
Soft Decision Error Correction for Compact
Memory-Based PUFs using a Single Enrollment

Vincent van der Leest1, Bart Preneel2, and Erik van der Sluis1

1 Intrinsic-ID, Eindhoven, The Netherlands
http://www.intrinsic-id.com

2 KU Leuven Dept. Electrical Engineering-ESAT/SCD-COSIC and IBBT, Belgium
http://www.kuleuven.be

Abstract. Secure storage of cryptographic keys in hardware is an es-
sential building block for high security applications. It has been demon-
strated that Physically Unclonable Functions (PUFs) based on unini-
tialized SRAM are an effective way to securely store a key based on the
unique physical characteristics of an Integrated Circuit (IC). The start-
up state of an SRAM memory is unpredictable but not truly random as
well as noisy, hence privacy amplification techniques and a Helper Data
Algorithm (HDA) are required in order to recover the correct value of
a full entropy secret key. At the core of an HDA are error correcting
techniques. The best known method to recover a full entropy 128-bit key
requires 4700 SRAM cells. Earlier work by Maes et al. has reduced the
number of SRAM cells to 1536 by using soft decision decoding; however,
this method requires multiple measurements (and thus also power resets)
during the storage of a key, which will be shown to be an unacceptable
overhead for many applications. This article demonstrates how soft deci-
sion decoding with only a single measurement during storage can reduce
the required number of SRAM cells to 3900 (a 17% reduction) without
increasing the size of en-/decoder. The number of SRAM cells can even
be reduced to 2900 (a 38% reduction). This does increase cost of the
decoder, but depending on design requirements it can be shown to be
worthwhile. Therefore, it is possible to securely store a 128-bit key at a
very low overhead in an IC or FPGA.

1 Introduction

Due to submicron process variations during manufacturing, every transistor in
an IC has slightly different physical properties. These properties can be measured
and since the process variations are uncontrollable, they result in features that
cannot be copied. Therefore, it is possible to create an electronic device with a
unique electronic fingerprint that offers a very strong resistance against cloning.

Physically Unclonable Functions (PUFs) are based on an electronic circuit
that measures the responses of hardware to random input challenges. These
responses depend on the unique and uncontrollable physical properties of the
device and allow to authenticate the device. PUF responses are inherently noisy,
due to the presence of noise during the measurements. Helper Data Algorithms

(HDAs) based on forward error correction have been developed to correct this
noise. This paper presents an improved soft decoding algorithm for HDAs. In
soft decoding, decisions are not based on the 0 or 1 value of a bit but on the
probability for a bit to take the value 0 or 1.

SRAM memories have specific properties, which make them very suitable for
use as PUFs: it turns out that uninitialized SRAM contains an unpredictable
value because of the unbalance between two transistors; this unbalance depends
on process variations and is hard to control. The unpredictable start-up value
can be used for secure storage of a key. This is a convenient alternative to key
storage in EEPROM, because EEPROM brings additional costs and is typically
not available when a new technology node is rolled out. In addition to these
benefits, SRAM PUFs are also more secure than EEPROM since the key is
completely absent when the device is powered off. The SRAM values observed
do contain entropy but they are not truly random. This can be resolved by
using a larger SRAM in combination with privacy amplification (as shown by
Guajardo et al. in [6]).

1.1 Related Work

Pappu [14] introduced the concept of PUFs in 2001 under the name Physical
One-Way Functions. The proposed technology was based on obtaining a response
(scattering pattern) when shining a laser on a bubble-filled transparent epoxy
wafer. In 2002 this principle was translated by Gassend et al. [5] into Silicon
Physical Random Functions. These functions make use of the manufacturing
process variations in ICs, with identical masks, to uniquely characterize each
IC. For this purpose the frequency of ring oscillators were measured. Using this
method (now known as a Ring Oscillator PUF), they were able to character-
ize ICs. In 2004 Lee et al. [9] proposed another PUF that is based on delay
measurements, the Arbiter PUF.

Besides intrinsic PUFs based on delay measurements a second type of PUF
in ICs is known: the memory-based PUF. These PUFs are based on the measure-
ment of start-up values of memory cells. This memory-based PUF type includes
SRAM PUFs, which were introduced by Guajardo et al. in 2007 [6]. Further-
more, so-called Butterfly PUFs were introduced in 2008 by Kumar et al. [8], D
Flip-Flop PUFs by Maes et al. [11] in 2008, and recently Buskeeper PUFs by
Simons et al. [15] in 2012.

The first HDAs for generating cryptographic keys from PUFs were introduced
by Linnartz et al. [10] in 2003 (as Shielding Functions) and Dodis et al. [4] in 2004
(as Fuzzy Extractors). After these introductions, secure use of Fuzzy Extractors
was discussed by Boyen in [2]. A first efficient hardware implementation of an
HDA was described in [1] by Bösch et al. The first HDA using soft decision error
correction for memory-based PUFs was proposed by Maes et al. [12, 13] in 2009.

1.2 Our Contribution

This paper introduces a new soft decision decoding scheme for HDAs used in
PUF implementations. To the best of our knowledge, this is the first ever soft de-
cision decoder for memory-based PUFs that only requires a single PUF measure-
ment during enrollment. This approach offers a significant increase in practical
usability over the method proposed in [12, 13], as will be shown in Sect. 3.

Besides using only a single enrollment measurement, the soft decision decod-
ing scheme as introduced in this paper allows for an efficient hardware imple-
mentation. For that reason the construction only uses simple linear block codes
such as repetition, Reed-Muller (RM), and Golay codes. This paper will show
that these soft decision decoders offer substantial added value over their hard
decision counterparts from [1] and are also efficiently implementable in hardware
(in contrast to more complex codes such as BCH and LDPC).

1.3 Paper Outline

Section 2 introduces the concept of HDAs. The state of the art of soft decision
decoding in PUF HDAs is presented in Sect. 3. The problem of the known
method for soft decision decoding is discussed together with how our proposed
method can improve this. When this has been established, Sect. 4 describes the
newly proposed method in more detail. We will compare the performance of our
new method to known implementations of hard decision decoding. Results of
this comparison can be found in Sect. 5. Conclusions are drawn in Sect. 6.

2 Helper Data Algorithms

2.1 Construction for Secure Key Storage

As stated earlier, an important application of PUFs is secure key storage [16].
Memory-based PUFs can be used for this purpose. In this paper we use SRAM
PUFs as the example of memory-based PUFs. Of all memory-based PUFs,
SRAM is the one with the best performance regarding both reproducibility and
entropy (as demonstrated in [3]). Secure key storage with PUFs makes use of
an HDA to securely store and reconstruct the key. Different constructions of
HDAs exist. The implementation used in this paper is depicted in Fig. 1. We
distinguish two phases in this HDA: enrollment and reconstruction.

Enrollment. During enrollment the key is programmed into the device, com-
parable to the key programming phase for other secure key storage mechanisms.
First, the response of the targeted PUF is measured. This response is called the
reference PUF response (R) and is the input of the Fuzzy Extractor [2, 4, 10].
This Fuzzy Extractor (FE) derives a cryptographic key from a random secret
and computes helper data W by xor-ing the encoded secret with R. In the recon-
struction phase, W enables FE to reconstruct the exact same (“programmed”)
cryptographic key from a new response of this specific PUF. The helper data is
stored in non-volatile memory attached to the device and is public information.

Fig. 1. Enrollment and reconstruction for the HDA.

Reconstruction. In the reconstruction phase the same PUF is measured again
and its response (R′, which is slightly different from R) is input to the FE. The
FE uses W and R′ to reconstruct the cryptographic key that was “programmed”
during enrollment. If R′ is close enough to R, the original key will be successfully
reconstructed using information reconciliation.

2.2 Fuzzy Extractors

This section explains in more detail the most important building blocks of a
Fuzzy Extractor.

Secret Encoding. Secret encoding is performed during enrollment and consists
of selecting a random secret and encoding this secret with the chosen error
correction code. In this paper we use linear error correcting codes with length
n, dimension k and minimum Hamming distance d, which are listed as [n, k, d]
codes. The encoded secret C is xor-ed with R (this method is called code-offset
technique) to create the value W , which will be used during reconstruction.

Information Reconciliation. In Fig. 1 information reconciliation can be found
as “Decode secret” during reconstruction. This can be done after R′ has been
xor-ed with W to create C ′, which differs from C at the same positions that R′

differs from R. Hence if R′ and R are sufficiently close together (depending on
how many errors can be corrected by the selected code construction), C ′ can be
corrected into C and decoded into the secret encoded at enrollment.

Privacy Amplification. As an attacker may have partial information on the
PUF (due to non-randomness in the response), the selected secret should be
compressed into a cryptographic key with maximum entropy. This minimizes
the knowledge of the attacker about the value of the key. According to [6] the
secrecy rate for SRAM PUFs is 0.76, which indicates that for deriving a key of
128 bits with full entropy a secret of d128/0.76e = 171 bits is required. This is
the number of secret bits that will be used for our analyses. This paper will not
focus on privacy amplification, but note that compression can be achieved (for
example) with a cryptographic hash function.

3 Soft Decision Decoding

3.1 State of the Art

When using soft decision decoding, reliability information about incoming bits
is provided along with the bit-value of ‘0’ or ‘1’. In other words, every bit at
the input of a soft decision decoder is accompanied by a value that indicates the
confidence level of this specific bit. Soft decision decoders can use this additional
information to improve their error correcting capabilities; it is well known that
on a typical Gaussian channel soft decision decoding results in an improvement
of about 2 dB over hard decision. The goal is to help the decoder to output the
most likely transmitted codeword and decrease the error rate at its output.

Soft decision decoding for memory-based PUFs has only been used in the
literature by Maes et al. in [12, 13]. Their proposal is the following:

– During enrollment several measurements of the (SRAM) PUF are per-
formed. Based on these measurements an error probability for each PUF bit
is derived and stored together with the helper data. The more stable the
response of a specific PUF bit is during these multiple enrollment measure-
ments, the higher the confidence level of the value of this bit will be.

– During reconstruction error probabilities from enrollment are used to
indicate the confidence level of each individual bit. It is proven in [12, 13] that
using this soft decision information, less PUF bits are required to successfully
reconstruct the secret bits that are used for the cryptographic key.

3.2 Motivation for Construction

The problem with the method from [12, 13] is that multiple enrollment measure-
ments are required. This has the following consequences:

– Non-volatile storage will be required in the device containing the PUF. Val-
ues of the multiple enrollment measurements need to be added in order to
obtain the error probability of each bit. A key business case for PUFs is the
replacement of non-volatile key storage (as described in Sect. 1). Therefore,
the method from [12, 13] gives up on the essential advantage of PUFs for
key storage and introduces additional process steps (introducing extra de-
lay), costs, footprint while decreasing security (because of possible attacks
on non-volatile memory).

– The size of the required storage grows with the number of measurements
performed. For example, when 3 enrollment measurements are performed,
the sum value of each PUF bit can take on any integer value between 0 and
3. Therefore, this requires an additional 2 bits of storage per PUF bit. With
7 measurements 3 bits are required (and so on).

– Multiple measurements (and additional processing) leads to a longer time
required for enrolling each PUF. This could lead to problems when enrolling
millions of devices in production lines.

To solve these practical problems, we propose a new method for soft decision
decoding. The requirements for this new method are the following:

– It should only use one measurement during enrollment (and reconstruction).
– It should be efficiently implementable in hardware.

The methods proposed in this paper will only focus on HDAs using the code-
offset technique with linear block codes. Other codes, such as LDPC and convo-
lutional codes, are more complex to decode and not well suited to deal with the
limited amount of data available in PUF implementations. Therefore they will
not be considered in this paper.

3.3 Our Proposal

The previous section has motivated why we propose a new low footprint HDA
construction. This HDA should require as few PUF bits as possible in combina-
tion with low algorithmic complexity, while avoiding the implementation issues
from the previous soft decision decoding method.

The method for soft decision coding proposed here is based on the concate-
nated codes from [1]. Figure 2 shows the flowcharts of encoding and decoding in
the proposed HDA. Encoding is performed in a similar manner as for the hard
decision construction (and is thus only based on a single PUF measurement).
During decoding however, there are two differences with the hard decision con-
struction:

– The repetition decoder is replaced by a quantizer, which derives probabilistic
information from a single reconstruction measurement.

– The second decoder is a soft decision decoder (using the probabilistic infor-
mation from the quantizer).

When using the repetition decoder as a quantizer, it “weighs” the amount of
ones and zeros at its (non-probabilistic) input and outputs a (probabilistic) value
between 0 and 1 that corresponds to this input. An input string consisting of s
bits with i ones and s− i zeros will be converted by the quantizer into an output
value of i/s. These strings of length s are the sum (modulo 2) of the repetitive
output of the encoder with noise of the PUF measurement. Hence, without noise
the value i would either be 0 or s. So the closer i is to one of these values, the
more confident the soft output value of the quantizer will be.

The soft values at the output of the quantizer are used as input for the soft
decision decoder. Candidate soft decision decoders are described in Sect. 4.

Fig. 2. Encoding and decoding as used in the proposed HDA.

4 Soft Decision Decoders

We propose two methods for performing soft decision decoding, which are based
on well-known error correction codes and more in particular on concatenated
codes as described in [1]. Furthermore, it is important that both methods are
implementable in hardware without too much overhead on resources. This rules
out the more complex (BCH) codes from [1], since it is not possible to convert
them into a hardware efficient soft decision code (and even the resource efficiency
of some hard decision BCH implementations is questionable). To illustrate cost
effectiveness of both solutions, a comparison between the hard- and soft decision
implementations of these codes will be given in Sect. 5.4.

4.1 Brute-Force RM Decoder

The first proposed method is brute-force, which can be used for codes with a lim-
ited set of codewords (that is, with a small dimension k). In this method the soft
input of the decoder is compared to all possible codewords. Based on Euclidean
Distance, the most likely codeword from the list is selected to be decoded. In
our analysis we use this method for evaluating soft decision decoding with two
concatenated codes. The two constructions are repetition in combination with
the Reed-Muller[16,5,8] code and with Reed-Muller[8,4,4]. It is clear that both

Algorithm 1: Brute-Force Soft Decision Reed-Muller Decoder

Input: String of size n consisting of soft values between 0 and 1.
Actions:
1. Calculate Euclidean Distance of input string to all possible codewords of RM code.
2. Select codeword of length n with lowest Euclidean Distance to input.
3. Decode codeword to corresponding encoded secret bits.
Output: Binary string of size k.

codes only have a limited number of codewords (32 and 16 respectively). Algo-
rithm 1 describes how the proposed brute-force soft decision decoder works. In
both constructions the repetition decoders are used as quantizers to create the
soft input for the RM decoders, as described in Sect. 3.3.

4.2 Hackett Decoder

The second method is a concatenated code using repetition and Golay[24,12,8],
where the Golay decoder is used for soft decision decoding as described in [7].
Again the repetition code is used as a quantizer, which produces soft values that
are used as input for soft decision Golay decoder. The algorithm of this Golay
decoder is described in Algorithm 2 and is visualized in Fig. 3.

Algorithm 2: Hackett Soft decision Golay Decoder

Input: String of size n consisting of soft values between 0 and 1.
Actions:
1. Convert input to corresponding hard (binary) values.
2. Based on soft input values, select 4 bits from input with least confidence.
3. Calculate overall parity of hard values.

if parity is even -> flip least confident bit.
4. Initialize values required for loop: ED min =∞, y = “hard values” and k = 0.
5. Error correct y using hard decision Golay[24,12,8].
6. Calculate Euclidean Distance of resulting string to soft input.

if Euclidean Distance < ED min -> Replace ED min and z = y.
if k < 7 -> flip two bits (as described in Table 1) to get new y, go back to step 5.
else -> Decode codeword z to corresponding encoded secret bits.

Output: Binary string of size k.

Furthermore, Table 1 provides an overview of how the 8 different patterns are
created from the original value of y by flipping bits (all possible patterns with
even weight consisting of 4 bits). In this table b0 denotes the least confident
bit, b1 the second least confident, etc. According to [7] only these 8 patterns
are required (and not all 16 possibilities when flipping 4 bits), because it is
already assured that the parity of all values of y are odd, which will lead to an
odd number of errors. It is also claimed that hard decision decoding of an even
number of errors rarely yields a codeword closer to the soft input than decoding
with an odd number of errors. Therefore, patterns with an even parity are not
used in this decoder.

5 Soft vs. Hard Decision Comparison

This section is dedicated to demonstrating the added value of soft decision decod-
ing for PUF implementations. For that purpose the soft decision implementations
from the previous section are compared to their hard decision counterparts based

Fig. 3. Flowchart of Hackett decoder.

Table 1. Bits flipped in comparison to initial value of y for different values of k.

k b0 b1 b2 b3 Bits flipped compared to k − 1

0 0 0 0 0 -
1 1 0 0 1 b0 and b3
2 0 0 1 1 b0 and b2
3 1 0 1 0 b0 and b3
4 0 1 1 0 b0 and b1
5 1 1 0 0 b0 and b2
6 0 1 0 1 b0 and b3
7 1 1 1 1 b0 and b2

on error correcting performance and required resources. This will show that the
number of PUF bits required for successfully reconstructing keys is much smaller
when using soft decision decoding and that the additional resources required are
limited.

The performance of the proposed soft decision decoders will not be compared
to those from [12, 13]. Even though the performance of the decoders from [12,
13] is better than those presented here, this is an unfair comparison. Those
decoders require multiple enrollment measurements, which leads to the problems
listed in Sect. 3.2. The decoders proposed in this paper and their hard decision
counterparts do not have these problems and can therefore be compared fairly.

The system used for context in this section derives 171 secret bits from an
SRAM PUF. This example has been taken from [6] and is also referred to in [12,
13] and [1]. The bit error rate of the PUF data (noise of PUF measurement)

is called ε and will be 15%, which is similar to these same references and is a
good representation of noise on SRAM used at operating temperatures ranging
from -40◦C to +85◦C (industrial temperature standard). Furthermore, the False
Rejection Rate (FRR) of the 171 secret bits should be lower than 10−6 (i.e. the
probability of incorrectly decoding a secret key with ε = 0.15 < one in a million).

5.1 Hard Decision Concatenated Codes

The FRR of the hard decision decoders can be calculated using a set of formulas.
The first step is to calculate the error probability of the repetition decoder. This
probability depends on the length of the repetition code as well as the value of
ε and is defined as follows: When the number of bit errors at the input of the
repetition decoder is higher than half of the length of the code (repetition code
can only be of odd length, to avoid equal number of zeros and ones), the output
of the decoder will be incorrect. This leads to the following formula:

Perep
=

s∑
i=ds/2e

(
s
i

)
εi(1− ε)s−i = 1−

bs/2c∑
i=0

(
s
i

)
εi(1− ε)s−i .

Using the error probability of the repetition decoder in combination with the
parameters of the hard decision code, the error probability of the concatenated
code can be derived. When the number of errors from the repetition decoder is
too high for the hard decision decoder to correct (> b(d−1)/2c), the outcome of
the hard decision decoder will be incorrect. The corresponding formula, where
t = b(d− 1)/2c, is:

Pecode
=

n∑
i=t+1

(
n
i

)
P i

erep
(1− Perep

)n−i = 1−
t∑

i=0

(
n
i

)
P i

erep
(1− Perep

)n−i .

Finally when these error probabilities are known, the total FRR of the key can be
calculated (this step has been omitted in [1], which may give the false impression
that the results from this paper differ from those in [1]). A key can only be
reconstructed successfully when all required output blocks from the concatenated
decoder (and thus all secret bits) are correct. Dividing the length of the secret
by k (number of secret bits per decoding) leads to the number of output blocks
that need to be decoded correctly to reconstruct the key successfully. In other
words the FRR of the hard decision decoders is defined as:

FRRkey = 1− (1− Pecode
)dsecret length/ke = 1− (1− Pecode

)d171/ke .

5.2 Soft Decision Simulation Results

Unfortunately, it is not straightforward to define formulas for calculating the
FRR of the soft decision decoders. In order to be able to evaluate the performance
of these systems, the decoders have been simulated. These simulations have been

performed by encoding random secrets with the concatenated encoders, adding
random noise with ε = 0.15, and decoding the resulting string with the soft
decision decoders as described in earlier sections. The results of this simulation
can be found in Fig. 4. This figure displays the FRRs of the three different
concatenated soft decision decoders as a function of the length of the repetition
code. Note that the repetition code can be of even length in this system, since
it is used as a quantizer when decoding (and not as a hard decision repetition
decoder). A threshold is set in the figure at an FRR of 10−6, which allows us
to derive the shortest repetition length required to achieve an FRR (for a key
based on 171 secret bits) below this threshold.

Fig. 4. Simulation results for soft decision decoders of RM[16,5,8], RM[8,4,4], and
Golay[24,12,8] codes.

5.3 Comparison

Based on the formulas from Sect. 5.1 and the simulation results from Sect. 5.2 the
performance of the hard- and soft decision decoders can be compared. Table 2
shows the amount of SRAM required to reconstruct a key based on 171 secret
bits with a total FRR below 10−6. We conclude that the amount of SRAM
required for soft decision decoding is significantly lower than that of hard decision
decoding (RM[16,5,8]: 47% decrease, RM[8,4,4]: 44%, Golay: 38%). This shows
that the soft decision decoders are very suitable when implementing an SRAM
PUF HDA, which is optimized on the amount of SRAM required.

Table 2. Results hard and soft decision codes (deriving 171 secret bits, FRR < 10−6).

Code Type Rep. Length FRR Amount of SRAM (Bytes)a

RM[16,5,8] Hard 13 1.6 · 10−7 d171/5e ∗ 16 ∗ 13/8 = 910
RM[16,5,8] Soft 7 3.7 · 10−7 d171/5e ∗ 16 ∗ 7/8 = 490
RM[8,4,4] Hard 25 3.4 · 10−7 d171/4e ∗ 8 ∗ 25/8 = 1075
RM[8,4,4] Soft 14 3.3 · 10−7 d171/4e ∗ 8 ∗ 14/8 = 602
Golay[24,12,8] Hard 13 4.0 · 10−7 d171/12e ∗ 24 ∗ 13/8 = 585
Golay[24,12,8] Soft 8 4.8 · 10−7 d171/12e ∗ 24 ∗ 8/8 = 360

a Calculation method for the amount of SRAM:
drequired secret bits (171) / secret bits per codeworde = # required codewords
of codewords * length codewords * repetition length = # of bits / 8 = # of Bytes

5.4 Resource Estimates

Besides a comparison based on the amount of SRAM required for each code
construction, one can also compare the codes based on the total amount of re-
sources required. For this purpose the total footprint of each construction will
be estimated. One could also compare codes based on either timing or power
consumption. However, we believe that these comparison are much less impor-
tant when comparing hard and soft decision coders. When PUFs are used for
key storage, silicon area is the main cost factor (note that this silicon is mostly
inactive). Power and delay overhead play only a very minor role, since the coders
are only active when generating the key (at start-up of a device). This one-time
operation can be done within 1 millisecond at any realistic clock and will there-
fore not consume much time or power. Therefore, area will be the only factor
in this comparison. Results on timing have been added to Table 3 for informa-
tional purposes only. Power consumption by the soft decision decoders has been
found to be negligible in comparison to regular IC operation (since there is only
consumption during a short time at power-up) and is therefore omitted.

The total footprint consists of the following components: the encoder, quan-
tizer/repetition coder, decoder and SRAM. The required resources for each com-
ponent are estimated based on synthesis and the results can be found in Table 3.
In this table all estimates are based on area-optimized IC implementations. These
constructions have also been implemented on FPGA, so they can be used on FP-
GAs with uninitialized SRAM. Since these FPGAs are rare however, the main
focus of this paper is on IC implementations. Furthermore, all estimates are de-
noted in GE3 and for SRAM a size of 1 GE per bit has been used as a reasonable
estimate4.

3 GE – Gate Equivalent is a measure of area in any technology. 1 GE is the area of a
NAND2 (standard drive strength).

4 For TSMC 65nm standard cell library raw gate density ≈ 854 Kgate/mm2, while
SRAM cells are 0.499µm2 (6T) [17]. Hence, one SRAM cell is < 0.5 gates (1mm2

/ 854000 = 1.17µm2). This is without read-out circuitry, which provides significant
overhead for small SRAMs. Considering a factor 2 overhead, an SRAM cell ≈ 1 GE.

Table 3. Resource estimates for different code constructions.

Code Type Dec. clks Encoder Quant./Rep. Decoder SRAM Total

RM[16,5,8] Hard ±200 0.12 kGE 0.14 kGE 0.75 kGE 7.3 kGE 8.3 kGE
RM[16,5,8] Soft ±400 0.12 kGE 0.10 kGE 1.1 kGE 3.9 kGE 5.2 kGE
RM[8,4,4] Hard ±100 55 GE 0.19 kGE 0.5 kGE 8.6 kGE 9.3 kGE
RM[8,4,4] Soft ±200 55 GE 0.14 kGE 0.6 kGE 4.8 kGE 5.6 kGE
Golay[24,12,8] Hard ±15 0.30 kGE 0.14 kGE 1.0 kGE 4.7 kGE 6.1 kGE
Golay[24,12,8] Soft ±150 0.30 kGE 0.13 kGE 3.0 kGE 2.9 kGE 6.3 kGE

Table 3 shows that soft decision decoding results in a substantial decrease
in the SRAM size and in most cases additional overhead for the soft decoder
is small. Soft decision decoders require more registers than their hard decision
counterparts, since all codeword bits are now represented by a multi-bit soft
value. This alone adds 24 to 72 Flip-Flops to the implementations. These are
needed independent of speed/area trade-offs. Another unavoidable footprint in-
crease is the calculation and comparison of distances. The speed/area trade-off is
mainly determined by the amount of parallelism used here. Finally, the Hackett
soft decision Golay decoder introduces additional logic for (among others) the
selection of weak bits.

The choice of an HDA implementation depends on the parameter that should
be optimized. In this example, when optimizing on the amount of SRAM used
by the code construction, the soft decision Golay code should be implemented.
If the total footprint of the implementation needs to be minimized, the soft
decision RM[16,5,8] is the preferred choice. What is most important to notice is
that the results clearly show the benefit of soft decision decoding.

The added value of soft decision decoding will increase even further when
an HDA requires error correction with either a lower FRR, a higher ε, a larger
number of secret bits or multiple keys. In those cases the SRAM will become an
even more dominant factor in the total footprint of the implementation. There-
fore, it will be more important to decrease the amount of SRAM required. An
example in which 5 128-bits keys need to be stored with these code constructions
can be found in Table 4. Here we conclude that the soft decision Golay code is
favourable when SRAM is the dominant component of the footprint.

Table 4. Estimation of total footprint for different code constructions storing 5 keys.

Code Type Encoder Quant./Rep. Decoder SRAM Total

RM[16,5,8] Hard 0.12 kGE 0.14 kGE 0.75 kGE 36.4 kGE 37.4 kGE
RM[16,5,8] Soft 0.12 kGE 0.10 kGE 1.1 kGE 19.6 kGE 20.9 kGE
RM[8,4,4] Hard 55 GE 0.19 kGE 0.5 kGE 43.0 kGE 43.7 kGE
RM[8,4,4] Soft 55 GE 0.14 kGE 0.6 kGE 24.1 kGE 24.9 kGE
Golay[24,12,8] Hard 0.30 kGE 0.14 kGE 1.0 kGE 23.4 kGE 24.8 kGE
Golay[24,12,8] Soft 0.30 kGE 0.13 kGE 3.0 kGE 14.4 kGE 17.8 kGE

Note: In this section the amount of non-volatile memory required to store helper
data (outside of the chip) has not been taken into account. The helper data size
(in bytes) is equal to that of the SRAM, hence it is clear that this size in-
/decreases linearly with the SRAM size.

6 Conclusions

This paper presents a new and efficient method of soft decision error correction
decoding that can be used in HDAs for memory-based PUFs. This new method
is based on hard decision decoding using concatenated codes as proposed in [1],
where the repetition decoder is replaced by a quantizer that creates the input
for a soft decision decoder. It results in a code construction for HDAs that
requires less PUF bits for error correction. Furthermore, the proposed method
of soft decision decoding can be implemented efficiently in hardware and does
not suffer from the same practical problems as the soft decision construction
from [12, 13].

Using several (hardware) implementations of soft decision decoders, the added
value of soft decision decoding has been demonstrated for an HDA that derives
171 secret bits with an FRR below 10−6 while ε = 0.15. The soft decision de-
coders decrease the number of PUF bits that are required to derive the secret
bits in comparison to their hard decision counterparts by 38% to 47%. This de-
crease of PUF bits comes at only a limited cost in hardware resources of the
decoder, which becomes even less significant when the size of the PUF becomes
more dominant in the total footprint of the HDA. The optimal HDA implemen-
tation can be chosen based on the parameter that should be kept as small as
possible (number of PUF bits, total footprint of HDA, etc.) in combination with
the values of FRR, ε and secret size.

Acknowledgements. This work has been supported in part by the European
Commission through the FP7 programme under contracts 238811 UNIQUE and
216676 ECRYPT II, by the IAP program P6/26 BCRYPT of the Belgian state,
and by the Research Council KU Leuven through GOA TENSE (GOA/11/007).
The authors would like to thank the anonymous referees for constructive com-
ments.

References

1. Bösch, C., Guajardo, J., Sadeghi, A.R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES’08. LNCS,
vol. 5154, pp. 181–197. Springer-Verlag, Heidelberg (2008)

2. Boyen, X.: Reusable cryptographic fuzzy extractors. In: CCS’04. pp. 82–91. ACM,
New York, NY, USA (2004), http://doi.acm.org/10.1145/1030083.1030096

3. Claes, M., van der Leest, V., Braeken, A.: Comparison of SRAM and FF PUF
in 65nm technology. In: Laud, P. (ed.) NordSec’11. LNCS, vol. 7161, pp. 47–64.
Springer-Verlag, Heidelberg (2011)

4. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT’04. LNCS, vol. 3027, pp. 523–540. Springer-Verlag, Heidelberg (2004)

5. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: CCS’02. pp. 148–160. ACM, New York, NY, USA (2002), http:

//doi.acm.org/10.1145/586110.586132

6. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES ’07. LNCS,
vol. 4727, pp. 63–80. Springer-Verlag, Berlin, Heidelberg (2007)

7. Hackett, C.: An efficient algorithm for soft-decision decoding of the (24, 12) ex-
tended Golay code. IEEE Transactions on Communications 29(6), 909–911 (Jun
1981)

8. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF
protecting IP on every FPGA. In: Tehranipoor, M., Plusquellic, J. (eds.) IEEE
International Workshop on Hardware-Oriented Security and Trust (HOST’08). pp.
67–70. IEEE Computer Society (2008)

9. Lee, J., Lim, D., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: IEEE Symposium on VLSI Circuits 2004. pp. 176–179. IEEE
(2004)

10. Linnartz, J.P., Tuyls, P.: New shielding functions to enhance privacy and prevent
misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA’03. LNCS,
vol. 2688, pp. 393–402. Springer-Verlag, Heidelberg (2003)

11. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: Workshop on Information and System Security (WISSec 2008).
p. 17. Eindhoven, NL (2008)

12. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft de-
cision helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.)
CHES’09. LNCS, vol. 5747, pp. 332–347. Springer-Verlag, Heidelberg (2009)

13. Maes, R., Tuyls, P., Verbauwhede, I.: Soft decision helper data algorithm for SRAM
PUFs. In: IEEE International Symposium on Information Theory (ISIT’09). pp.
2101–2105. IEEE Press, Piscataway, NJ, USA (2009)

14. Ravikanth, P.S.: Physical one-way functions. Ph.D. thesis (2001), aAI0803255
15. Simons, P., van der Sluis, E., van der Leest, V.: Buskeeper PUFs, a promising

alternative to D Flip-Flop PUFs. In: IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST’12), in print. IEEE Computer Society (2012)

16. Skoric, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) Applied Cryptography
and Network Security (ACNS’05). LNCS, vol. 3531, pp. 407–422. Springer-Verlag,
Heidelberg (2005)

17. Taiwan Semiconductor Manufacturing Company Limited (TSMC): 65nm technol-
ogy overview. http://www.tsmc.com/english/dedicatedFoundry/technology/

65nm.htm

