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Abstract. Masking on the algorithm level, i.e. concealing all sensi-
tive intermediate values with random data, is a popular countermeasure
against DPA attacks. A properly implemented masking scheme forces an
attacker to apply a higher-order DPA attack. Such attacks are known
to require a number of traces growing exponentially in the attack order,
and computational power growing combinatorially in the number of time
samples that have to be exploited jointly. We present a novel technique
to identify such tuples of time samples before key recovery, in black-box
conditions and using only known inputs (or outputs). Attempting key
recovery only once the tuples have been identified can reduce the compu-
tational complexity of the overall attack substantially, e.g. from months
to days. Experimental results based on power traces of a masked software
implementation of the AES confirm the effectiveness of our method and
show exemplary speed-ups.
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1 Introduction

Side-channel attacks are used to break implementations of cryptographic al-
gorithms in embedded devices. Since the introduction by Kocher [11] in the
late nineties, they have been refined and a series of countermeasures have been
designed to thwart them. A particularly popular countermeasure against Dif-
ferential Power Analysis (DPA) attacks [12] is d-order masking [4, 7], since it
enjoys a formal proof of security against higher-order DPA attacks [4, 15] of or-
der d or less. d-order masking is based on splitting every sensitive intermediate
value in d + 1 shares and we consider the case that they are manipulated at
distinct times, as is typical for software implementations. d+ 1-order DPA and
d + 1-variate Mutual Information Analysis (MIA) attacks [5, 17] (from now on
referred to as multivariate attacks together) allow to break d-order masked im-
plementations by analyzing tuples of d + 1 time samples, corresponding to all
shares of a masked sensitive variable, from each trace. However, multivariate
attacks are significantly more difficult to mount than univariate attacks for two



reasons. First, attacks exploiting higher-order moments are exponentially more
sensitive to noise as the masking order d increases [4, 19]. As a consequence, the
number of traces required to mount a successful attack grows exponentially in
d. Second, multivariate attacks need to search over d+1-tuples of time samples.
The computational complexity of the attacks therefore grows combinatorially in
the attack order d + 1. Hence, secure implementations use a masking order d
in combination with a suitable noise level to ensure that an attack will require
a sufficiently large number of traces and a heavy amount of computation, such
that the attack becomes impractical.

Related work. Most related works on non-profiled multivariate attacks start
from the assumption that the time samples where the shares of the targeted,
masked sensitive variable leak are known, and focus on the key recovery [5, 10,
15, 17, 18, 20, 23]. Few related works tackle the problem of identifying (tuples
of) interesting time samples before key recovery, and they do so with heuristic
approaches. Agrawal et al. [1] describe a method to identify tuples of time sam-
ples that requires a chosen input adversarial model and that can only exploit
the leakage of single bits. Their method is tailored to Boolean masking and the
measurements can not be re-used for key recovery, due to the way the inputs
are chosen. Oswald et al. [16] essentially propose an exhaustive search over all
d+1-tuples of time samples in a small time window that is selected based on an
educated guess. The interpretation of educated guess is left to the practitioner.
Note that the guess does not select tuples of time samples, but a window of
time samples that has to be searched for a tuple exhaustively in combination
with key recovery. This method can be applied with known inputs or outputs
and, in principle, to any masking scheme. The approach suggested by Lemke and
Paar [14] and Gierlichs et al. [5] is to examine the empirical variance of several
power traces when the input data is kept constant, i.e. it requires a chosen input
adversarial model. In an ideal case, the variance is then caused only by masking,
and therefore time samples with high variance mostly correspond to time sam-
ples where the masks or masked variables are being processed. Note that also
this method does not identify tuples of time samples but a set of samples that
has to be searched for a tuple exhaustively in combination with key recovery.
The measurements can not be re-used for key recovery and, in principle, the
method can be applied to any masking scheme.

In summary, the educated guess of Oswald et al. is the only method described
in the literature that can be applied in black-box conditions and with known
inputs or outputs.

Contribution. We present a novel method for identifying interesting d + 1-
tuples of time samples before key recovery. It is not heuristic but systematic and
ranks all possible d + 1-tuples of time samples in a given window according to
their dependency on, informally speaking, “typical attack targets”. It does not
provide a qualitative yes/no decision, but instead ranks tuples with respect to a
meaningful metric such that there is a natural order in which to attack them. Our



technique can lead to a substantial improvement in the computational efficiency
of multivariate attacks compared to exhaustive search over the same window of
time samples, since it retains only a small fraction of all possible d+1-tuples for
key recovery. The relative improvement depends on the size of the subkeys that
are attacked. In absolute terms, the improvement becomes more pronounced with
increasing attack order d+1, increasing size of the time window, and increasing
number of traces.

Our approach is based on mutual information and is fully generic: it applies
to attacks of any order d + 1, including univariate attacks against unmasked
implementations, it applies to all possible masking schemes, it requires only a
known input or output scenario, it can traverse S-boxes, locate shares of the
masked S-box output, and it does not require any restrictive assumptions on
the device leakage behavior. In other words, our method does not require more
restrictive assumptions than a generic MIA attack [6].

Paper organization. In Sect. 2 we introduce our notation, recall the basics of
masking and discuss state-of-the-art multivariate attacks. In Sect. 3 we present
our technique together with an analysis of how and why it works. We discuss its
efficiency, impact, and possible refinements in Sect. 4. In Sect. 5 we present ex-
perimental results that validate our proposal and highlight some of its interesting
properties. Section 6 concludes the paper.

2 Preliminaries

In this paper we consider only non-profiled, multivariate attacks. Interesting

tuples are tuples of time samples that carry leakage of all shares of a masked
variable that is a (possibly keyed) function of the plaintext.

2.1 Notation

Capital letters in bold face, e.g. M, denote random variables. Lowercase letters,
e.g. m, denote a specific value of M, e.g. M = m. Mi are mask bytes, P is a
plaintext byte, K is a key byte, and S-box is a cryptographic S-box. L(t) is the
random variable corresponding to the measured side-channel leakage at time t.
tM denotes the instant when the device is manipulating the random variable M.
I(A;B;C) denotes the multivariate mutual information between A, B and C [2,
5] and is computed as

I(A;B;C) = I(A;B)− I(A;B|C) . (1)

Note that, if A and B are independent, I(A;B) = 0 and I(A;B;C) ≤ 0.

2.2 Masking

Masking was introduced by Goubin and Patarin [7] and by Chari et al. [4] (to-
gether with a proof of security) as a sound approach to protect implementations



against first-order DPA attacks. In a d-order masked implementation, every sen-
sitive variable Z is randomly split into d+ 1 shares M1, . . . ,Md,V satisfying

M1 ⋆ . . . ⋆Md ⋆V = Z , (2)

where ⋆ is some suitable group operator.
The security of properly implemented masking schemes relies on the fact that

even if the adversary manages to know any information about up to d shares out
of d+1 (for example, via side-channel leakage), he cannot learn any information
about the sensitive variable Z.

Throughout the paper we assume that the shares M1, . . . ,Md,V are manip-
ulated (and leak) separately at different time instants. Further, we assume that
these time instants and the values of the shares are unknown to the adversary.

2.3 Multivariate attacks

Masked implementations of order d can in theory always be broken by d + 1-
variate attacks as originally proposed by Messerges [15] and Chari et al. [4]. They
exploit the statistical dependence between the leakage of the d+1 shares and the
sensitive variable Z. There are essentially two different methods for performing
multivariate attacks.

The first approach [4, 10, 15, 16, 18, 23] consists in reducing the problem to a
univariate scenario by preprocessing each trace, and then running a first-order
attack on the preprocessed traces. The preprocessing generates a new trace from
all possible d+ 1-tuples of distinct time samples of the original trace, where for
each tuple the d + 1 time samples are combined with a so-called combination

function (typically the absolute difference [15] or the centered product [18]).
The second approach, proposed by Prouff and Rivain [17] and Gierlichs et al.
[5], does not rely on a preprocessing step but directly uses multivariate MIA for
the attack.

A major shortcoming of both methods is that they suffer from the effect
known as “combinatorial explosion” and hence combinatorial time complexity
in d+1. Both methods aim to recover subkeys while, at the same time, searching
for a suitable d+1-tuple of time samples in the traces. In the first approach, the
preprocessed traces are

(

L

d+1

)

time samples long, where L is the trace length.
These traces have to be processed for each hypothesis on the subkey. In the
second approach, the distinguisher should be computed for each of the

(

L

d+1

)

d+ 1-tuples, and for each hypothesis on the subkey.
Hence, it is very important to identify the interesting tuples (or to narrow

down a window of time samples as much as possible) prior to key recovery in
order to keep the computational complexity of a multivariate attack at a feasible
level.

3 Identifying interesting tuples of time samples

In this section we explain how to identify interesting d+1-tuples of time samples
prior to key recovery. Note that we focus our attention on this aspect and that



key recovery is not the primary focus of the paper. For clarity in the exposition,
in what follows we assume a first-order Boolean masking scheme (two shares)
and a noise-free scenario. The practical results presented in Sect. 5 are based on
measured power traces.

3.1 Core idea

Let us consider a scenario with fixed plaintext, fixed key, and sensitive interme-
diate value Z = Fk(p), where Fk is some key-dependent function (for example,
Fk(p) = S-box(p⊕ k)). The key observation is that the mutual information be-
tween the leakages at time instants corresponding to the manipulation of the
mask M1 and the masked intermediate value V = M1⊕Fk(p) is non-zero. That
is,

I(L(tM1
);L(tV)) > 0 . (3)

The interpretation is straightforward: leakage at tV depends only on V, which
varies in function of only the maskM1 (since the plaintext and the key are fixed),
and some information about the mask is leaked at tM1

. Hence, the information
shared between leakage at tM1

and tV is non-zero. On the other hand, the
information shared between leakage at two unrelated time samples t0 and t1 is
zero

I(L(t0);L(t1)) = 0 (4)

because no relation exists between data handled at t0 and at t1. Thus, Eqs. (3)
and (4) allow us to distinguish pairs of time samples that contain leakage of
dependent variables (case of Eq. (3)) from those pairs that contain leakage of
independent variables, that are irrelevant for the multivariate attack (case of
Eq. (4)). Note that not all pairs of time samples that contain leakage of dependent
variables carry some information about the key. For example, if the same mask
is manipulated at t0 and t1, then I(L(t0);L(t1)) > 0.

We stress that the value of K need not be known, and no hypothesis on it
be made.

The general case. In the above example we required a fixed plaintext and
thus a chosen plaintext scenario. We can relax this assumption and instead work
with known (varying) plaintexts. Suppose that the device is manipulating the
plaintext byte P, the mask M1 and the masked intermediate value V such that
V = M1 ⊕ Fk(P) at time instants tP, tM1

and tV, respectively. The natural
extension of the core observation to known varying plaintexts is that L(tP),
L(tM1

) and L(tV) are not independent, and therefore the mutual information
between them is non-zero

I(L(tM1
);L(tV);L(tP)) 6= 0 . (5)

At three unrelated time samples t0, t1 and t2, on the other hand, the mutual
information is zero

I(L(t0);L(t1);L(t2)) = 0 . (6)



The interpretation follows the same lines as in the particular case. Leakage
at tV depends only on V, which now varies in function of the plaintext and the
mask (since the key is fixed), and some information about the mask and the
plaintext is leaked at tM1

and tP, respectively. Thus, the information shared
between L(tM1

), L(tV) and L(tP) is non-zero.
Note that it is not necessary to search for tP, nor is it necessary for tP to

physically exist in the power traces. By assumption, the plaintext is known, so
it is possible to substitute L(tP) with the leakage of the known plaintext under
some hypothesized leakage model L̃(P). This makes the analysis faster since one
has to search only for a pair of time instants (tM1

and tV) instead of searching
for a triplet. The choice of L̃ will be discussed in Sect. 3.3.

We can hence use Eqs. (5) and (6) to distinguish dependent triplets from
independent triplets. In addition, and contrary to the particular case with fixed
plaintext, all identified tuples are now interesting tuples and all relate to the
specific plaintext byte P. Most of them carry some information about the key
and can be useful for a key recovery attack. The only possible type of tuple
that will be identified as interesting although it does not carry some information
about the key is the one corresponding to all shares of the specific, masked
plaintext byte. We discuss this in more detail in Sect. 3.3.

3.2 Suggested workflow for multivariate attacks

The previous observations allow an attacker to identify interesting d+ 1-tuples
of time samples prior to key recovery. Again, we use d = 1 in the explanation.
The proposed workflow divides an attack in three phases:

Step 1. (Window selection) The adversary uses any available mean to narrow
down the time window to analyze. For example, the adversary could
select a small window based on an educated guess [16], if possible. Obvi-
ously, care has to be taken to not discard too many time samples since
the window must contain at least one interesting d+ 1-tuple.

Step 2. (Tuple selection) The adversary estimates I(L(t1);L(t2); L̃(P)) for all
(t1, t2) with t1 > t2 in the remaining window, and keeps a list of pairs of
time samples yielding negative mutual information with large absolute
value.

Step 3. (Key recovery attack) The adversary performs the preferred strategy for
a bivariate attack on traces consisting only of the pairs of time samples
in the list. These traces consist of a few pairs of time samples, and hence
the key recovery step is much faster.

3.3 Which tuples of time samples pop up?

The adversary has freedom to choose the hypothesized leakage model L̃ for the
plaintext. Depending on the choice of L̃, different tuples of time samples will be
identified. In this section we analyze two cases.



L̃ is the identity function. When the adversary computes the mutual infor-
mation between time samples and a plaintext byte, i.e. L̃(P) = P, he will be
able to identify all tuples corresponding to all shares of any (sensitive) variable
of the form Z = Fk(P). In particular, the method is able to identify the shares
(M1,V) with V = P⊕M1, V = P⊕K⊕M1 and V = S-box(P⊕K) ⊕M1,
since the key is fixed.

This result is useful, as it allows the attacker to locate both the masked
variables before the S-box (masked plaintext and masked S-box input) as well
as the masked variables after the S-box (masked S-box output). Note that it is
irrelevant if the masks before and after the S-box are the same. If the mask does
not change, the identified tuples of time samples will share one component.

L̃ is an approximation of the device leakage behavior. If the attacker
chooses L̃ as an approximation of the leakage behavior L, he will be able to
identify all tuples of time samples corresponding to all shares of any (sensitive)
variable of the form Z = Fk(P) appearing before the S-box (e.g. masked plain-
text and masked S-box input). For a typical S-box, he will not be able to identify
tuples of time samples corresponding to shares of sensitive variables after the S-
box. The intuitive reasoning behind this is that knowledge of the distribution of
the plaintext’s leakage does not give sufficient information for guessing the dis-
tribution of the S-box output’s leakage. The advantage of this choice, compared
to the identity function, is the ease of estimation, see Sect. 4.1. Disadvantages
are that one cannot locate shares of masked variables after the S-box and that
one relies on an assumption about the device leakage behavior.

Note that we compute the mutual information according to Eq. (1), and not
as

I((L(t0),L(t1)); L̃(P)) =

I(L(t0); L̃(P)) + I(L(t1); L̃(P))− I(L(t0);L(t1); L̃(P)) ,
(7)

where the last of the three terms is in turn given by Eq. (1) [2]. The reasoning for
this choice is straightforward. The first two terms of Eq. (7) capture first-order
leakage of variables that depend on L̃(P), e.g. unmasked plaintext, unmasked
S-box input and, depending on the choice of L̃, unmasked S-box output. By
assumption, the masking scheme is properly implemented and there is no first-
order leakage of sensitive variables. Hence, the only first-order leakage that these
terms could capture is that of the unmasked plaintext, which is of no use for
our purpose. By omitting the two terms and using Eq. (1) we ensure that only
interesting tuples yield non-zero mutual information.

Moreover, Eq. (1) allows us to target very specific tuples. For our interest-
ing tuples it holds that I(L(tM1

),L(tV)) = 0 such that interesting tuples yield
strictly negative mutual information, see (1).



4 Discussion

In this section we discuss several aspects of the proposed workflow for multivari-
ate attacks, such as its efficiency, refinements and additional applications.

4.1 Efficiency analysis

We evaluate the efficiency of the proposed workflow with respect to the running
time and the number of traces needed, and we compare these numbers to those
of a “classical” multivariate MIA attack that uses exhaustive search instead of
step 2. Although the proposed method is not limited to a particular multivariate
attack technique for step 3, using multivariate MIA here allows us to draw im-
portant conclusions regarding the efficiency of the proposed workflow, since the
numbers can be directly compared. In both cases we focus the attacks on the
(masked) S-box output. According to the previous section, this choice implies
that step 2 of the proposed workflow uses the identity function L̃(P) = P. We
analyze two different scenarios:

(a) Unknown leakage behavior. Step 3 of the proposed workflow and the “clas-
sical” MIA both use the identity leakage model, or possibly some truncated
identity leakage model in case of a bijective S-box. The point here is that
both step 3 and the “classical” MIA use the same leakage model.

(b) Known leakage behavior L equal to Hamming weight leakage. Step 3 of the
proposed workflow and the “classical” MIA both use the Hamming weight
leakage model.

Running time. We assume that after step 1 the traces are L time samples
long and contain at least one tuple of time samples corresponding to all shares
of the masked S-box output. We further assume that all attacks are provided
with sufficiently many traces, i.e. there are no PDF estimation problems.

In scenario (a) the running time of the “classical” MIA attack is given by
(

L

d+1

)

× α × |K|, where
(

L

d+1

)

is the number of d + 1-tuples of time samples
to analyze, α is the time it takes to compute the MIA distinguisher for one
d+1-tuple of time samples and one subkey hypothesis using the identity leakage
model, and |K| is the number of subkey hypotheses. In scenario (b) the running
time of the “classical” MIA attack is

(

L

d+1

)

× β × |K|, where β is the time it
takes to compute the MIA distinguisher for one d+1-tuple of time samples and
one subkey hypothesis using the Hamming weight leakage model.

In scenario (a) the running time of step 2 of the proposed workflow is given
by

(

L

d+1

)

× α, and the running time of step 3 is |K| × α × γ, where γ is the
number of d + 1-tuples in the list of interesting tuples generated in step 2. We
have that γ ≥ 1 and typically γ is much smaller than L. The combined running
time of steps 2 and 3 is

(

L

d+1

)

× α + |K| × α × γ. In scenario (b) the running

time of step 2 is again
(

L

d+1

)

× α and the running time of step 3 is |K| × β × γ.

The combined running time of both steps is
(

L

d+1

)

× α+ |K| × β × γ. Note that



in both scenarios (a) and (b), the total running time of the proposed workflow
is dominated by step 2. Table 1 summarizes these numbers and shows that the
proposed workflow essentially runs |K| times faster.

Table 1. Running time of MIA attacks using the proposed and the “classical” workflow.

Proposed workflow “Classical” MIA Improvement factor

Scenario (a)
(

L

d+1

)

× α+ |K| × α× γ
(

L

d+1

)

× α× |K|

≈
(

L

d+1

)

× α ≈ |K|

Scenario (b)
(

L

d+1

)

× α+ |K| × β × γ
(

L

d+1

)

× β × |K|

≈
(

L

d+1

)

× α ≈ |K| × β/α

So far we have limited this analysis to attacks against a single subkey. For
attacking multiple subkeys, it may be that only recovering the first subkey is
hard and that the interesting tuples of time samples related to the other subkeys
can be easily guessed once the tuple related to the first subkey has been found.
But it may also be that recovering the other subkeys requires basically the same
computation as recovering the first subkey. In either case, the improvement factor
is essentially |K|. In the latter case, this improvement applies to recovering each

subkey, which is not obvious since we express the improvement as a factor.
Further, we note that the improvement factor is independent of the masking
order d and the window size L. However, in absolute terms the running time
improvement increases substantially with increasing attack order d + 1, L and
the number of traces. Finally, we point out that the analysis holds independently
of the method used to estimate the mutual information, as long as we assume
that all involved estimations of mutual information use the same method.

Number of traces needed. It is not straightforward to make a precise but
general statement about the number of traces needed for our method to suc-
cessfully locate interesting tuples. Many factors play a role. We make a brief
assessment and describe two of the effects that have to be considered.

First, we consider an idealized scenario where steps 2 and 3 succeed as soon
as the same precision for the estimations is achieved. In this case, in scenario (b)
(Hamming weight leakage model), step 2 may require more traces to pinpoint the
interesting d+1 tuples of time samples than step 3 to recover the key. This is due
to the fact that, in the attack step, the estimation of I(L(tV);L(tM); HW(Z))
with Z = S-Box(P⊕ k) for a hypothesized k requires generally less traces than
an equally precise estimation of I(L(tV);L(tM);P) in the tuple selection step.
This is because of the different number of classes for HW(Z) and for P. In the
case of AES, there are 256 different possible values for P, while there are only
nine different possible values for HW(Z). Nevertheless, since step 2 requires a
larger number of traces, these traces must be obtained and may be used in step



3. A “classical” d+1-variate MIA attack requires the same (smaller) number of
traces as step 3.

In scenario (a) ((possibly truncated) identity leakage model) the previous
effect is typically less pronounced and thus the difference in the number of traces
required in each step is smaller. The same holds for the difference in the number
of traces needed for step 2 and a “classical” d+ 1-variate MIA attack.

Second, the precision of the mutual information estimates required in step
3 to distinguish the correct key hypothesis from incorrect ones may not be the
same as the precision required to distinguish an interesting tuple from a non-
interesting one in step 2. The relation between these precisions can be almost
arbitrary. However, it should typically hold that the precision required by an
attack against the S-box output in step 3 is not higher than the precision required
in step 2.

Summarizing, in scenario (a) the proposed workflow offers a running time
improvement factor in the order of magnitude of |K|, possibly at the cost of
an increased number of traces. In scenario (b) the proposed workflow requires
more traces than a “classical” attack but still offers an interesting running time
improvement factor. It offers a trade off. Whether the trade off is attractive
depends on the ratio β/α in the running time improvement factor, and on how
many more traces are required.

4.2 On the S-box

The fact that the method can distinguish all d + 1 tuples corresponding to all
shares of any (sensitive) variable of the form Z = Fk(P) can be used to traverse
bijective S-boxes without making any hypothesis on the subkey. This is because
the S-box input is a keyed permutation of the plaintext, and the S-box output is
a permutation of the S-box input. Both permutations are transparent to mutual
information when using the identity function L̃(P) = P.

It is less obvious, nevertheless true, that the method also works in the case
of non-injective S-boxes, as for instance in DES. The reasoning is similar to
the above. The S-box input is a keyed permutation of the plaintext. The S-box
output is not a permutation of the S-box input, but a non-injective function of
it. Therefore, if we use the identity function and condition on the plaintext, the
S-box can be traversed just like a bijective S-box, and interesting tuples of time
samples after the S-box can be identified. Note that a non-injective S-box cannot
be traversed from output to input in the same way.

4.3 Additional applications

The method described in this paper is fully generic and does not place any restric-
tive assumption on the specific targeted implementation. However, the method
benefits from the available specificities of the implementation. For example, an
adversary could mount the following strategy if he knows that the device’s leak-
age behavior is close to the Hamming weight model. Using the Hamming weight
model, the adversary first locates tuples corresponding to the S-box input to



narrow down the time window. Then, using the identity function, he searches in
that window for the S-box output.

The adversary could also locate tuples corresponding to the S-box input of
the next S-box lookup to further narrow down the time window.

Bit-tracing [9] is a technique used to track the time instants when a pre-
dictable variable is handled in the execution flow of an unknown implementa-
tion. This is a useful technique to reverse-engineer unknown implementations.
The ideas in Section 3.1 can be exploited to track masked variables during the
execution of an algorithm. Note that the fact that the proposed method can tra-
verse S-boxes (by the arguments given in Sect. 4.2) can also lead to a significant
speed-up in the bit-tracing process of masked implementations.

4.4 Estimation of mutual information

We note that any suitable method for estimating the mutual information or
the required probability distributions, e.g. histograms [6], kernel density estima-
tion [17], B-splines [21], statistical moments [13], parametric methods [17], and
any similar metric, e.g. Kullback-Leibler divergence [22], Kolmogorov-Smirnov
test [22], Cramér-von-Mises test [22], can be used.

Available knowledge about the device leakage behavior, e.g. close to the Ham-
ming weight model, can be used to speed up the estimations. Here we do not
refer to the choice of L̃ but to the leakage variables.

4.5 Key recovery step

By construction, our method identifies tuples of time samples that correspond
to all shares of a masked (sensitive) variable. It does so irrespective of the par-
ticular dependencies between each share and its side-channel leakage. Therefore,
a generic multivariate MIA attack with (possibly truncated) identity leakage
model appears to be most suited to exploit the unknown dependencies, in gen-
eral. However, if standard assumptions approximate the leakage behavior good
enough or the specific leakage behavior is known, the identified tuples can be
exploited more efficiently with adapted multivariate MIA or higher-order DPA
attacks.

The proposed method can identify interesting tuples that relate to a specific
plaintext byte, but it cannot per se focus on interesting tuples that correspond
to a specific function of that plaintext byte. As a consequence, the method will in
general not discriminate between interesting tuples that correspond to all shares
of the masked plaintext, the masked S-box input or the masked S-box output.
Clearly, the latter is preferable for an attack. In our experiments we noted that
enough interesting tuples corresponding to all shares of the masked S-box output
appeared at the top of the ranked list.



5 Experiments

In this section we present experimental results of our method, insight on its com-
putation and a performance evaluation. We note that all “numbers of traces”
reported in this section cannot be generalized to other platforms and implemen-
tations.

5.1 Measurements

We use an 8-bit microcontroller of Atmel’s AVR family in a smart card plastic
body as platform for our experiments. The microcontroller runs a first-order
Boolean masked implementation of AES-128 encryption that follows the lines
of [8]. This concrete implementation uses six independent mask bytes for one
encryption. Before the SubBytes operation, all state bytes are protected by the
same mask M0. After the SubBytes operation, all state bytes are protected by
the same mask M1. Before MixColumns, each column of the state is remasked
with M2, . . . ,M5. After MixColumns, each column of the state is masked with
M′

2, . . . ,M
′

5 that depend on M2, . . . ,M5. Shiftrows does not affect the masking
and after the next AddRoundKey operation, all state bytes are again protected
by M0 due to the masked key schedule. Note that the six masks are re-used to
protect all rounds. There are no additional countermeasures.

We obtained 50 000 power traces from encryptions of randomly chosen plain-
texts with a fixed key and random masks. The card was clocked at 4MHz and
we used a sampling frequency of 200MS/s.

5.2 Selection of a time window: step 1

To reduce the computational burden, we restricted the measurements to cover
only the first 1.5 rounds of the encryption. This was done based on an educated
guess on the SPA features present in the power traces. Then, we compressed the
traces by integration to one point per clock cycle. As a result, each compressed
trace comprises 800 points. The subsequent analyses were carried out on these
compressed traces.

5.3 Computation of the method: step 2

To show the full potential of the method, we chose L̃ to be the identity function.
In what follows, P refers to the third plaintext byte, an arbitrary choice. We
estimate densities with histograms (using nine bins for each dimension unless
otherwise stated, because we expect a leakage behavior close to the Hamming
weight/distance model) and we useˆto indicate estimates, e.g. Î is an estimate
of I. The computation of step 2 is split into two terms:

Î(L(t0);L(t1);P) = Î(L(t0);L(t1))− Î(L(t0);L(t1)|P) . (8)

In our experiments, we noted that a straightforward computation of this
expression can result in inconvenient estimation errors. The reason lies in the



different number of traces used to estimate each term on the right side of Eq. (8).

Î(L(t0);L(t1)) is computed with all available traces, say T . The second term is
computed as

Î(L(t0);L(t1)|P) =

255
∑

p=0

P̂r(P = p)Î(L(t0);L(t1)|P = p) (9)

and for the computation of each summand about T/256 traces are used. This
difference in the number of traces translates into different estimation accuracies
for each term in Eq. (8), burying the small relevant difference between them
due to the effect of P in the larger difference due to the different estimation
accuracies.

To amend this, since we have that I(L(t0);L(t1)) = I(L(t0);L(t1)|D) for
a uniformly distributed dummy random variable D that is independent of the
leakages and taking values in {0, . . . , 255}, we can compute Î(L(t0);L(t1)) in a
way that resembles Eq. (9) and approximate it by

Î(L(t0);L(t1)|D) =

255
∑

d=0

P̂r(D = d)Î(L(t0);L(t1)|D = d) . (10)

This leads to equally (in-)accurate estimates for both terms in Eq. (8) and
the difference between them is mostly due to the effect of P.

To illustrate the effectiveness of step 2 we compute Î(L(t0);L(t1)|D) and

Î(L(t0);L(t1)|P) from 50 000 measurements using the same bin distributions for
both terms. We use this relatively large number of traces to present aesthetically
pleasant figures. Far less traces are sufficient for the method to work.

Figure 1 (left) shows a plot of the values of the first term of Eq. (8), i.e.

Î(L(t0);L(t1)) computed as Eq. (10), for t0, t1 ∈ {1, . . . , 800} and t0 6= t1. It
is obviously sufficient to compute the values only for t0 < t1 or t0 > t1. The
x- and y-axes both denote time. We plot a mean trace next to each of them
for orientation. The values of mutual information are represented by different
colors according to the color bar on the left side. We blank out most pairs of
time samples, those that yield small values of mutual information, by plotting
them in white. All pairs that yield mutual information values above a certain
threshold are plotted in black.

We can see that the locations of the pairs have a clear structure and could
possibly aid reverse-engineering of the implementation. Since we know the imple-
mentation, we can easily relate parts of the figure to operations: AddRoundKey
(approx. index 100 to 150), SubBytes (approx. index 200 to 300), remasking
(approx. 300 to 350), four parts of MixColumn (approx. index 350 to 500), Ad-
dRoundKey (approx. index 550 to 600), followed by SubBytes and remasking in
round two. These pairs are, however, not yet interesting pairs because it is not
clear if they can be exploited by an attack (see the discussion of Eqs. (3) and
(4)).
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Fig. 1. Left: Matrix of Î(L(t0);L(t1)) values. The color bar is in units of bits. A mean
trace is plotted next to the axes. Right: Above diagonal, ‘x’: 100 pairs of time samples
where a multivariate MIA attack succeeds. Below diagonal, ‘+’: 100 top ranked pairs
in the list of step 2.

Next, we rank the list of pairs according to the result of Eq. (8). The 100
top ranked pairs in the list, i.e. negative mutual information and large absolute
value, are depicted in the lower triangle of Figure 1 (right) with ‘+’ symbols.

For the sake of comparison, we include in the upper triangle of the figure the
100 pairs of time samples where a multivariate MIA attack on the third key byte
(using the Hamming weight leakage model on predicted S-box output values and
50 000 traces) achieves the largest nearest-rival distinguishing score [24], marked
with ‘x’ symbols.

The partial match between the upper and the lower triangular matrix serves
as a first visual evidence for the effectiveness of the method. In particular, the
method is able to identify pairs corresponding to both shares of the S-box output
of a specific state byte (here the third) without making any hypothesis about
the key.

5.4 Performance evaluation of step 2

This section details the performance of the proposed method in finding the
pairs that can be exploited for key recovery. Informally, we aim to decouple the
performance of the proposed method from the performance of the key recovery
attack itself, which is not the focus of this paper. To do so, we first define a
set of good pairs of time samples that can be attacked and then we analyze the
performance of the method in identifying good pairs among all possible pairs.

More precisely, we define sets of good pairs by running an attack on all
pairs using 50 000 measurements and retaining the 100 resp. 290 pairs that lead



to key recovery and have highest nearest-rival distinguishing score. Our choice
for the size of the sets is somewhat arbitrary. The idea is simply to define one
smaller set of very good pairs and a larger set that contains additional good
pairs with lower nearest-rival distinguishing score. Since different attacks may
favor different pairs, we define such sets for three cases: multivariate MIA on
the S-box output, Correlation Power Analysis (CPA) [3] with centered product
combination function [18] on the S-box output and CPA with same combination
function on the S-box input (all using the Hamming weight leakage model). In
total, we hence define six sets of good pairs.

Once the sets of good pairs are defined, we run step 2 parametrized by the
number of traces. For each number of traces, we repeat the run of step 2 on
100 randomly chosen sets of traces and, each time, keep the position of the best
ranked good pair in the list generated by step 2. In other words, we test the
pairs in descending order of their ranking (rank 1 is best) and stop as soon as a
pair is good. This ranking position is the minimum size of the list from step 2
required for step 3 to succeed in that particular run for a given attack technique.
Recall that, by definition, an attack on a good pair succeeds with a comfortable
nearest-rival distinguishing score (albeit the absolute margin for a CPA attack
on the S-box input is a lot smaller). We hence evaluate only the performance of
step 2.

The distributions of the ranks of the best ranked good pairs are shown as
boxplots in Fig. 2 (sets of 100 good pairs) and in Fig. 3 (sets of 290 good pairs).
For both figures, the used attack techniques are, from left to right: MIA S-box
output, CPA S-box output and CPA S-box input.

In the boxplots, the central mark is the median (2nd quartile) and the box
edges (solid) represent the 1st and the 3rd quartile. The whiskers (dashed) extend
to q3 + 1.5(q3 − q1) and q1 − 1.5(q3 − q1), where q1 and q3 are the 1st and 3rd

quartiles, respectively. Outliers are marked with ‘+’ symbols.
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Fig. 2. Distribution of the ranking of the first good pair in the list of step 2. Left to
right: MIA S-box output, CPA S-box output, CPA S-box input, hypothetical random
method. 100 good pairs.



For comparison, the rightmost boxplot in each figure shows the distribution
that a hypothetical method that ranks the pairs at random, instead of step 2,
would produce. These distributions are independent of an attack technique and
only relate to the number of good pairs among all pairs, here 100 resp. 290 out
ouf 800× 799/2 = 319 600.

One can observe that the proposed method begins to identify good pairs (i.e.
to perform better than a random guess) that are exploitable by multivariate MIA
or CPA attacks on the S-box output when 3 000 traces or more are available. As
the number of traces increases, the medians of the distributions become smaller,
i.e. good pairs move steadily toward the top of the list.

One can also observe that our method ranks good pairs for multivariate MIA
slightly higher than good pairs for CPA on the S-box output. On the other hand,
the method is not able to identify good pairs for a CPA attack on the S-box input
better than a random guess. We note that both behaviors are not a property of
our method but probably related to our test platform and the implementation.

In the case of larger lists of 290 good pairs, the previously made observations
mostly hold. As expected, the medians of the distributions are smaller than in
the case of 100 good pairs, simply because even a random guess becomes more
likely to succeed. In addition, we can observe that the method now ranks good
pairs for multivariate MIA and CPA on the S-box output almost equally well.
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Fig. 3. Distribution of the ranking of the first good pair in the list of step 2. Left to
right: MIA S-box output, CPA S-box output, CPA S-box input, hypothetical random
method. S sets containing 290 pairs.

5.5 Practical attacks

The above results highlight important properties of our method and demonstrate
that it is effective. In practice, one is however less interested in the exact rank of
the first good pair in the sorted list, and more interested in the success rate of
an attack end-to-end. This clearly involves the performance of our method and

the efficiency of the attack used in step 3.



Table 2 shows success rates for steps 2 and 3 together. First we use a given
number of randomly chosen traces to compute step 2. Then we attack the γ = 10
resp. 100 best ranked pairs with multivariate MIA, CPA on the S-box output
and CPA on the S-box input (as described before) in step 3, using the same
traces. We repeat this procedure 100 times. For the numbers in the first row
of the table, we considered an attack successful if the correct key leads to the
smallest correlation (or mutual information) value (negative sign and highest
absolute value), over all evaluated γ pairs. For the numbers in the second row
of the table, we additionally required the correct key to stand out at least by
a factor of 1.5 compared to the nearest rival (left) and by a factor of at least 2
(right).

Table 2. Success rates for steps 2 and 3 together, for several parameters: number of
traces, size γ of the list of step 2, key recovery attack.

Number of traces 2k 3k 4k 5k 10k 2k 3k 4k 5k 10k

MIA S-box output γ = 100 3 15 59 83 100 γ = 10 0 3 34 53 100
CPA S-box output 11 41 75 95 100 1 11 48 66 100
CPA S-box input 1 0 0 1 0 2 0 0 1 0

MIA S-box output γ = 10 0 2 15 35 100 γ = 10 0 0 7 17 90
CPA S-box output factor 1.5 0 3 28 52 98 factor 2 0 0 10 17 78
CPA S-box input 0 0 0 0 0 0 0 0 0 0

A first observation is that a CPA attack on the S-box input does not work in
our concrete scenarios. CPA attacks on the S-box output converge slightly faster
toward 100% success rate than multivariate MIA attacks on the S-box output.
We can further see that, given enough traces, both attacks in step 3 eventually
reach 100% success, even if we attack only the top ten pairs of step 2 and require
the correct key to stand out by a factor of at least 1.5. These results confirm
that the combination of steps 2 and 3 works in practice, and that step 2 is able
to identify exploitable pairs of time samples. Interestingly, one can further see
that multivariate MIA attacks on the S-box output have a small advantage over
CPA attacks on the S-box output, if we require the correct key to stand out by
a factor of at least 2.

5.6 Computational efficiency

In Tab. 3 we present empirical execution times for our implementations of the
proposed workflow (steps 2 and 3) and the strategy that uses exhaustive search
instead of step 2. Step 3 of the proposed workflow was performed with multi-
variate MIA on the S-box output (using the Hamming weight leakage model
and list size γ = 100). For the exhaustive search strategy we evaluated two vari-
ants: multivariate MIA on the S-box output (using the Hamming weight leakage
model) and CPA on the S-box output (with centered product preprocessing).



All implementations were executed on the same processor on a single core. We
note that the absolute execution times are heavily implementation-dependent
and thus relative speed-ups are more interesting, since they are less tied to the
particular implementation used.

Table 3. Empirical execution times for steps 2 and 3 (γ = 100) of the proposed
workflow and several attacks using exhaustive search.

Number of traces step 2 + step 3 Exhaustive search Improvement factor

5 000 2m30s + 2s MIA-HW 1h48m 43
CPA 2h 48m 68

50 000 10m24s + 19s MIA-HW 17h18m 97
CPA 23h32m 132

A first observation regarding Tab. 3 is the speed-up achieved by the proposed
workflow, compared to exhaustive search, when multivariate MIA is used for key
recovery. This is a directly interpretable result that corresponds to scenario (b)
in Sect. 4.1. The improvement factor in this case is of 43 when 5 000 and 97 when
50 000 traces are used, respectively. We observe that, for our implementations,
the factor β/α depends on the number of traces.

One can further see that, for our implementations, applying the proposed
workflow is even advantageous if exhaustive search is done with CPA. It achieves
an improvement factor of 68 in the running time of the attack when 5 000 traces
are used, and an improvement factor of 132 when 50 000 traces are used. However,
we stress that this result is not universally valid. The speed-ups are heavily
affected by the relative efficiency of our implementations of linear correlation
and mutual information estimation.

As a final observation concerning Tab. 3, we remark the validity of the ap-
proximation we made in Tab. 1: the running time of the proposed workflow is
dominated by step 2. Step 3 contributes at most 3% to the total running time
if the list size is γ = 100.

6 Conclusion

Multivariate DPA attacks can suffer from the effect known as “combinatorial
explosion” and hence combinatorial time complexity in the number of time sam-
ples that have to be exploited jointly. We presented a novel technique to identify
such interesting tuples of time samples before key recovery. Compared to previ-
ous work on this topic, our method is not heuristic but systematic and works in
black-box conditions using only known inputs (or outputs). Our technique can
lead to a substantial improvement in the computational efficiency of multivariate
attacks compared to exhaustive search over the same window of time samples,



since it retains only a small fraction of all possible tuples for key recovery. Our
approach is based on mutual information and is fully generic, i.e. it does not
require more restrictive assumptions than a generic MIA attack. Experimental
results based on power traces of a masked software implementation of the AES
confirm the effectiveness of the technique, highlight some of its interesting prop-
erties and attest attractive running time improvements. An aspect that is not
fully explored in this paper and left for future work is a thorough analysis of the
number of traces needed for the technique to work.
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