.tw

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan,
{blueprint,by}@crypto.tw, ruben@polycephaly.org

Abstract. Solving a system of multivariate quadratic equations (MQ)
is an NP-complete problem whose complexity estimates are relevant to
many cryptographic scenarios. In some cases it is required in the best
known attack; sometimes it is a generic attack (such as for the multi-
variate PKCs), and sometimes it determines a provable level of security
(such as for the QUAD stream ciphers).
Under reasonable assumptions, the best way to solve generic MQ systems
is the XL algorithm implemented with a sparse matrix solver such as
Wiedemann’s algorithm. Knowing how much time an implementation of
this attack requires gives us a good idea of how future cryptosystems
related to MQ can be broken, similar to how implementations of the
General Number Field Sieve that factors smaller RSA numbers give us
more insight into the security of actual RSA-based cryptosystems.
This paper describes such an implementation of XL using the block
Wiedemann algorithm. In 5 days we are able to solve a system with 32
variables and 64 equations over F16 (a computation of about 260.3 bit
operations) on a small cluster of 8 nodes, with 8 CPU cores and 36 GB
of RAM in each node. We do not expect system solvers of the F4/F5 fam-
ily to accomplish this due to their much higher memory demand. Our
software also offers implementations for F2 and F31 and can be easily
adapted to other small fields. More importantly, it scales nicely for small
clusters, NUMA machines, and a combination of both.

Keywords: XL, Gröbner basis, block Wiedemann, sparse solver, mul-
tivariate quadratic systems

1 Introduction

Some cryptographic systems can be attacked by solving a system of multivari-
ate quadratic equations. For example the symmetric block cipher AES can be
attacked by solving a system of 8000 quadratic equations with 1600 variables
over F2 as shown by Courtois and Pieprzyk in [5] or by solving a system of 840
sparse quadratic equations and 1408 linear equations over 3968 variables of F256

as shown by Murphy and Robshaw in [17]. Multivariate cryptographic systems
can be attacked naturally by solving their multivariate quadratic system; see for

example the analysis of the QUAD stream cipher by Yang, Chen, Bernstein, and
Chen in [21].

We describe a parallel implementation of an algorithm for solving quadratic
systems that was first suggested by Lazard in [11]. Later it was reinvented by
Courtois, Klimov, Patarin, and Shamir and published in [4]; they call the al-
gorithm XL as an acronym for extended linearization: XL extends a quadratic
system by multiplying all equations with appropriate monomials and linearizes
it by treating each monomial as an independent variable. Due to this extended
linearization, the problem of solving a quadratic system turns into a problem of
linear algebra.

XL is a special case of Gröbner basis algorithms (shown by Ars, Faugère, Imai,
Kawazoe, and Sugita in [1]) and can be used as an alternative to other Gröbner
basis solvers like Faugère’s F4 and F5 algorithms (introduced in [7] and [8]).
An enhanced version of F4 is implemented for example in the computer algebra
system Magma, and is often used as standard benchmark by cryptographers.

There is an ongoing discussion on whether XL-based algorithms or algo-
rithms of the F4/F5-family are more efficient in terms of runtime complexity
and memory complexity. To achieve a better understanding of the practical be-
haviour of XL for generic systems, we describe a parallel implementation of
the XL algorithm for shared-memory systems, for small computer clusters, and
for a combination of both. Measurements of the efficiency of the parallelization
have been taken at small clusters of up to 8 nodes and shared-memory systems
of up to 64 cores. A previous implementation of XL is PWXL, a parallel im-
plementation of XL with block Wiedemann described in [15]. PWXL supports
onl F2, while our implementation supports F2, F16, and F31. Furthermore, our
implementation is modular and can be extended to other fields. Comparisons on
performance of PWXL and our work will be shown in Sec. 4.3. We are planning
to make our implementation available to the public.

This paper is structured as follows: The XL algorithm is introduced in Sec. 2.
The parallel implementation of XL using the block Wiedemann algorithm is
described in Sec. 3. Section 4 gives runtime measurements and performance
values that are achieved by our implementation for a set of parameters on several
parallel systems as well as comparisons to PWXL and to the implementation
of F4 in Magma.

2 The XL Algorithm

The original description of XL for multivariate quadratic systems can be found
in [4]; a more general definition of XL for systems of higher degree is given in [3].
The following gives an introduction of the XL algorithm for quadratic systems;
the notation is adapted from [23]:

Consider a finite field K = Fq and a system A of m multivariate quadratic
equations `1 = `2 = · · · = `m = 0 for `i ∈ K[x1, x2, . . . , xn]. For b ∈ Nn denote
by xb the monomial xb11 x

b2
2 . . . xbnn and by |b| = b1 + b2 + · · · + bn the total

degree of xb.

2

XL first chooses a D ∈ N as D := min{d : ((1 − λ)m−n−1(1 + λ)m)[d] ≤ 0}
(see [22, Eq. (7)], [13,6]), where f [i] denotes the coefficient of the degree-i term in
the expansion of a polynomial f(λ) e.g., (λ+2)3[2] = (λ3+6λ2+12λ+8)[2] = 6.
XL extends the quadratic system A to the system R(D) = {xb`i = 0 : |b| ≤
D − 2, `i ∈ A} of maximum degree D by multiplying each equation of A by all
monomials of degree less than or equal to D−2. Now, each monomial xd, |d| ≤ D
is considered a new variable to obtain a linear systemM. Note that the system
matrix of M is sparse since each equation has the same number of non-zero
coefficients as the corresponding equation of the quadratic system A. Finally the
linear system M is solved, giving solutions for all monomials and particularly
for x1, x2, . . . , xn. Note that the matrix corresponding to the linear system M
is the Macaulay matrix of degree D for the polynomial system A (see [12], e.g.,
defined in [9]).

2.1 The Block Wiedemann Algorithm

The computationally most expensive task in XL is to find a solution for the
sparse linear system M of equations over a finite field. There are two popu-
lar algorithms for that task, the block Lanczos algorithm [16] and the block
Wiedemann algorithm [2]. The block Wiedemann algorithm was proposed by
Coppersmith in 1994 and is a generalization of the original Wiedemann algo-
rithm [20]. It has several features that make it powerful for computation in XL:
From the original Wiedemann algorithm it inherits the property that the run-
time is directly proportional to the weight of the input matrix. Therefore, this
algorithm is suitable for solving sparse matrices, which is exactly the case for XL.
Furthermore, big parts of the block Wiedemann algorithm can be parallelized
on several types of parallel architectures. The following paragraphs give a brief
introduction to the block Wiedemann algorithm. For more details please refer
to [18, Sec. 4.2] and [2].

The basic idea of Coppersmith’s block Wiedemann algorithm for finding a
solution x̄ 6= 0 of Bx̄ = 0 for B ∈ KN×N , x̄ ∈ KN (where B corresponds to the
system matrix ofM when computing XL) is the same as in the original Wiede-
mann algorithm: Assume that the characteristic polynomial f(λ) =

∑
0≤i f [i]λi

of B is known. Since B is singular, it has an eigenvalue 0, thus f(B) = 0
and f [0] = 0. We have:

f(B)z̄ =
∑
i>0

f [i]Biz̄ = B
∑
i>0

f [i]Bi−1z̄ = 0,

for any vector z̄ ∈ KN . Therefore, x̄ =
∑
i>0 f [i]Bi−1z̄, z̄ 6= 0 is a (hopefully

non-zero) kernel vector and thus a solution of the linear equation system. In
fact it is possible to use any annihilating polynomial f(λ) of B, i.e., a polyno-
mial f(λ) 6= 0 such that f(B) = 0.

Wiedemann suggests to use the Berlekamp–Massey algorithm for the com-
putation of f(λ). Given a linearly recurrent sequence {a(i)}∞i=0, the algorithm
computes c1, . . . , cd for some d such that c1a(d−1) + c2a

(d−2) + · · ·+ cda
(0) = 0.

3

Choosing a(i) = x̄TBBiz̄ with random vectors x̄ and z̄ (as delegates for BBi)
as input and f [i] = cd−i, 0 ≤ i < d as output returns f(λ) as an annihilating
polynomial of B with high probability.

Coppersmith [2] proposed a modification of the Wiedemann algorithm that
makes it more suitable for modern computer architectures by operating in par-
allel on a block of ñ column vectors z̄i, 0 ≤ i < ñ, of a matrix z ∈ KN×ñ. His
block Wiedemann algorithm computes kernel vectors in three steps which are
called BW1, BW2, and BW3 for the remainder of this paper. The block sizes of
the block Wiedemann algorithm are the integers m̃ and ñ. They can be chosen
freely for the implementation such that they give the best performance on the
target architecture for matrix and vector operations, e.g., depending on the size
of cache lines or vector registers. Step BW1 computes the first N/m̃+N/ñ+O(1)

elements of a sequence {a(i)}∞i=0, ai =
(
x · (B ·Biz)

)T ∈ Kñ×m̃ using random
matrices x ∈ Km̃×N and z ∈ KN×ñ. This sequence is the input for the second
step BW2, a block variant of the Berlekamp–Massey algorithm. It returns a ma-
trix polynomial f(λ) with coefficients f [j] ∈ Kñ×ñ, that is used by step BW3 to
compute up to ñ solution vectors in a blocked fashion similar as described above
for the original Wiedemann algorithm.

3 Implementation of XL

Stage BW1 of the block Wiedemann algorithm computes a(i) =
(
x · (B ·Biz)

)T ,
0 ≤ i ≤ N/m̃ + N/ñ + O(1). We do this efficiently using two sparse-matrix
multiplications by making the random matrices x and z deliberately sparse. We
compute a sequence {t(i)}∞i=0 of matrices t(i) ∈ KN×n defined as

t(i) =

{
Bz for i = 0

Bt(i−1) for i > 0.

Thus, a(i) can be computed as a(i) = (xt(i))T . In step BW3 we evaluate the an-
nihilating polynomial f(λ) by applying Horner’s scheme, again using two sparse-
matrix multiplications by computing

W (j) =

{
z · (f [deg(f)]) for j = 0,

z · (f [deg(f)− j]) +B ·W (j−1) for 0 < j ≤ deg(f).

For details on the steps BW1, BW2, and BW3 please refer to [18, Sec. 4.2].
Assuming that m̃ = c · ñ for some constant c ≥ 1, the asymptotic time

complexity of step BW1 and BW2 can be written as O
(
N2 · wB

)
, where wB is

the average number of nonzero entries per row of B. Note that BW3 actually
requires about half of the time of BW1 since it requires only about halve as
many iterations. The asymptotic time complexity of Coppersmith’s version of
the Berlekamp–Massey algorithm in step BW2 is O

(
N2 · ñ

)
. Thomé presents an

improved version of Coppersmith’s block Berlekamp–Massey algorithm in [19].
Thomé’s version is asymptotically faster: It reduces the complexity of BW2

4

from O(N2 · ñ) to O
(
N · log2(N) · ñ

)
. The subquadratic complexity is achieved

by converting the block Berlekamp–Massey algorithm into a recursive divide-
and-conquer process.

Since steps BW1 and BW3 have a higher asymptotic time complexity than
Thomé’s version of step BW2, we do not describe our implementation, optimiza-
tion, and parallelization of Coppersmith’s and Thomé’s versions of step BW2 in
detail in this paper for the sake of brevity. The interested reader is referred
to [18, Chap. 4] for details. However, we discuss the performance of our imple-
mentations in Sec. 4.

Since the system matrix M has more rows than columns, some rows must
be dropped randomly to obtain a square matrix B. Observe that due to the
extension step of XL the entries of the original quadratic system A appear re-
peatedly in the matrix B at well-defined positions based on the enumeration
scheme. Therefore, it is possible to generate the entries of B on demand spend-
ing a negligible amount of memory. However, the computation of the entry po-
sitions requires additional time; to avoid this computational overhead, we store
the Macaulay matrix B in a compact memory format (see [18, Sec. 4.5.3]). This
gives a significant speedup in the computation time—given that the matrix B
fits into available memory.

3.1 Efficient Matrix Multiplication

All matrix multiplications of the shape D = EF that we perform during XL are
either multiplications of a sparse matrix by a dense matrix, or multiplications of
a dense matrix by a dense matrix with matrices of a small size. For these cases,
schoolbook multiplication is more efficient than the asymptotically more efficient
Strassen algorithm or the Coppersmith–Winograd algorithm.

However, when computing in finite fields, the cost of matrix multiplica-
tions can be significantly reduced by trading expensive multiplications for cheap
additions—if the field size is significantly larger than the row weight of E. This
is the case for small fields like, for example, F16 or F31. We reduce the number
of actual multiplications for a row r of E by summing up all row vectors of F
which are to be multiplied by the same field element and performing the multi-
plication on all of them together. A temporary buffer bα ∈ Kn, α ∈ K of vectors
of length n is used to collect the sum of row vectors that ought to be multiplied
by α. For all entries Er,c, row c of F is added to bEr,c

. Finally, b can be reduced
by computing

∑
α · bα, α 6= 0, α ∈ K, which gives the result for row r of the

matrix D.
With the strategy explained so far, computing the result for one row of E

takes wE + |K|−2 additions and |K|−2 scalar multiplications (there is no need
for the multiplication by 0 and 1, and for the addition of 0). The number of
actual multiplications can be further reduced by exploiting the distributivity of
the scalar multiplication of vectors: Assume in the following that K = Fpk =
Fp[x]/(f(x)), with p prime and f(x) an irreducible polynomial with deg(f) = k.
When k = 1, the natural mapping from K to {0, 1, . . . , p − 1} ⊂ N induces an

5

order of the elements. The order can be extended for k > 1 by ∀β, γ ∈ K :
β > γ ⇐⇒ β[i] > γ[i], i = max({j : β[j] 6= γ[j]}). We decompose each scalar
factor α ∈ K \{0, 1, x1, . . . , xk−1} of a multiplication α · bα into two components
β, γ ∈ K such that β, γ < α and β + γ = α. Starting with the largest α,
iteratively add bα to bβ and bγ and drop buffer bα. The algorithm terminates
when all buffers bα, α ∈ K \ {0, 1, x1, . . . , xk−1} have been dropped. Finally, the
remaining buffers bα, α ∈ {1, x1, . . . , xk−1} are multiplied by their respective
scalar factor (except b1) and summed up to the final result. This reduces the
number of multiplications to k − 1. All in all the computation on one row of E
(with row weight wE) costs wE +2(|K|−k−1)+k−1 additions and k−1 scalar
multiplications. For example the computations in F16 require wE + 25 additions
and 3 multiplications per row of a matrix E.

3.2 Parallel Macaulay Matrix Multiplication

The most expensive part in the computation of steps BW1 and BW3 of XL is a
repetitive multiplication of the shape tnew = B · told, where tnew, told ∈ KN×ñ

are dense matrices and B ∈ KN×N is a sparse Macaulay matrix with an average
row weight wB .

For generic systems, the Macaulay matrix B has an expected number of non-
zero entries per row of (|K|−1)/|K|·

(
n+2
2

)
. However, in our memory efficient data

format for the Macaulay matrix we also store the zero entries from the original
system. This results in a fixed row weight wB = |K|·

(
n+2
2

)
. This is highly efficient

in terms of memory consumption and computation time for F16, F31, and larger
fields (see [18, Chap. 4]). Since there is a guaranteed number of entries per row
(i.e. the row weight wB) we compute the Macaulay matrix multiplication in row
order in a big loop over all row indices as described in the previous section.

The parallelization of the Macaulay matrix multiplication of steps BW1
and BW3 is implemented in two ways: On multi-core architectures OpenMP
is used to keep all cores busy; on cluster architectures the Message Passing In-
terface (MPI) and InfiniBand verbs are used to communicate between the cluster
nodes. Both approaches can be combined for clusters of multi-core nodes.

The strategy of the workload distribution is similar on both multi-core sys-
tems and cluster systems. Figure 1 shows an example of a Macaulay matrix. Our
approach for efficient matrix multiplications (described in the previous section)
trades multiplications for additions. The approach is most efficient, if the original
number of scalar multiplications per row is much higher than the order of the
field. Since the row weight of the Macaulay matrix is quite small, splitting the
rows between computing nodes reduces the efficiency of our approach. Therefore,
the workload is distributed by assigning blocks of rows of the Macaulay matrix
to the computing units.

Parallelization for Shared-Memory Systems: We parallelize the data-
independent loop over the rows of the Macaulay matrix using OpenMP with the

6

0

750

1500

2250

3000
0 750 1500 2250 3000

R
ow

s

Columns

Fig. 1. Plot of a Macaulay matrix for a system with 8 variables, 10 equations, using
graded reverse lexicographical (grevlex) monomial order.

directive “#pragma omp parallel for”. The OpenMP parallelization on UMA
systems encounters no additional communication cost although the pressure on
shared caches may be increased. On NUMA systems the best performance is
achieved if the data is distributed over the NUMA nodes in a way that takes the
higher cost of remote memory access into account. However, the access pattern
to told is very irregular due to the structure of the Macaulay matrix: In par-
ticular, the access pattern of each core does not necessarily fully cover memory
pages. Furthermore, the same memory page is usually touched by several cores.
The same is true for tnew, since after each iteration tnew and told are swapped by
switching their respective memory regions. Therefore, we obtained the shortest
runtime by distributing the memory pages interleaved (in a round-robin fashion)
over the nodes.

Parallelization for Cluster Systems: The computation on one row of the
Macaulay matrix depends on many rows of the matrix told. A straightforward
approach is to make the full matrix told available on all cluster nodes. This can
be achieved by an all-to-all communication step after each iteration of BW1
and BW3. If B were a dense matrix, such communication would take only a
small portion of the overall runtime. But since B is a sparse Macaulay matrix
which has a very low row weight, the computation time for one single row of B
takes only a small amount of time. In fact this time is in the order of magnitude
of the time that is necessary to send one row of tnew to all other nodes during
the communication phase. Therefore, this simple workload-distribution pattern
gives a large communication overhead.

7

This overhead is hidden when communication is performed in parallel to com-
putation. Today’s high-performance network interconnects are able to transfer
data via direct memory access (DMA) without interaction with the CPU, allow-
ing the CPU to continue computations alongside communication. It is possible
to split the computation of tnew into two column blocks; during computation on
one block, previously computed results are distributed to the other nodes and
therefore are available at the next iteration step. Under the condition that com-
putation takes more time than communication, the communication overhead can
almost entirely be hidden. Otherwise speedup and therefore efficiency of cluster
parallelization is bounded by communication cost.

Apart from hiding the communication overhead it is also possible to totally
avoid all communication by splitting told and tnew into independent column
blocks for each cluster node. However, splitting told and tnew has an impact
either on the runtime of BW1 and BW3 (if the block size becomes too small
for efficient computation) or on the runtime of BW2 (since the block size has a
strong impact on its runtime and memory demand).

We implemented both approaches since they can be combined to give best
performance on a target system architecture. The following paragraphs explain
the two approaches in detail:

a) Operating on Two Shared Column Blocks of told and tnew: For this approach,
the matrices told and tnew are split into two column blocks told,0 and told,1
as well as tnew,0 and tnew,1. The workload is distributed over the nodes
row-wise as mentioned before. First each node computes the results of its
row range for column block tnew,0 using rows from block told,0. Then a non-
blocking all-to-all communication is initiated which distributes the results
of block tnew,0 over all nodes. While the communication is going on, the
nodes compute the results of block tnew,1 using data from block told,1. After
computation on tnew,1 is finished, the nodes wait until the data transfer of
block tnew,0 has been accomplished. Ideally communication of block tnew,0
is finished earlier than the computation of block tnew,1 so that the results of
block tnew,1 can be distributed without waiting time while the computation
on block tnew,0 goes on with the next iteration step.
However, looking at the structure of the Macaulay matrix (an example is
shown in Fig. 1) one can observe that this communication scheme performs
much more communication than necessary. For example on a cluster of four
computing nodes, node 0 computes the top quarter of the rows of matri-
ces tnew,0 and tnew,1. Node 1 computes the second quarter, node 2 the third
quarter, and node 3 the bottom quarter. Node 3 does not require any row
that has been computed by node 0 since the Macaulay matrix does not have
entries in the first quarter of the columns for these rows. The obvious so-
lution is that a node i sends only these rows to a node j that are actually
required by node j in the next iteration step.
This communication pattern requires to send several data blocks to individ-
ual cluster nodes in parallel to ongoing computation. This can not be done
efficiently using MPI. Therefore, we circumvent the MPI API and program

8

the network hardware directly. Our implementation uses an InfiniBand net-
work; the same approach can be used for other high-performance networks.
We access the InfiniBand hardware using the InfiniBand verbs API. Pro-
gramming the InfiniBand cards directly has several benefits: All data struc-
tures that are required for communication can be prepared offline; initiating
communication requires only one call to the InfiniBand API. The hardware is
able to perform all operations for sending and receiving data autonomously
after this API call; there is no need for calling further functions to ensure
communication progress as it is necessary when using MPI. Finally, complex
communication patterns using scatter-gather lists for incoming and outgoing
data do not have a large overhead. This implementation reduces communi-
cation to the smallest amount possible for the cost of only a negligibly small
initialization overhead.
This approach of splitting told and tnew into two shared column blocks has
the disadvantage that the entries of the Macaulay matrix need to be loaded
twice per iteration, once for each block. This gives a higher memory con-
tention and more cache misses than when working on a single column block.
However, these memory accesses are sequential. It is therefore likely that the
access pattern can be detected by the memory logic and that the data is
prefetched into the caches.

b) Operating on Independent Column Blocks of told and tnew: Any communi-
cation during steps BW1 and BW3 can be avoided by splitting the matri-
ces told and tnew into independent column blocks for each cluster node. The
nodes compute over the whole Macaulay matrix B on a column stripe of told
and tnew. All computation can be accomplished locally; the results are col-
lected at the end of the computation of these steps.
Although this is the most efficient parallelization approach when looking at
communication cost, the per-node efficiency drops drastically with higher
node count: For a high node count, the impact of the width of the column
stripes of told and tnew becomes even stronger than for the previous ap-
proach. Therefore, this approach only scales well for small clusters. For a
large number of nodes, the efficiency of the parallelization declines signifi-
cantly. Another disadvantage of this approach is that since the nodes com-
pute on the whole Macaulay matrix, all nodes must store the whole matrix
in their memory. For large systems this is may not be feasible.

Both approaches for parallelization have advantages and disadvantages; the
ideal approach can only be found by testing each approach on the target hard-
ware. For small clusters approach b) might be the most efficient one although it
loses efficiency due to the effect of the width of told and tnew. The performance of
approach a) depends heavily on the network configuration and the ratio between
computation time and communication time. Both approaches can be combined
by splitting the cluster into independent partitions; the workload is distributed
over the partitions using approach b) and over the nodes within one partition
using approach a).

9

Table 1. Computer architectures used for the experiments

NUMA Cluster
CPU

Name AMD Opteron 6276 Intel Xeon E5620
Microarchitecture Bulldozer Interlagos Nehalem
Frequency 2300 MHz 2400 MHz
Number of CPUs per socket 2 1
Number of cores per socket 16 (2 x 8) 4
Level 1 data-cache size 16 × 48 KB 4 × 32 KB
Level 2 data-cache size 8 × 2 MB 4 × 256 KB
Level 3 data-cache size 2 × 8 MB 8 MB
Cache-line size 64 byte 64 byte

System Architecture
Number of NUMA nodes 4 sockets × 2 CPUs 2 sockets × 1 CPU
Number of cluster nodes — 8
Total number of cores 64 64
Network interconnect — InfiniBand MT26428

2 ports of 4×QDR, 32 Gbit/s
Memory

Memory per CPU 32 GB 18 GB
Memory per cluster node — 36 GB
Total memory 256 GB 288 GB

4 Experimental Results

This section gives an overview of the performance and the scalability of our
XL implementation for generic systems. Experiments have been carried out on
two computer systems: a 64-core NUMA system and an eight node InfiniBand
cluster. Table 1 lists the key features of these systems.

4.1 Impact of the Block Size

We measured the impact of the block size of the block Wiedemann algorithm on
the performance of the implementation on a single cluster node (without cluster
communication). We used a quadratic system with 16 equations and 14 variables
over F16. In this case, the degree D for the linearization is 9. The input for the
algorithm is a Macaulay matrix B with N = 817190 rows (and columns) and
row weight wB = 120. To reduce the parameter space, we fix m̃ to m̃ = ñ.

Figure 2 shows the runtime for block sizes 32, 64, 128, 256, 512, and 1024.
Given the fixed size of the Macaulay matrix and m̃ = ñ, the number of field
operations for BW1 and BW2 is roughly the same for different choices of the
block size ñ since the number of iterations is proportional to 1/ñ and number of
field operations per iteration is roughly proportional to ñ. However, the runtime
of the computation varies depending on ñ.

10

500

1000

1500

5000

10000

32 64 128 256 512 1024

R
un

ti
m
e
[s
]

Block Size : m̃ = ñ

BW1
BW2 Tho.
BW2 Cop.

BW3

0

20

40

60

80

32 64 128 256 5121024

M
em

or
y
[G

B
]

Block Size: m̃ = ñ

BW2 Tho.
BW2 Cop.

36Gb

Fig. 2. Runtime and memory consumption of XL 16-14 over different block sizes on a
single cluster node with two CPUs (8 cores in total) and 36 GB RAM.

During the i-th iteration step of BW1 and BW3, the Macaulay matrix is mul-
tiplied with a matrix t(i−1) ∈ FN×ñ16 . For F16 each row of t(i−1) requires ñ/2 bytes
of memory. In the cases m̃ = ñ = 32 and m̃ = ñ = 64 each row thus occupies less
than one cache line of 64 bytes. This explains why the best performance in BW1
and BW3 is achieved for larger values of ñ. The runtime of BW1 and BW3 is min-
imal for block sizes m̃ = ñ = 256. In this case one row of t(i−1) occupies two cache
lines. The reason why this case gives a better performance than m̃ = ñ = 128
might be that the memory controller is able to prefetch the second cache line.
For larger values of m̃ and ñ the performance declines probably due to cache
saturation.

According to the asymptotic time complexity of Coppersmith’s and Thomé’s
versions of the Berlekamp–Massey algorithm, the runtime of BW2 should be
proportional to ñ. However, this turns out to be the case only for moderate sizes
of ñ; note the different scale of the graph in Fig. 2 for a runtime of more than 2000
seconds. For m̃ = ñ = 256 the runtime of Coppersmith’s version of BW2 is al-
ready larger than that of BW1 and BW3, for m̃ = ñ = 512 and m̃ = ñ = 1024
both versions of BW2 dominate the total runtime of the computation. Thomé’s
version is faster than Coppersmith’s version for small and moderate block sizes.
However, by doubling the block size, the memory demand of BW2 roughly dou-
bles as well; Figure 2 shows the memory demand of both variants for this experi-
ment. Due to the memory–time trade-off of Thomé’s BW2, the memory demand
exceeds the available RAM for a block size of m̃ = ñ = 512 and more. Therefore,
memory pages are swapped out of RAM onto hard disk which makes the runtime
of Thomé’s BW2 longer than that of Coppersmith’s version of BW2.

11

0

2

4

6

8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
0%

25%

50%

75%

100%
Sp

ee
du

p

E
ffi
ci
en

cy

BW1 BW2
Thomé

BW2
Coppersmith

Number of Cluster Nodes

BW1 BW2
Thomé

BW2
Coppersmith

Number of NUMA Nodes

Speedup
Efficiency

Fig. 3. Speedup and efficiency of BW1 and BW2

4.2 Scalability Experiments

The scalability was measured using a quadratic system with 18 equations and 16
variables over F16. The degree D for this system is 10. The Macaulay matrix B
has a size of N = 5 311 735 rows and columns; the row weight is wB = 153. Since
this experiment is not concerned about peak performance but about scalability,
a block size of m̃ = ñ = 256 is used. For this experiment, the implementation
of the block Wiedemann algorithm ran on 1, 2, 4, and 8 nodes of the cluster
and on 1 to 8 CPUs of the NUMA system. The approach a) (two shared column
blocks) was used on the cluster system for all node counts.

Given the runtime T1 for one computing node and Tp for p computing nodes,
the parallel efficiency Ep on the p nodes is defined as Ep = T1/pTp. Figure 3
shows the parallel speedup and the parallel efficiency of BW1 and BW2; the
performance of BW3 behaves very similarly to BW1 and thus is not depicted
in detail. These figures show that BW1 and Coppersmith’s BW2 have a nice
speedup and an efficiency of at least 90% on 2, 4, and 8 cluster nodes. The effi-
ciency of Thomé’s BW2 is only around 75% on 4 nodes and drops to under 50%
on 8 nodes. In particular the polynomial multiplications require a more efficient
parallelization approach. However, Thomé’s BW2 takes only a small part of the
total runtime for this system size; for larger systems it is even smaller due to its
smaller asymptotic time complexity compared to steps BW1 and BW3. Thus, a
lower scalability than BW1 and BW3 can be tolerated for BW2.

For this problem size, our parallel implementation of BW1 and BW3 scales
very well for up to eight nodes. However, at some point the communication time
is going to catch up with computation time: The computation time roughly
halves with every doubling of the number of cluster nodes, while the commu-
nication demand per node shrinks with a smaller slope. Therefore, at a certain

12

2 4 8 16 32 64 128 256

R
un

ti
m
e

Number of Cluster Nodes

Communication
Computation

Sent per Node

Fig. 4. Estimation of computation time vs. communication time on a cluster system.
The numbers for 2, 4, and 8 nodes are measurements, the numbers for larger cluster
sizes are estimations. The amount of data sent per node varies; we show the maximum,
minimum, and average.

number of nodes communication time and computation time are about the same
and the parallel efficiency declines for any larger number of nodes. We do not
have access to a cluster with a fast network interconnect and a sufficient amount
of nodes to measure when this point is reached, thus we can only give an estima-
tion: Figure 4 shows the expected time of computation and communication for
larger cluster sizes. We computed the amount of data that an individual node
sends and receives depending on the number of computing nodes. We use the
maximum of the outgoing data for the estimation of the communication time.
For this particular problem size, we expect that for a cluster of around 16 nodes
communication time is about as long as computation time and that the parallel
efficiency is going to decline for larger clusters.

On the NUMA system, the scalability is similar to the cluster system. BW1
achieves an efficiency of over 85% on up to 8 NUMA nodes. The workload was
distributed such that each CPU socket was filled up with OpenMP threads as
much as possible. Therefore, in the case of two NUMA nodes (16 threads) the
implementation achieves a high efficiency of over 95% since a memory controller
on the same socket is used for remote memory access and the remote memory
access has only moderate cost. When using more than one NUMA node, the
efficiency declines to around 85% due to the higher cost of remote memory
access between different sockets. Also on the NUMA system the parallelization
of Thomé’s BW2 achieves only a moderate efficiency of around 50% for 8 NUMA
nodes. The parallelization scheme used for OpenMP does not scale well for a large
number of threads. The parallelization of Coppersmith’s version of BW2 scales
almost perfectly on the NUMA system. The experiment with this version of BW2
is performed using hybrid parallelization by running one MPI process per NUMA

13

0.01

0.1

1

10

100

29 30 31 32 33 34 35 36

T
im

e
[h
rs
]

n

Our Work (64 cores)
Our Work (scaled to 16 cores)

PWXL (16 cores)

Fig. 5. Comparison of the runtime of our work and PWXL, m = n, F2

node and one OpenMP thread per core. The overhead for communication is
sufficiently small that it does not have much impact on the parallel efficiency of
up to 8 NUMA nodes.

Our experiments show that the shape of the Macaulay matrix has a large
impact on the performance and the scalability of XL. Currently, we are using
graded reverse lexicographical order for the Macaulay matrix. However, as op-
posed to Gröbner basis solvers like F4 and F5, for XL there is no algorithmic or
mathematic requirement for any particular ordering. In our upcoming research,
we are going to examine if another monomial order or a redistribution of columns
and rows of the Macaulay matrix has a positive impact on the performance of
our implementation.

4.3 Comparison with PWXL and Magma F4

To put our numbers into context, we compare our work with two other Gröb-
ner basis solvers in this section: with PWXL, a parallel implementation of XL
with block Wiedemann for F2 described in [15], and with the implementation of
Faugère’s F4 algorithm [7] in the computational algebra system Magma.

Comparison with PWXL: Figure 5 compares the runtime of PWXL and our
implementation for systems in F2 with m = n. We ran our XL implementation
on our cluster system (see Table 1) while PWXL was running on a machine with
four six-core AMD Opteron 8435 CPUs, running at 2.6 GHz.

Our implementation outperforms PWXL for the largest cases given in the
paper, e.g., for n = 33 our implementation is 24 times faster running on 8
cluster nodes (64 CPU cores) and still 6 times faster when scaling to 16 CPU
cores. This significant speedup may be explained by the fact that PWXL is a
modification of the block-Wiedemann solver for factoring RSA-768 used in [10].

14

0.001

0.01

0.1

1

10

100

1000

18 19 20 21 22 23 24 25

T
im

e
[h
rs
]

n

XL (64 cores)
XL (scaled)
Magma F4

0.01

0.1

1

10

100

18 19 20 21 22 23 24 25

M
em

or
y
[G

B
]

n

XL
Magma F4

Fig. 6. Comparison of runtime and memory demand of our implementation of XL and
Magma’s implementation of F4, m = 2n

Therefore, the code may not be well optimized for the structure of Macaulay
matrices. However, these numbers show that our implementation achieves high
performance for computations in F2.

Comparison with F4: Figure 6 compares time and memory consumption of
the F4 implementation in Magma V2.17-12 and our implementation of XL for
systems in F16 with m = 2n. When solving the systems in Magma we coerce the
systems into F256, because for F256 Magma performs faster than when using F16

directly. The computer used to run F4 has an 8 core Xeon X7550 CPU running
at 2.0 GHz; however, F4 uses only one core of it. We ran XL on our NUMA
system using all 64 CPU cores. For this comparison we use Coppersmith’s version
of BW2 since it is more memory efficient than Thomé’s version.

Note that there is a jump in the graph when going from n = 21 to n = 22
for XL our implementation, similarly when going from n = 23 to n = 24
for F4. This is due to an increment of the degree D from 5 to 6, which hap-
pens earlier for XL. Therefore, F4 takes advantage of a lower degree in cases
such as n = 22, 23. Other XL-based algorithms like Mutant-XL [14] may be able
to fill this gap. In this paper we omit a discussion of the difference between the
degrees of XL and F4/F5. However, in cases where the degrees are the same for
both algorithms, our implementation of XL is better in terms of runtime and
memory consumption.

For n = 25, the memory consumption of XL is less than 2% of that of F4.
In this case, XL runs 338 times faster on 64 cores than F4 on one single core,
which means XL is still faster when the runtime is normalized to single-core
performance by multiplying the runtime by 64.

15

Table 2. Statistics of XL with block Wiedemann for F2 and F16 using Thomé’s BW2,
and F31 using Coppersmith’s BW2

Field Machine m n D Time in [sec] Memory Block Size
BW1 BW2 BW3 total in [GB] m̃, ñ

F2 Cluster 32 32 7 3830 1259 2008 7116 2.4 512, 512
Cluster 33 33 7 6315 2135 3303 11778 3.0 512, 512
Cluster 34 34 7 10301 2742 5439 18515 3.8 512, 512
Cluster 35 35 7 16546 3142 8609 28387 4.6 512, 512
Cluster 36 36 7 26235 5244 15357 46944 5.6 512, 512

F16 NUMA 56 28 6 1866 330 984 3183 3.9 128,128
Cluster 1004 238 548 1795 1.3 256,256
NUMA 58 29 6 2836 373 1506 4719 4.6 128,128
Cluster 1541 316 842 2707 1.6 256,256
NUMA 60 30 7 91228 5346 64688 161287 68.8 256,128
Cluster 53706 3023 38052 94831 10.2 256,128
NUMA 62 31 7 145693 7640 105084 258518 76.7 256,128
Cluster 89059 3505 67864 160489 12.1 256,128
NUMA 64 32 7 232865 8558 163091 404551 100.3 256,128
Cluster 141619 3672 97924 244338 15.3 256,128

F31 NUMA 50 25 6 1729 610 935 3277 0.3 64,64
Cluster 1170 443 648 2265 0.7 128,128
NUMA 52 26 6 2756 888 1483 5129 0.4 64,64
Cluster 1839 656 1013 3513 0.9 128,128
NUMA 54 27 6 4348 1321 2340 8013 0.5 64,64
Cluster 2896 962 1590 5453 1.0 128,128
NUMA 56 28 6 6775 1923 3610 12313 0.6 64,64
Cluster 4497 1397 2458 8358 1.2 128,128
NUMA 58 29 6 10377 2737 5521 18640 0.7 64,64
Cluster 6931 2011 3764 12713 1.5 128,128

4.4 Performance for Computation on Large Systems

Table 2 presents detailed statistics of some of the largest systems we are able to
solve in a moderate amount of time (within at most one week). In the tables the
time (BW1, BW2, BW3, and total) is measured in seconds, and the memory is
measured in GB. Note that for the cluster we give the memory usage for a single
cluster node. While all the fields that we have implemented so far are presented
in the table, we point out that the most optimization has been done for F16.

The system with n = 32 variables and m = 64 equations over F16 listed in
Table 2 is the largest case we have tested. The system was solved in 5 days on
the cluster using block sizes m̃ = 256 and ñ = 128. With n = 32 and D = 7
we have N =

(
n+D
D

)
=
(
32+7

7

)
= 15 380 937 and wB =

(
n+2
2

)
=
(
32+2

2

)
= 561.

There are roughly N/ñ + N/m̃ iterations in BW1 and N/ñ iterations in BW3.

16

This leads to 2N/ñ + N/m̃ Macaulay matrix multiplications, each takes about
N · (wB + 25) · ñ additions and N ·3 · ñ multiplications in F16 (see Sec. 3.2). Op-
erations performed in BW2 are not taken into account, because BW2 requires
only a negligible amount of time. Therefore, solving the system using XL cor-
responds to computing about (2 · 15 380 937/128 + 15 380 937/256) · 15 380 937 ·
(561 + 25) · 128 ≈ 258.3 additions and about 250.7 multiplications in F16. Since
one addition in F16 requires 4 bit operations, this roughly corresponds to the
computation of 4 · 258.3 ≈ 260.3 bit operations.

Acknowledgements: This work was in part supported by National Science
Council (NSC), National Taiwan University, and Intel Corporation under Grants
NSC 100-2911-I-002-001 and 101R7501. The authors would also like to thank
partial sponsorship from NSC under Grants 100-2218-E-001-002 and 100-2628-
E-001-004-MY3, as well as from Academia Sinica including a Career Award
to the fourth author. Furthermore, this work was supported by the European
Commission under Contract ICT-2007-216676 ECRYPT II. Part of this work was
done when the third author was employed at Eindhoven University of Technology
in the Netherlands.

References

1. Ars, G., Faugère, J.C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner basis algorithms. In: Lee, P. (ed.) Advances in Cryptology –
ASIACRYPT 2004, Lecture Notes in Computer Science, vol. 3329, pp. 157–167.
Springer (2004)

2. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation 62(205), 333–350 (1994)

3. Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanalysis
of Toyocrypt. In: Lee, P., Lim, C. (eds.) Information Security and Cryptology –
ICISC 2002, Lecture Notes in Computer Science, vol. 2587, pp. 182–199. Springer
(2003)

4. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
Advances in Cryptology – EUROCRYPT 2000, Lecture Notes in Computer Science,
vol. 1807, pp. 392–407. Springer (2000)

5. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) Advances in Cryptology – ASIACRYPT
2002, Lecture Notes in Computer Science, vol. 2501, pp. 267–287. Springer (2002)

6. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P. (ed.) Advances in Cryptology – ASIACRYPT 2004. Lecture Notes in Computer
Science, vol. 3329, pp. 146–159. Springer (2004)

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1–3), 61–88 (1999)

8. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation – ISSAC 2002. pp. 75–83. ACM (2002)

17

9. Faugère, J.C., Perret, L., Petit, C., Renault, G.: Improving the complexity of in-
dex calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D.,
Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012, Lecture Notes
in Computer Science, vol. 7237, pp. 27–44. Springer (2012)

10. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., Te Riele, H., Timofeev, A., Zim-
mermann, P.: Factorization of a 768-bit rsa modulus. In: Rabin, T. (ed.) Advances
in Cryptology – CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223,
pp. 333–350. Springer (2010)

11. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: van Hulzen, J.A. (ed.) Computer Algebra – EUROCAL ’83.
Lecture Notes in Computer Science, vol. 162, pp. 146–156. Springer (1983)

12. Macaulay, F.S.: The Algebraic Theory of Modular Systems. No. 19 in Cambridge
Tracts in Mathematics and Mathematical Physics, Cambridge University Press
(1916)

13. Moh, T.T.: On the method of XL and its inefficiency to TTM. Cryptology ePrint
Archive, Report 2001/047 (2001), http://eprint.iacr.org/2001/047

14. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving
polynomial equations over GF(2) using an improved mutant strategy. In: Buch-
mann, J., Ding, J. (eds.) Post-Quantum Cryptography – PQCrypto 2008. Lecture
Notes in Computer Science, vol. 5299, pp. 203–215. Springer (2008)

15. Mohamed, W.S.A.E., Ding, J., Kleinjung, T., Bulygin, S., Buchmann, J.: PWXL: A
parallel Wiedemann-XL algorithm for solving polynomial equations over GF(2). In:
Cid, C., Faugère, J.C. (eds.) International Conference on Symbolic Computation
and Cryptography – SCC 2010. pp. 89–100 (2010)

16. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over
GF(2). In: Guillou, L., Quisquater, J.J. (eds.) Advances in Cryptology – EURO-
CRYPT ’95, Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer
(1995)

17. Murphy, S., Robshaw, M.J.B.: Essential algebraic structure within the AES. In:
Yung, M. (ed.) Advances in Cryptology – CRYPTO 2002. Lecture Notes in Com-
puter Science, vol. 2442, pp. 1–16. Springer (2002)

18. Niederhagen, R.: Parallel Cryptanalysis. Ph.D. thesis, Eindhoven University of
Technology (2012), http://polycephaly.org/thesis/index.shtml

19. Thomé, E.: Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computation
33(5), 757–775 (2002)

20. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans-
actions on Information Theory 32(1), 54–62 (1986)

21. Yang, B.Y., Chen, C.H., Bernstein, D.J., Chen, J.M.: Analysis of QUAD. In:
Biryukov, A. (ed.) Fast Software Encryption, Lecture Notes in Computer Science,
vol. 4593, pp. 290–308. Springer (2007)

22. Yang, B.Y., Chen, J.M.: All in the XL family: Theory and practice. In: Park, C.,
Chee, S. (eds.) Information Security and Cryptology – ICISC 2004, Lecture Notes
in Computer Science, vol. 3506, pp. 32–35. Springer (2005)

23. Yang, B.Y., Chen, J.M., Courtois, N.T.: On asymptotic security estimates in
XL and Gröbner bases-related algebraic cryptanalysis. In: Lopez, J., Qing, S.,
Okamoto, E. (eds.) Information and Communications Security – ICICS 2004. Lec-
ture Notes in Computer Science, vol. 3269, pp. 281–286. Springer (2004)

18

