
Practical Leakage-Resilient Symmetric

Cryptography

Sebastian Faust1⋆, Krzysztof Pietrzak2⋆⋆, and Joachim Schipper2

1 Århus University
2 IST Austria

Abstract. Leakage resilient cryptography attempts to incorporate side-
channel leakage into the black-box security model and designs crypto-
graphic schemes that are provably secure within it. Informally, a scheme
is leakage-resilient if it remains secure even if an adversary learns a
bounded amount of arbitrary information about the schemes internal
state. Unfortunately, most leakage resilient schemes are unnecessarily
complicated in order to achieve strong provable security guarantees. As
advocated by Yu et al. [CCS’10], this mostly is an artefact of the secu-
rity proof and in practice much simpler construction may already suffice
to protect against realistic side-channel attacks. In this paper, we show
that indeed for simpler constructions leakage-resilience can be obtained
when we aim for relaxed security notions where the leakage-functions
and/or the inputs to the primitive are chosen non-adaptively. For ex-
ample, we show that a three round Feistel network instantiated with a
leakage resilient PRF yields a leakage resilient PRP if the inputs are cho-
sen non-adaptively (This complements the result of Dodis and Pietrzak
[CRYPTO’10] who show that if a adaptive queries are allowed, a super-
logarithmic number of rounds is necessary.) We also show that a minor
variation of the classical GGM construction gives a leakage resilient PRF
if both, the leakage-function and the inputs, are chosen non-adaptively.

1 Introduction

Traditional cryptographic security notions only consider adversaries who get
black-box access to the primitive at hand. That is, an adversary can only observe
the input/output behavior of the cryptosystem, but gets no other information
about its inner workings. Unfortunately, such black-box security notions are of-
ten insufficient to guarantee real-world security of cryptosystems. This is due
to information inadvertently emitting from the physical implementation of the

⋆ Sebastian Faust acknowledges support from the Danish National Research Founda-
tion and The National Science Foundation of China (under the grant 61061130540)
for the Sino-Danish Center for the Theory of Interactive Computation, within part
of this work was performed; and from the CFEM research center, supported by the
Danish Strategic Research Council.

⋆⋆ The 2nd and 3rd Author are Supported by the European Research Council/ERC
Starting Grant 259668-PSPC.

cryptosystem, which can be exploited by side-channel attacks. In the last years a
large body of theoretical work attempts to incorporate these side-channel attacks
into the security model and to design new cryptographic schemes that provably
protect against them. Despite important progress in this area, only very few
works in the theory community consider how to protect symmetric primitives
against leakage attacks. That is somewhat surprising as symmetric primitives
such as pseudorandom number generators and block ciphers are the “working
horses” of cryptography and are by far the most frequent target of side-channel
attacks. Moreover, as frequently pointed out [22,23], many of the recent theoret-
ical constructions are rather involved and use techniques which only seem to be
required to enable the security proof, and do not necessarily contribute to the
real-world security of the system. In this work, we show that simpler and more
natural constructions of important symmetric primitives such as pseudorandom
functions (PRFs) and pseudorandom permutations (PRPs) are provable leakage
resilience if we aim for weaker security notions.

1.1 Modeling Leakage Resilience and Weaker Security Notions

As most previous works on leakage-resilient symmetric primitives [4,20,1,23],
we follow Dziembowski and Pietrzak [4] who structure the computation into
time steps and require that the leakage given to the adversary is some bounded
amount of arbitrary polynomial-time computable information about the data/state
that is used during this step. The latter restriction that the leakage function is
only applied to the state touched in an invocation was suggested by [19] under
the term “only computation leaks information”. As the number of invocations
of a scheme is usually unbounded, also the amount of leakage can become arbi-
trarily large.

On granular leakage resilience (gLR). Typically, a time step is one invoca-
tion of the scheme that leaks independently from the computation in the previous
and next time step. This could for example be the computation of a signature [5],
or the generation of a block of pseudorandom bits for stream-ciphers [4,20]. In
this work, we will follow [1,22] and consider a more fine grained notion where the
construction of some leakage resilient (LR) scheme CS requires several invoca-
tions of an underlying cryptographic primitive P,3 and we require that each invo-
cation of P leaks independently. We call this notion granular leakage-resilience,
or gLR for short. We notice that in the literature on leakage resilience even more
fine grained models have been considered [9,3]

As side-channel leakage is often a global phenomenon (e.g., in power analysis
attacks the adversary measures the global power consumption of the device),
the question arises whether such a locality restriction still suffices to model rel-
evant leakages in practice. For certain important leakage classes, we can answer
this question affirmatively. For instance, the prominent Hamming weight leakage

3 Concretely, we will consider the cases where CS is a LR-PRF and P a wPRF, and
the case where CS is a LR-PRP and P a LR-PRF.

2

function can be computed independently from the Hamming weight of the local
states. A similar observation works for any affine leakage function.

Formally, we model granularity as follows. Let τi be the state that is used
by the computation (keys, inputs, randomness) in time step i. Before each such
step, the adversary can adaptively choose a leakage function fi, and after this
step has been processed, she learns fi(τi).

On non-adaptive leakage resilience (naLR). Besides granularity, another
natural relaxation of leakage resilience, which has been considered in e.g. [23,1,22],
is to require that the adversary has to fix the leakage functions in advance be-
fore seeing any leakage or outputs. This notion is called non-adaptive leakage
resilience, or naLR for short. In the leakage setting, a fully adaptive choice of
the leakage function may be an overly powerful model to capture side-channel
attacks, as in practice the leakage function is often fixed in advance by the de-
vice and the measurement equipment (for more discussion on this cf. [23,1,22]).
Also, as discussed in [23], for stateless cryptographic schemes that do not allow
to evolve the secret state, such as PRFs or PRPs, one simply cannot achieve se-
curity against adaptively chosen leakage functions: the adversary can just learn
the state bit-by-bit by picking for each observation a different leakage function.4

1.2 Our contributions

In this work, we study various new and existing constructions of leakage-resilient
pseudorandom objects. In a nutshell our results can be summarized as follows:

1. We revisit the work of Yu et al. [23] and show that the proof of the pro-
posed (more natural) construction of a non-adaptive leakage-resilient (naLR)
stream cipher has a subtle flaw. We propose a simple solution to this problem
which unfortunately is impractical.

2. Inspired by the work of Dodis and Pietrzak [1], we show how to construct a
nagLR non-adaptive PRF which is simpler and more natural and avoids the
alternating structure used in [1].

3. We prove that a Feistel network with only 3 rounds, each instantiated with
a non-adaptive leakage-resilient non-adaptive PRF, yields a non-adaptive
leakage-resilient non-adaptive PRP. This completes a result of [1] who showed
that a leakage-resilient PRP requires a superlogarithmic number of rounds
instantiated with a leakage-resilient PRF.

We elaborate on these results further below.

4 In this paper we not only differentiate between adaptive/non-adaptive leakage, but
also adaptive/non-adaptive PRFs. In the latter non-adaptive means the adversary
fixes all inputs in advance. We use the convention that non-adaptive leakage-resilient
PRF means the leakage functions are chosen non-adaptively, whereas leakage-
resilient non-adaptive PRF means the inputs to the PRF are chosen non-adaptively.

3

Section 2: Yu et al. [23] Revisited. The first leakage resilient symmet-
ric primitive was the stream-cipher construction proposed by Dziembowski and
Pietrzak in [4]. This construction has later been simplified in [20] using a weak
PRF and is illustrated in Figure 1.

K0 F F F

X0 K1 F F

X1 X2 X3 X4

K2

K3

K4

Fig. 1. Construction SCALT of a leakage resilient stream-cipher from any (weak) PRF
F [20]. The initial secret key is X0,K0,K1, the output is X0, X1,

The constructions from [4,20] use an alternating structure (cf. Figure 1) and
requires the secret state to hold two secret keys Ki,Ki+1 for the underlying weak
PRF F (a weak PRF is only guaranteed to be random on random inputs). The
alternating structure enforces independence between inputs Xi and keys Ki, but
seems mostly motivated by the security proof rather than contributing much to
the scheme’s real-world security.

Yu et al. [23] advocate that already much simpler constructions will be secure
against most practically relevant side-channel attacks. They propose a more
natural construction SCSEQ from any wPRF F as illustrated in Figure 2. The
secret state of this scheme consists of only a single secret key Ki for F, and two
fixed public random values p0, p1 which are used alternately as inputs to F. This
scheme is not leakage resilience if the leakage functions can be chosen adaptively,
which is easily seen by the so-called “precomputation” attack: as we know p0, p1,
in the ith round we can choose a leakage function fi which (using its input Ki−1)
computes a future key Kt (for some t > i) and leaks some bits about it. As we
can do this for any i < t, we can (for a sufficiently large t) learn the entire Kt.

It is claimed in [23] that the construction from Figure 2 is a naLR stream ci-
pher. Note that the precomputation attack becomes infeasible if one must choose
the leakage functions fi before seeing p0, p1, as now fi(Ki−1, pi−1 mod 2) cannot
compute the future key Ki+1 = F(Ki, pi mod 2). Unfortunately, as we discuss in
Section 2, the main technical lemma used in their proof has a subtle flaw, and
thus the security proof is incorrect. Currently, we do not know if the construc-
tion is actually insecure, or if the proof can be salvaged. Our counterexample
showing that their main lemma is flawed does not lead to an actual attack on
the naLR security of the cipher.

The proof in [23] uses a lemma from [20] which states that the output F(K,X)
of a weak PRF F is pseudorandom, even if K,X only have high pseudoentropy
and are independent. The flaw in their proof roots from the fact that the input
p0 is reused every second round (cf. Figure 2), and thus already in the 3rd round,
where one computes K3 ← F(K2, p0), the key K2 is not independent from p0,
which means one cannot apply the lemma from [20] directly.

4

This dependence problem disappears if one uses fresh public random inputs
p0, p1, p2, . . . for every round instead of alternating the two values p0 and p1, we
will denote this construction by SC+

SEQ. Of course SC+
SEQ is pretty much useless

in practice as its description size (i.e. the public inputs p0, p1, . . .) is linear in the
length of the output it can generate. Nonetheless, the observation that SC+

SEQ

is naLR will be useful for constructing nagLR non-adaptive PRFs as discussed
below.

Section 3: Leakage-Resilient PRFs. Dodis and Pietrzak [1] construct a
nagLR PRF. Their basic idea is to use the leakage resilient stream-cipher from [20]
in a tree-like construction (inspired by the classical GGM construction.). Their
construction is rather involved, as the alternating structure of the stream-cipher
must be preserved within the tree like structure of the GGM transformation.5

We propose a much simpler construction illustrated in Figure 3, which we get
by using the naLR stream cipher SC+

SEQ (discussed in the previous section) within
a GGM-like tree-structure. One may expect that starting with naLR stream-
cipher like SC+

SEQ and use it within GGM, we obtain a naLR PRF. Surprisingly,
we show that this intuition is wrong. In fact, our construction in Figure 3 can
be completely broken even using only non-adaptive leakage.

Our attack exploits the fact that, even though the leakage-functions can-
not be adaptively chosen, the inputs to the PRF can be chosen adaptively. In
particular, the choice of the inputs can depend on the public values pi. Intu-
itively, this allows us to commit to exponentially many leakage functions (one
for each input to the PRF) at the beginning, and only later, when we learn the
pi’s we can choose which leakage function to choose by choosing the appropriate
input to the PRF adaptively.6 On the positive side, we show that our construc-
tion Γ F,m is a nagLR non-adaptive PRF, that is, it is secure if not only the
leakage-function, but also the inputs to Γ F,m are chosen non-adaptively. This,
of course, is a strong assumption, but for some important applications, like the
initialization of a stream cipher [22], such a non-adaptive PRF is sufficient (in
fact, here even a weak PRF is sufficient). Also, we would like to mention that
in practice many side-channel attacks, such as DPA attacks, work by measuring
the power consumption of the device on random inputs. Our security analysis
incorporates such important attacks where the adversary exploits leakages from
random inputs to the cryptographic scheme. We emphasize that, of course, our
construction is an adaptively secure PRF in the black-box sense.

Section 4: Leakage-Resilient PRPs. A classical result by Luby and Rack-
off [16] shows that a three-round Feistel (cf. Figure 4) network, where each round

5 Whereas the GGM construction is just a simple tree, the construction of [1] is a
graph with tree-width 3.

6 Let us mention that for the attack we require that the leakage functions are aware
(i.e. get as input) which node in the tree they are leaking from. Modeling granular
leakage like this makes our positive results stronger, but the attacks more artificial.
We don’t know if our construction can be broken with non-adaptive leakage where
the leakage-function is oblivious about the node it is leaking from.

5

is instantiated with a secure PRF, is a secure PRP. Dodis and Pietrzak [1] show
that three-round Feistel networks cannot be leakage resilient. More precisely,
they show that every Feistel network with a constant number of rounds (using
any perfectly leakage resilient round functions, e.g. a random oracle) can be
broken using only very simple leakage (e.g., the Hamming-weight of the inputs
to the round functions). On the positive side, they show that a Feistel network
with a super-logarithmic number of rounds instantiated with L-LR PRFs is a
L-gLR PRP for any class L of leakage functions. Here, L is some class of ad-
missible leakage functions, which in our case will usually be all polynomial-time
computable functions with range {0, 1}λ for some λ ∈ N.

The aforementioned attack requires that one can query the PRF adaptively.
We show that this is inherent by proving that a 3-round Feistel instantiated with
L-LR PRFs yields a L-gLR non-adaptive PRP. This again illustrates the power
of non-adaptivity in the leakage setting.

1.3 More Related Work

We notice that an alternative way to construct symmetric leakage resilient prim-
itives is by using techniques from leakage resilient circuit compilers. Leakage-
resilient circuit compilers allow to transform any circuit, e.g., an implementation
of the AES, into a transformed circuit that is protected against certain classes of
leakage attacks. This line of research was initiated by Ishai et al. [14] who show
security against probing attacks. This result was recently generalized to a set-
ting where leakages can be described by an AC0 circuit [6]. The works that are
most relevant to ours are recent leakage-resilient circuit compilers in the “only
computation leaks” setting [15,9,3,10]. While on the positive side such compilers
allow to provably protect any cryptographic scheme against certain classes of
leakage, they typically make strong granularity assumptions and are inefficient.7

An approach exploiting parallelism to achieve practically efficient leakage-
resilient block-ciphers was put forward by Medwed, Standaert and Joux in these
proceedings [18].

1.4 Notation & Basic Definitions

In this section, we present some basic notation and definitions that will be used
throughout this paper.

Strings & Sets. Concatenation of two strings x, y is denoted x‖y, or, if no con-
fusion is possible, simply xy. For X ∈ {0, 1}n we denote with X [i] the ith bit of
X and with X|i the i bit prefix of X . [a, b] denotes the interval {a, a+ 1, . . . , b},
[b] is short for [1, b]. For a set X , X ∈R X denotes that X is assigned a value
sampled uniformly at random from X . For a distribution D, we denote X ← D
the random variableX sampled from the distribution D. To abbreviate notation,
we often identify random variables with their distribution.

7 Circuits that make use of techniques from [15,9,3,10] grow by a factor of n2 compared
to an unprotected circuit, where n as a statistical security parameter.

6

Functions. Rm,n denotes the set of all functions {0, 1}m → {0, 1}n, Pn the set
of all permutation over {0, 1}n.

Distance. With δD(X ;Y) we denote the advantage of a circuit D in distinguishing

the random variables X,Y , i.e.: δD(X ;Y)
def
= |Pr[D(X) = 1] − Pr[D(Y) = 1]|.

∆(X ;Y)
def
= maxD δD(X ;Y) denotes the statistical distance of X and Y . With

δs(X ;Y) we denote maxDδ
D(X ;Y) where the maximum is over all circuits D of

size s.

Entropies. We recall some basic definitions for different types of entropy.

Definition 1. A random variable Z has min-entropy k, denoted H∞(Z) = k,
if for all z in the range of Z we have Pr[Z = z] ≤ 2−k.

A “computational” version of min-entropy called HILL-pseudoentropy was in-
troduced in [12].

Definition 2. We say X has HILL pseudoentropy k, denoted by HHILL
ǫ,s (X) ≥

k, if there exists a distribution Y with min-entropy H∞(Y) = k where δs(X ;Y) ≤
ǫ.

Dodis et al. [2], and Hsiao et al. [13] extended the above notions to analyze what
happens to the min-entropy (resp. HILL-pseudoentropy) of a random variable
X given a possibly correlated random variable Z.

Definition 3. Let (X,Z) be a pair of random variables. The average min-
entropy of X conditioned on Z is defined as

H̃∞(X |Z) = − log
∑

z∈Z

Pr[Z = z]2−H∞(X|Z=y)

A computational version was given in [13] and is formally defined as follows:

Definition 4. Let (X,Z) be a pair of random variables. X has conditional HILL

pseudoentropy at least k conditioned on Z, denoted H̃HILL
ǫ,s (X |Z) ≥ k if there

exists a collection of distributions Yz for each z ∈ Z, giving rise to a joint
distribution (Y, Z), such that H̃∞(Y |Z) ≥ k and δs((X,Z); (Y, Z)) ≤ ǫ.

Pseudorandomness. Pseudorandomness is a fundamental and extremely useful
cryptographic concept. Informally, an object (such as a bit-string, function or
permutation) is pseudorandom if (1) it can be efficiently implemented using a
small amount of randomness and (2) it cannot be distinguished from the corre-
sponding uniformly random object by any efficient algorithm. A basic building
block to generate pseudorandomness that will be used a basic building block in
our constructions is a weak pseudorandom function (weak PRF). In contrast to
standard PRFs, the notion of a weak PRF is weaker, as its output only has to be
pseudorandom for random inputs. We recall the definition of (weak) PRFs/PRPs
below.

7

Definition 5. A function F : {0, 1}k×{0, 1}m → {0, 1}n is an (ǫ, s, q)-pseudorandom
function (PRF) if no adversary A of size s can distinguish F(K, ·) (instantiated
with a random key K) from a random function R ← Rm,n. More precisely, for
any A of size s that can make up to q queries to its oracle, we have

|Pr[K ← {0, 1}k : AF(K,·) → 1]− Pr[R←Rm,n : AR(·) → 1]| ≤ ǫ. (1)

A non-adaptive PRF is defined similarly, except that we only consider non-
adaptive adversaries who must choose the queries X1, . . . , Xq before seeing any
outputs. A weak PRF is defined similarly, except that the inputs X1, . . . , Xq are
chosen uniformly at random and not chosen by A.

A (non-adaptive/weak) pseudorandom permutation (PRP) is defined analo-
gously, except that we require F(K, .) to be a permutation for every K.

2 Stream Ciphers

2.1 Yu et al. [23] Revisited

F F FK0

K1 K2

K3

p0 p1 p0

X1 X2 X3

(K1)|1 (K1 ⊕K2)|1

Fig. 2. The stream cipher construction SCSEQ from a weak PRF F from [23]. K0 is the
secret initial key, p0, p1 are public random values and X1, X2, . . . is the output. The
leakage leading to our counterexample to Lemma 3 from [23] is shown in gray.

A stream cipher is a function SC : {0, 1}k → {0, 1}k ×{0, 1}n that, for every
key K0, defines a sequence X1, X2, . . . of outputs which are recursively defined
as

(Ki+1, Xi+1) = SC(Ki)

The security notion for stream ciphers requires that for a random initial secret
key K0 ∈R {0, 1}k, the outputs X1, X2, . . . , Xℓ are pseudorandom.

A stream cipher is leakage-resilient [4] if, for any ℓ, the outputs Xℓ, Xℓ+1, . . .
are pseudorandom given X0, X1, . . . , Xℓ−1 and a bounded amount of adaptively
chosen leakage Λ0, Λ1, . . . , Λℓ−1. This leakage is computed as follows: for any
i = 0, 1, . . . , ℓ − 2, before (Ki+1, Xi+1) ← SC(Ki) is computed, an adversary
chooses a leakage function fi with range {0, 1}λ (the parameter λ ∈ N bounds
the amount of leakage we allow per round), and then gets Λi = fi(K

′
i) where

8

K ′i ⊆ Ki is the part of the secret state which is accessed during the evaluation
of SC(Ki).

Yu, Standaert, Pereira and Yung [23] propose a construction, SCSEQ, illus-
trated in Figure 2. As outlined in the introduction this construction is vulnerable
to the precomputation attack if the leakage functions can be chosen adaptively
depending on the public values. In [23] it is claimed that it satisfies a relaxed
notion of leakage-resilience where the leakage functions f1, f2, . . . are chosen non-
adaptively.

The construction is initialized with a secret key K0 ∈R {0, 1}k for a wPRF
F : {0, 1}k × {0, 1}n → {0, 1}m and two public random values p0, p1 ∈R {0, 1}n
(although these values are public, it will be crucial that the adversary chooses the
leakage functions before seeing these values.) The output is recursively computed
as

(Ki+1, Xi+1)← F(Ki, pi mod 2)

The proofs in [20,23] use a lemma which states that the output of a weak PRF
on a random input is pseudorandom even if the key is not uniform, but only has
high min-entropy.

Proposition 1 (wPRF with non-uniform keys, Lemma 2 from [20]).
Let F : {0, 1}k × {0, 1}n → {0, 1}m be a (ǫ, s, q) secure weak PRF, X ∈R {0, 1}n
be uniform and K ∈ {0, 1}k be any random variable which is independent of X
and has min-entropy H∞(K) ≥ k − λ for some λ ∈ N, then

(X,F(K,X)) is pseudorandom. (2)

Quantitatively, (X,F(K,X)) cannot be distinguished by adversaries of size ≈
sǫ2 with advantage ≈ ǫ2λ, so we have a loss of 8 ǫ2 in circuit size and 2λ in
distinguishing advantage. The reduction makes O(λ/ǫ2) queries, so q has to be
at least that large.

The other main ingredient of the proof is a theorem from [4],9 which states that
a pseudorandom value Z ∈ {0, 1}k has whp. HILL pseudoentropy almost k − λ
given any λ bits of auxiliary information A about Z. In our case, Z will be
(X,F(K,X)) as in eq.(2) and A will be leakage f(X,X) ∈ {0, 1}λ. Concretely,
we get

Proposition 2. For F, X,K as in Proposition 1 and f any leakage function
with range {0, 1}λ

Pr[HHILL
ǫ′,s′ (X,F(K,X) | f(K,X)) ≥ n+m− 2λ] ≥ 1− 2−λ (3)

8 Let us note that there is a typo in the conference version of [20] (the t2 in eq.(3)
shoud be t), suggesting that the loss in circuit size is only ǫ, not ǫ2.

9 A more general “dense model theorem” was independently given in [21], cf. [7] for a
good overview

9

where s′ ≈ sǫ424λ and ǫ′ = ǫ22λ, so setting, say λ = log(ǫ−1/4),10 we get
s′ ≈ sǫ5, ǫ′ =

√
ǫ.11

Before we turn to the problem with the security proof in [23], let us consider
a slightly different construction which we will call SC+

SEQ. This construction
is defined like SCSEQ, except that we use a fresh random input pi (for i =
0, . . . , L − 1) in every round, i.e. (Ki+1, Xi+1) ← SC(Ki, pi). Of course this is
not a practical construction as we can output at most L blocks (where L denotes
the number of the public pi values.) But it illustrates the proof idea, and we will
use this construction as a starting point to construct leakage-resilient PRFs in
the next section.

Theorem 1. The construction SC+
SEQ is a naLR stream cipher. The amount λ

of leakage tolerated per round depends on F as explained in Footnote 10.

Proof. By the definition of a leakage-resilient stream cipher, we have to consider
the following random experiment: an adversary A chooses some L′ ∈ [L] and
leakage functions f1, . . . , fL′ : {0, 1}k×{0, 1}n → {0, 1}λ. Then we sampleK0 ∈R
{0, 1}k, p0, . . . , pL−1 ∈R {0, 1}n and flip a coin b← {0, 1}.

The adversary gets the public values p0, . . . , pL−1, the outputs X1, . . . , XL′

and leakage Λ1, . . . , ΛL′ , where Λi = fi(Ki−1, pi−1).
If b = 0 the adversary gets a random Z ∈R {0, 1}(L−L

′)m′

, if b = 1 she gets
the remaining outputs XL′+1, . . . , XL. We must prove, that she cannot guess b
with probability much better than 1/2.

We will prove that KL′ is indistinguishable from a K̃L′ which has k− λ bits
of average min-entropy given the view viewL′ of the adversary after L′ rounds,
where viewi denotes the view of the adversary after the ith round, i.e.12

viewi = {p0, . . . , pi−1, X1, . . . , Xi, Λ1, . . . , Λi}

This will prove the theorem, as by eq.(3) and the fact that the pL′+1, . . . , pL
are all chosen uniformly at random the remaining outputs XL′+1, . . . , XL will
be pseudorandom. To see that KL′ has high conditional pseudoentropy given
viewL′ we proceed in rounds, showing that for any j ≤ L′, if Kj−1 has high
conditional pseudoentropy given viewj−1, then Kj has high pseudoentropy given
viewj . For j = 1 this follows directly from eq.(3) as (K1, X1)← F(K0, p0), where
K0 and p0 are uniform.

10 I.e. the leakage bound λ = log(ǫ−1)/4 is a function of the distinguishing advantage
of the best distinguisher for the weak PRF F: If F is secure against polynomial-size
distinguishers (i.e. ǫ = ω(log k)), λ is superlogarithmic in the security parameter k.
If F is exponentially hard, λ can be linear in k.

11 Due to the very loose reductions in [20,7], these bounds will not imply any practical
security guarantees if instantiated with a standard block cipher where k is typically
something like 128 or 256. To get practical bounds, one would have to make idealized
assumptions like assuming F is a random orcale [23].

12 Note that we only include p0, . . . , pi−1 into viewi, but in the actual security experi-
ment the adversary gets to see all the p0, . . . , pL right away. We can do so as we only
consider non-adaptive adversaries and the pi’s are chosen uniformly at random.

10

After the first round whp. K1 has conditional pseudoentropy k − 2λ given
view1. Thus, there exists a K̃1 with average min-entropy H̃∞(K̃1|view1) = k−2λ
that is indistinguishable from K1 (given view1). Because of this, in the above
experiment we can replace K1 with K̃1 and the probability that A will finally
guess b correctly can only change by a negligible amount (otherwise A would
constitute a distinguisher for K1 and K̃1.) We proceed as above for L′ rounds
(replacing Ki with K̃i for all i = 1, . . . , L′) concluding that KL′ is indistinguish-

able from a K̃L′ where H̃∞(K̃L′ |viewL′) = k − 2λ. As the pi are independent of
Ki, we get by Proposition 1 the claimed statement. ⊓⊔

Let us go back to the construction SCSEQ from [23], where we alternate between
two inputs p0, p1 instead of using a fresh pi for every round. Towards proving
that this construction is a naLR stream-cipher, we can proceed as in the proof of
Theorem 1 for the first two rounds arguing that K1 and K2 are indistinguishable
from K̃1, K̃2 satisfying H∞(K̃i|viewi) = k − 2λ, but the 3rd step becomes more
difficult.

The reason is that (in our adapted experiment, where Ki got replaced with
K̃i for i = 1, 2) we compute K3 ← F(K̃2, p0); but p0 is clearly not random (and
independent) given the view of A, as p0 was already used in the first round.
Thus we cannot just apply Proposition 1 eq. (2) to conclude that the next key
K3 to be computed has high conditional pseudoentropy.

The authors of [23] are well aware of this problem. In order to “enforce”
independence between K̃2 and p0, they put forward a lemma which claims these
values become independent when given the leakage from the previous round (for
clarity, we only state their lemma for the case of K3)

Lemma 1 (Lemma 3 [23]). K̃2 and {p0, p1, X1, X2, Λ1} are independent given
{p1, Λ2}.
Although this approach looks promising, unfortunately, it turns out that this
lemma is wrong (already for λ = 1) as can be seen by a simple counterexample
illustrated in Figure 2: choose leakage functions f1, f2 that output the first bits
Λ1 = K1[1] and Λ2 = K1[1]⊕K2[1] of K1 and K1 ⊕K2 respectively.

First, we observe that in our adapted experiment where we replace the Ki’s
(having only conditional pseudoentropy) with K̃i’s (having min-entropy), Λ1, Λ2

will be the first bits of K̃1 and K̃1⊕ K̃2. To see this, just note that, e.g., K1 and
K̃1 are indistinguishable given Λ1 = K1[1], this can only be the case if K1 and
K̃1 agree on the first bit. To see why the lemma is flawed, we first observe that
if {p1, Λ2 = K̃1[1] ⊕ K̃2[1]} is known, then given Λ1 = K̃1[1] we can compute
K̃2[1] = K̃1[1] ⊕ K̃1[1] ⊕ K̃2[1]. Now, the lemma claims K̃2 is independent of
{p0, p1, X1, X2, K̃1[1]} given {p1, K̃1[1]⊕K̃2[1]}, which by our observation means
that K̃2[1] is already determined (i.e., has no entropy) given {p1, K̃1[1]⊕ K̃2[1]},
but this is not true as shown by the claim below.

Claim. If K̃2[1] has no entropy given {p1, K̃1[1]⊕ K̃2[1]} then F is not a wPRF.

Proof. We will show that if F is a secure weak PRF, then {p1, K̃1[1], K̃2[1]} is
close to being uniform (which implies the claim.) The value p1 is uniform by

11

definition. To see that {p1, K̃1[1]} is uniform recall that K1[1] = K̃1[1], and
K1 = F(K0, p0). Clearly, every individual bit of K1 (in particular K1[1]) must
be close to uniform as otherwise we could distinguish K1 from uniform (and thus
break the security of F) by just outputting this bit. Similarly, K2 = F(K̃1, p1)
is pseudorandom given {p1, K̃1[1]}, and thus K̃2[1] = K2[1] is close to uniform
given {p1, K̃1[1]}.

3 Leakage-Resilient PRFs

Kε

F(Kε, p0)p0

K0

F(K0, p1)p1

K00

F(K00, p2)p2

Z00

K01

F(K01, p2)p2

Z01

K1

F(K1, p1)p1

K10

F(K10, p2)p2

Z10

K11

F(K11, p2)p2

Z11

Fig. 3. Illustration of Γ F,m for m = 2. p0, p1 and p2 are the random public values
and Kε = K is the initial random key of the PRF. The output of the PRF for each
X ∈ {0, 1}2 is represented by ZX , i.e., the leaves of the tree.

In [1] Dodis and Pietrzak construct a nagLR PRF from any wPRF F. Infor-
mally, a PRF is leakage resilient if its outputs on all “fresh” inputs are pseudo-
random, even if the adversary can query the PRF, and besides the outputs also
gets the leakage from these computations.13 In this section we propose a much
simpler construction than the one from [1], which is a nagLR non-adaptive PRF,
that is, it remains secure if not only the leakage function, but also the inputs
are chosen non-adaptively.

We define a naLR PRF by considering an adversary A who has access to two
oracles: the challenge and the leakage oracle. The first is as in Definition 5, i.e.,

13 Let us remark that this is not the only meaningful notion of leakage-resilience for
PRF. Instead of requiring that only fresh outputs look pseudorandom, we could
ask for a simulator that can efficiently fake leakage. A notion along this lines in a
somewhat different context and for nog-continious leakage (called “seed incompress-
ibility”) has been considered in [11].

12

either it is the pseudorandom function F(K, ·), or a random function R ← R.
The latter oracle Ff (K, ·) can be queried on some input X ∈ {0, 1}m and returns
F(K,X) together with the leakage f(K,X), where f is the leakage function non-
adaptively chosen at the beginning of the experiment.14 Of course, the queries
to the two oracles must be disjoint.

Definition 6. [L-naLR (non-adaptive) PRF] A function F : {0, 1}k×{0, 1}m →
{0, 1}n is a (ǫ, s, q)-secure L-naLR PRF if for any A of size s that can make up
to q disjoint queries to its two oracles, and for any leakage function f ∈ L, we
have

∣∣∣∣ Pr
K←{0,1}k

[AF(K,·),Ff (K,·) = 1]− Pr
R←Rm,n K←{0,1}k

[AR(·),Ff (K,·) = 1]

∣∣∣∣ ≤ ǫ.

We will mostly omit the parameters ǫ, s and q and say that F is a L-naLR PRF
if ǫ is some negligible function in k and s, q are superpolynomial in k.

A L-naLR non-adaptive PRF is defined equivalently, except that A must
choose the q PRF input queries non-adaptively.

Recall that naLR security denotes L-naLR security where L is the class of all
efficiently computable functions with range {0, 1}λ for some λ ∈ N. In this
section, we will only consider this special case, but we gave the general definition
as it will be used in the next section. As outlined in the introduction, stateless (cf.
Footnote 10) na-LR naPRFs don’t exist, and thus following [22,1], we consider
a “granular” nagLR-security notion, informally discussed in Section 1.1. Our
construction Γ F,m, illustrated in Figure 3, is inspired by the classical GGM
construction of a PRF from a PRG [8]. On input X ∈ {0, 1}m computes its
output ZX by invoking a wPRF F m + 1 times sequentially. The inputs to the
m+ 1 invocations are fixed random public values p0, . . . , pm. The ith bit of the
input X [i] determines which half of the output of F in the ith invocation is used
as a key for the (i+ 1)th invocation.

Let us define the PRF Γ F,m : {0, 1}k+(m+1)ℓ × {0, 1}m → {0, 1}n, which
uses a wPRF F : {0, 1}k × {0, 1}ℓ → {0, 1}2k as main building block. The se-
cret key is K ← {0, 1}k and moreover we sample m + 1 random public values
p = p0, . . . , pm ← {0, 1}ℓ. Below we define how the output ZX is computed by
Γ F,m(K, p,X) in pseudocode. We explicitly state which bit of the input is read as
this will determine the inputs that the leakage functions will get. With F0(K,X)
and F1(K,X) we denote the function computing F(K,X) but only outputting
the left and right half of the output, respectively.

PRF Γ F,m(K, (p0, . . . , pm), X), where X ∈ {0, 1}m and K ← {0, 1}k:
Set i := 0 and Kε := K
Repeat:

i := i+ 1.

14 Note that we allow the adversary to only choose one leakage function. On could also
consider a stronger non-adaptive notion where the adversary can initially choose a
different leakage function for every query to be made.

13

Read the input bit X [i].
Compute KX|i

:= FX[i](KX|i−1
, pi−1).

Until i = m
Compute ZX := F(KX , pm).
Output ZX .

We think of the above computation as being performed in m + 1 time steps.
Each of the m loops, and the final computation of ZX , is a time step. Thus, the
nagLR non-adaptive PRF security notion allows the adversary to initially choose
a leakage function f : {0, 1}ℓ × {0, 1}k × {0, 1} → {0, 1}λ and inputs to the two
oracles. For every input X to the Ff (K, .) oracle, the adversary gets F (K,X)
and leakage

f(p0,Kε, X [1]), f(p1,KX|1
, X [2]), . . . , f(pm−1,KX|m−1

, X [m]), f(pm,KX , 0)
(4)

As in [1], we can actually handle somewhat stronger leakage functions which not
only get the bit X [i] of X touched in the ith time step, but all the bits X|i of
X touched so far, i.e.

f(p0,Kε, X|1), f(p1,KX|1
, X|2), . . . , f(pm−1,KX|m−1

, X|m−1), f(pm,KX , X)
(5)

The interpretation here is, that the leakage function f knows exactly at which
node of the tree it is. We are now ready to prove our main theorem in this section

Theorem 2. If F : {0, 1}k × {0, 1}ℓ → {0, 1}2k is a weak PRF, then Γ F,m is a
nagLR non-adaptive PRF. The amount of leakage λ per time step (i.e., for each
invocation of F) depends on the security of F (cf. Footnote 10)

Proof. Let A be an adversary which initially chooses a leakage function f (as
described above), q distinct inputs x1, . . . , xq and some q0, meaning that the
first q0 queries will be leakage queries, and the last q1 := q − q0 queries are
challenge queries. We sample a random key K ← {0, 1}k and a coin b ← {0, 1}
determining if we’re in the real or random experiment (note that we do not yet
sample the p0, . . . , pm ← {0, 1}ℓ.)

We now evaluate all q queries simultaneously, going down the tree as illus-
trated in Figure 3 layer by layer, sampling the random pi’s as we go down (this
parallel evaluation is only possible as the queries are chosen non-adaptively.)
It will be convenient to give the adversary the leakage for all q queries (even
though the last q1 challenge queries are not supposed to leak at all), except for
the very last layer. In the last layer, we evaluate the first q0 queries, and give
the adversary this outputs together with the leakage. If b = 0 (which means
we’re in the real experiment) the adversary gets the outputs, and random values
otherwise.

Below we formally describe how the leakage is computed. As just mentioned,
we give the adversary more power than required for nagLR-security. Concretely,
in item 2 below, she gets leakage from internal nodes on all queries, not just he
leakage queries. Set i := 0, sample a random K = Kε, and then the outputs and
leakage are computed layer by layer as follows:

14

1. sample a random pi and give it to the adversary.
2. compute KI‖0‖KI‖1 := F(KI , pi) and leakage ΛI := f(KI , pi, I) for all i bit

prefixes of x1, . . . , xq. Give all the computed leakage to the adversary.
3. If i < m− 1 then set i := i+ 1 and go back to step 1, otherwise go to next

step (at this point we have computed Kxi
for all queries xi.)

4. sample a random pm and give it to the adversary.
5. Compute the final outptus Zxi

:= F(Kxi
, pm) = Γ F,m(K,xi) and leakage

Λxi
:= f(Xx1

, pm, xi) for i = 1, . . . , q0. Give this outptus and leakage to the
adversary.

6. If b = 0, for i = q0+1, . . . , q, compute Zxi
:= F(Kxi

, pm), otherwise, if b = 1,
sample random Zxi

← {0, 1}2n. Give this values to the adversary.

We denote by view0 the view of the adversary in the above experiment if b =
0, and with viewm if b = 1. To prove the theorem we must show that view0

and viewm are computationally indistinguishable. We will consider hybrid views
view1, . . . , viewm−1, and show that for every i = 1, . . . ,m, viewi−1 and viewi

indistinguishable.
Consider the computation K0‖K1 = F(Kε, p0), Λε = f(Kε, p0) in the first

layer. As Kε has min-entropy n− 2λ (in fact, in this first layer, this key is even
uniform) and p0 is uniform, by Proposition 1 K0‖K1 is pseudorandom given p0,
and by Proposition 2 K0‖K1 has (whp.) HILL pseudoentropy 2n − 2λ when
additionally given Λε. The first hybrid view1 is dervied from the hybrid view0

by replacing this K0‖K1 with a random variable K̃0‖K̃1 which has min-entorpy
2n − 2λ given p0, Λε. By the definition of HILL pseudoentropy, such a K̃0‖K̃1

exists, where view0 and view1 are computationally indistinguishable. Thus, in
view1, the inputs K̃0 and K̃1 to the first layer (which are outptus from the zero
layer) have min-entropy n− 2λ, and by Proposition 1, each outputs of this layer
will have pseudoentropy n−2λ given the entire view of the adversary. The hybrid
view2 is derived from view1 by replacing this outputs which have min-entropy
n − 2λ, and so on, until we get the hybrid viewm−1 which is indistinguishable
from view0. In viewm−1, the inputs K̃xi

to the last layer has min-entropy n− 2λ.
We choose pm uniformly at random, and it follows by Proposition 1, that the
“challange” outputs Zxi

:= F(K̃xi
, pm) are pseudorandom, and thus indistin-

guishable from viewm which is derived from viewm−1 by replacing all challange
outputs by uniformly random values (as in the case b = 1.) ⊓⊔

3.1 An Adaptive Attack Against Our Construction Γ
F,m

In Theorem 2 we showed that Γ F,m is a nagLR non-adaptive PRF. As discussed
in Section 1.2, it trivially is not a naLR non-adaptive PRF or gLR non-adaptive
PRF, i.e. the non-adaptivity and granularity for the leakage are necessary. It is a
natural question whether it is a nagLR PRF like the (much more sophisticated)
construction from [1]).

We answer this question negatively and show a simple attack against Γ F,m.
The attack allows the adversary to learn leakage that reveals the first λ bits of
Γ F,m(K,X) for an input X that has not yet been queried. Clearly, this breaks

15

the security of the PRF as required by Definition 6. Suppose m = ℓ + 1, then
the attack works as follows:

1. Define f(pm−1,KI , I) to be the first λ bits of F(F0(KI , pm−1), I).
2. Learn the public values p0, . . . , pm ∈ {0, 1}ℓ.
3. Query the leakage oracle for pm||1 and obtain Γ F,m(K, pm||1) and, from the

leakage, the first λ bits of

F(F0(Kpm
, pm−1), pm) = Γ F,m(K, pm||0).

Thus, for a leakage query pm||1 the attack reveals the first λ bits of Γ F,m(K, pm||0).
We emphasize that this attack is rather artificial and most likely will not affect
the real-world security of our construction. However, it illustrates that any at-
tempt to prove the security of Γ F,m in an adaptive setting must fail (indeed, this
attack works even if we assign a different public value to every node – details
are omitted in this extended abstract).

Let us emphasize that this attack requires that for each execution of the weak
PRF F the corresponding leakage function is “aware” of its current position in
the tree, that is, we need a leakage function as in eq.(5) and not eq.(4). Although
for our positive result considering a stronger leakage model only strengthens the
result, for an attack we would like the model to be as weak as possible and stick
with leakage functions that only get whatever is touched, and nothing beyond
that, as required for nagLR PRFs. We do not know if such an attack exists
against Γ F,m.

4 Leakage-Resilient PRPs

ai bi

F1 ⊕

⊕ F2

F3 ⊕

ui vi

ci

Fig. 4. 3-round Feistel Network ΦF1,F2,F3 : {0, 1}2n → {0, 1}2n with round functions
Fi : {0, 1}

n → {0, 1}n.

In the previous section we gave a simple construction of a PRF which is
secure against non-adaptive leakage if queried on non-adaptively chosen inputs.
In practice, one usually doesn’t use pseudorandom functions, but rather pseu-
dorandom permutations (PRPs). In particular, block ciphers, the work horses of
cryptography, are assumed to be PRPs. Block ciphers are also the main targets
of side-channel cryptanalysts, thus coming up with leakage-resilient PRPs is a
particularly worthwhile task.

16

In the standard setting (i.e. without leakage), Luby and Rackoff [16] famously
showed that one can construct a PRP from a PRF by using a three-round Feis-
tel network as illustrated in Figure 4. With one round more one even gets a
strong PRP, i.e. an object that is indistinguishable from a uniformly random
permutation even if one can query it from both sides.

To prove that a 3-round Feistel using PRFs as round functions is a PRP one
proceeds in two steps.15 First one shows that a 3-round Feistel instantiated with
uniformly random functions is indistinguishable from a uniformly random per-
mutation (this step is completely information theoretic). In the second step one
then observes that a 3-round Feistel instantiated with URFs (uniformly random
functions) is indistinguishable from a 3-round Feistel using PRFs. This second
step follows by a simple hybrid argument where we replace the pseudorandom
round functions with uniformly random functions one by one. A restricted case
of the statement claiming only non-adaptive security and using only random
functions as round functions, is given by the proposition below.

Proposition 3 (3-Round Feistel is Non-Adaptively Secure PRP). For
any n, q ∈ N and x1, . . . , xq ∈ {0, 1}2n consider the distributions:

– Sample P ∈R P2n and, for i ∈ [q], set yi = P(xi).
– Sample F1,F2,F3 ∈R Rn and for i ∈ [q] set zi = ΦF1,F2,F3

(xi) (as in Figure 4)

then

∆([y1, . . . , yq], [z1, . . . , zq]) ≤
q2

2n

Proof (sketch). Consider the values ci = F1(ai) ⊕ bi for i = 1, . . . , q (where
xi = ai‖bi, cf. Figure 4.) As F1 is a URF, these ci’s will contain a collision
with probability at most q(q− 1)/2n+1. Assuming they are all distinct, the ui =
F2(ci)⊕ai’s are uniformly random as F2 is a URF. As they are uniformly random,
they also will contain a collision with with probability at most q(q − 1)/2n+1.
This implies the values zi = ui‖vi are 2 · q(q − 1)/2n+1 = q(q − 1)/2n close to
uniform over {0, 1}2n. The uniform distribution over q elements over {0, 1}2n is
q(q − 1)/22n close to the distribution of the y1, . . . , yq (which is uniform, but
without repetition.) Thus, as statistical distance obeys the triangle inequality,
the zi’s are q(q − 1)/2n + q(q − 1)/22n ≤ q2/2n close to the yi’s. ⊓⊔

Proposition 3 also holds if the inputs xi are chosen adaptively, but the proof for
this case is significantly more delicate. The proof of Proposition 3 above uses
the fact that the inputs c1, . . . , cq to the second round function (cf. Figure 4)
are all distinct (with high probability). The adaptive case also goes along these
lines, but here one has to argue that the ci’s are also “hidden”, as an adaptive
adversary who could “guess” the ci values could compute inputs to the Feistel
network where the outputs partially collide.

As shown in [1], it is already sufficient to get some simple leakage (e.g. the
Hamming Weight) of the ci values to launch such an attack. This attack can

15 This proof template follows [17]; the original proof of Luby and Rackoff [16] is “di-
rect”, but also more complicated.

17

be adapted to work on Feistel networks with any number r of rounds, but its
complexity (i.e. number of adaptive queries) grows exponentially in r. Still, this
implies that a constant-round Feistel network, instantiated with leakage-resilient
PRFs, can be broken in polynomial time, and thus is not a leakage-resilient PRP.

The queries to the Feistel network made in the [1] attack are adaptive, and
here we show that this is indeed crucial. By Theorem 3 below, a 3-round Feistel
is a non-adaptively secure leakage-resilient PRP if instantiated with leakage-
resilient PRFs. The notion of leakage-resilience achieved by the PRP is inherited
from the underlying PRF. If the round functions are L-naLR PRFs, then we get
a L-nagLR PRP.

More formally, we initially choose a bit b ∈ {0, 1} and three keys k1, k2, k3
for F which defines the round functions Fi(.) = F(ki, .) for i = {1, 2, 3}, and if
b = 1 a random permutation P ∈R P2n (using lazy sampling.) The adversary
can initially choose three leakage functions f1, f2, f3 ∈ L, distinct inputs ai‖bi
for i = 1, . . . , q and some q0 which specifies that the first q0 inputs are leakage
queries, and the last q1 := q − q0 are challange queries (as we consider non-
adaptive queries, we can wlog. assume the queries are ordered like this.) She
then gets, for every i ≤ q0, the outputs ui‖vi = ΦF1,F2,F3

(ai‖bi) and the leakage
f1(k1, ai), f2(k2, ci) and f3(k3, ui) (so, each round of the Feistel network is con-
sidered a time-step which leaks independently.) For the queries i > q0 she gets
the regular output ΦF1,F2,F3

(ai‖bi) if b = 0 and the random P(ai‖bi) otherwise.
Note that besides the evaluation of the round functions Fi, one also has to com-
pute three XORs. It would be cheating to assume that this XORs are leakage
free. We go to the other extreme, and assume the XORs leak completely by
giving the adversary the entire ci value for every leakage query. This ci together
with the known values ai, bi, ui, vi specifies all the inputs/outputs to the three
XOR computations (e.g. the first XOR takes as inputs bi and bi ⊕ ci.)

Theorem 3. Let F : {0, 1}ℓ × {0, 1}n → {0, 1}n be an (q, ǫ, s)-secure L-naLR
non-adaptive PRF. Then the three round Feistel network ΦF1,F2,F3

, where each
Fi = F(ki, .) is an independent instantiation of F, is a (q, ǫ′, s′)-secure L-nagLR
non-adaptive PRP where

ǫ′ = 3ǫ+ q2/2n s′ = s− poly(q, n)

Proof. Let x1, . . . , xq0 and x′1, . . . , x
′
q1

(where q0 + q1 = q) denote the non-

adaptively chosen leakage and challenge queries. Let ki ← {0, 1}ℓ be randomly
chosen keys for the round functions Fi(.) = F(ki, .). Let f1, f2, f3 ∈ L denote the

leakage functions chosen by the adversary. The adversary gets (with xi
def
= ai‖bi

and ci, ui, vi as in Figure 4)

yi = ΦF1,F2,F3
(xi) Λi

def
= {f1(k1, ai), f2(k2, ci), f3(k3, ui), ci}

We must prove that the outputs y′1, . . . , y
′
q1
, where

y′i = ΦF1,F2,F3
(x′i)

are pseudorandom given y1, . . . , yq0 and Λ1, . . . , Λq0 .

18

Claim. The ci’s corresponding to the q queries are distinct with probability at
least q(q − 1)/2n+1 + ǫ.

Proof. To see this, let δ denote the probability that the ci’s collide; we can
construct a non-adaptive q-query distinguisher for F with advantage δ − q(q −
1)/2n+1 (note that as F is an ǫ-secure PRF this will imply that δ ≤ q(q −
1)/2n+1 + ǫ as claimed.) This distinguisher simply queries its oracle (which is
either a URF or F(k, .)) on inputs a1, . . . , aq, obtaining z1, . . . , zq; the oracle
outputs 1 if and only if any of the zi ⊕ bi collide. If the outputs come from a
URF, this probability is q(q − 1)/2n+1, whereas if they come from F(k, .) this
probability is δ by definition. This concludes the proof of the claim. ⊓⊔

Now assume all the ci’s are distinct. Conditioned on this, we can show by
a similar argument that also all the ui = F2(k2, ci) ⊕ ai will be distinct with
probability q(q − 1)/2n+1 + ǫ.

Assume the ci’s and ui’s are all distinct and recall that vi = F3(k3, ui) ⊕
ci. Then it follows from the L-naLR non-adaptive PRF security of F that the
y′i = uq0+i‖vq0+i values for i = 1, . . . , q1 are pseudorandom given y1, . . . , yq0 and
Λ1, . . . , Λq0 , as F2(k2, .) and F3(k3, .) are queried on distinct inputs in the first
q0 and the last q1 queries. ⊓⊔

References

1. Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions and side-
channel attacks on Feistel networks. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 21–40. Springer, Aug. 2010.

2. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, May 2004.

3. S. Dziembowski and S. Faust. Leakage-resilient circuits without computational
assumptions. In TCC, pages 230–247, 2012.

4. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In 49th FOCS,
pages 293–302. IEEE Computer Society Press, Oct. 2008.

5. S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signa-
tures. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 343–360.
Springer, Feb. 2010.

6. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting
circuits from leakage: the computationally-bounded and noisy cases. In H. Gilbert,
editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 135–156. Springer, May
2010.

7. B. Fuller and L. Reyzin. Computational entropy and information leakage. http:

//www.cs.bu.edu/~reyzin/research.html.

8. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33:792–807, 1986.

9. S. Goldwasser and G. N. Rothblum. Securing computation against continuous
leakage. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 59–79.
Springer, Aug. 2010.

19

10. S. Goldwasser and G. N. Rothblum. How to compute in the presence of leakage.
Electronic Colloquium on Computational Complexity (ECCC), 19:10, 2012.

11. S. Halevi, S. Myers, and C. Rackoff. On seed-incompressible functions. In
R. Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 19–36. Springer, Mar.
2008.

12. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

13. C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational entropy, or to-
ward separating pseudoentropy from compressibility. In M. Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 169–186. Springer, May 2007.

14. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, Aug. 2003.

15. A. Juma and Y. Vahlis. Protecting cryptographic keys against continual leakage.
In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 41–58. Springer,
Aug. 2010.

16. M. Luby and C. Rackoff. How to construct pseudo-random permutations from
pseudo-random functions (abstract). In H. C. Williams, editor, CRYPTO’85, vol-
ume 218 of LNCS, page 447. Springer, Aug. 1986.

17. U. M. Maurer. Indistinguishability of random systems. In L. R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 110–132. Springer, Apr. / May
2002.

18. M. Medwed, F.-X. Standaert, and A. Joux. Towards super-exponential side-channel
security with efficient leakage-resilient prfs. In CHES, 2012.

19. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract).
In M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer,
Feb. 2004.

20. K. Pietrzak. A leakage-resilient mode of operation. In A. Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer, Apr. 2009.

21. O. Reingold, L. Trevisan, M. Tulsiani, and S. P. Vadhan. Dense subsets of pseu-
dorandom sets. In 49th FOCS, pages 76–85. IEEE Computer Society Press, Oct.
2008.

22. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald.
Leakage resilient cryptography in practice. Towards Hardware Intrinsic Security:
Foundation and Practice, pages 105– 139, 2010.

23. Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseu-
dorandom generators. In ACM CCS 10, pages 141–151. ACM Press, 2010.

20

