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Abstract. Algebraic side-channel attacks (ASCA) are a method of crypt-
analysis which allow performing key recoveries with very low data com-
plexity. In an ASCA, the side-channel leaks of a device under test (DUT)
are represented as a system of equations, and a machine solver is used
to find a key which satisfies these equations. A primary limitation of the
ASCA method is the way it tolerates errors. If the correct key is ex-
cluded from the system of equations due to noise in the measurements,
the attack will fail. On the other hand, if the DUT is described in a
more robust manner to better tolerate errors, the loss of information may
make computation time intractable. In this paper, we first show how this
robustness-information tradeoff can be simplified by using an optimizer,
which exploits the probability data output by a side-channel decoder,
instead of a standard SAT solver. For this purpose, we describe a way
of representing the leak equations as vectors of aposteriori probabilities,
enabling a natural integration of template attacks and ASCA. Next, we
put forward the applicability of ASCA against devices which do not con-
form to simple leakage models (e.g. based on the Hamming weight of the
manipulated data). We finally report on various experiments that illus-
trate the strengths and weaknesses of standard and optimizing solvers in
various settings, hence demonstrating the versatility of ASCA.

1 Introduction

In an algebraic side-channel attack (ASCA), the attacker is provided with a
device under test (DUT) which performs a cryptographic operation (e.g. en-
cryption). While performing this operation the device emits a measurable side-
channel leakage that is expected to be data dependent. A typical example of
such a leakage is a power consumption or electromagnetic radiation trace. As
a result of the data dependence, a certain amount of leaks is modulated into
the trace. These leaks are functions of the internal state of the DUT, which
can teach the attacker about intermediate computations at various stages of the
cryptographic operation. The trace, and its embedded leaks, are subjected to
some noise due to interference and to the limitations of the measurement setup
[15, §1.2]. In order to recover the secret key from a power trace using an ASCA,
the attacker generally performs different steps as we describe next.



1. In a first offline phase, the DUT is analyzed in order to identify the position
of the leaking operations in the traces, for instance by using classical side-
channel attacks like CPA [5] or template attacks [7].

2. Next, in a second offline phase, the DUT is profiled and a decoding process
is devised, in order to map between a single power trace and a vector of
leaks. A common output of the decoder would be the Hamming weight of
the processed data as in [18], but many other decoders are possible.

3. After the offline phase, the attacker is provided with a small number of power
traces (typically, a single trace). The traces are accompanied by auxiliary
information such as known plaintext and ciphertext. The decoding process
is applied to the power trace, and a vector of leaks is recovered. This vector
of leaks may contain some errors, e.g. due to the effect of noise.

4. The leak vector, together with a formal description of the algorithm imple-
mented in the DUT, is represented as a system of equations. This equation
set also includes any additional auxiliary information.

5. A machine solver evaluates the equation set and attempts to find a candidate
key satisfying it. In the case of an optimizing solver, a goal function is also
specified to define the optimality of each candidate solution. The solver may
fail to terminate in a tractable time, or otherwise return a candidate key.

6. Eventually, and optionally, some post-processing can be used, e.g. in order
to brute force the remaining key candidates provided by the solver.

As indicated in the above list, there are several conditions which must all hold
true before such an attack succeeds. First, the correct key should not be excluded
from the set of solutions to the equation system. This can happen if the traces
are too noisy, or if the decoder is not adapted to the attacked device. Next, the
solver should not run for an intractable time. This can happen if not enough
side-channel information is provided. Finally, the returned key should be the
correct key, or at least a key close enough to allow an efficient enumeration.

Related work. ASCA were introduced by Renauld et al. in [17,18], and first
applied to the block ciphers PRESENT [4] and AES [14]. These works showed
how keys can be recovered from a single measurement trace of these algorithms
implemented in an 8-bit microcontroller, provided that the attacker can identify
the Hamming weights of several intermediate computations during the encryp-
tion process. Already in these papers, it was observed that noise was the main
limiting factor for efficient ASCA. To mitigate this issue, a heuristic solution
was introduced in [18], and further elaborated in [22]. The main idea was to
adapt the leakage model in order to trade some loss of information for more
robustness, for example by grouping hard to distinguish Hamming weight values
together into sets. We will denote this approach as set-ASCA. Other improve-
ments regarding the error tolerance of ASCA have also been discussed in [13].
In parallel, an alternative proposal was introduced at CHES 2010, and denoted
as Tolerant ASCA (TASCA) [15]. Here, the idea was to include the imprecise
Hamming weights in the equation set, and to deal with these imprecisions via
the solver. The authors showed how leaking implementations of Keeloq [9] could
be attacked in this way, and recently extended their results to the AES case [16].



Our contribution. One primary limitation of the ASCA method lies in its
intolerance to errors: if the correct key is excluded from the system of equa-
tions, the attack will fail. This can be somehow mitigated by the robustness vs.
information tradeoff, but only up to a certain point, as the loss of too much
information makes the computation time intractable. In this work, we first show
how an optimizing solver can use probability data to retain the robustness re-
quired to be error-tolerant, while losing less information than a SAT solver,
at the cost of a larger problem representation. For this purpose, we describe a
novel way of describing measurement equations directly as vectors of aposteri-
ori probability, using the objective function of the optimizing solver. Next, we
discuss the generalization of ASCA from the case of Hamming weight leakages
to generic (template-based) models. We show that template attacks and ASCA
can be naturally integrated, both with standard solvers and optimizers. We ad-
ditionally provide experimental results allowing to put forward the strengths and
weaknesses of the newly proposed probabilistic TASCA and set-ASCA. Overall,
the resulting attacks allow strongly reduced data complexity template attacks,
when compared to standard divide-and-conquer key recovery attacks.

Document structure. The rest of this paper is organized as follows. Section 2
describes our experimental setup. Section 3 discusses how to exploit probabilistic
information in TASCA and evaluates the performances of this improved attack,
compared to set-ASCA and the original TASCA. Section 4 investigates attacks
against a device that does not leak according to the well-known Hamming weight
leakage model. Finally, concluding remarks are given in Section 5.

2 Experimental setup

Our analysis considers two simulated implementations of the AES Rijndael in
8-bit microcontrollers as DUT. We assumed that no leaks from the key expan-
sion process are available to the solver and that the DUT performs round key
expansion in advance. This corresponds to a more challenging scenario, as it was
established in [10] that the Hamming weights leaked from an 8-bit microcon-
troller implementation of the AES during key expansion are sufficient for full
key recovery, even without any additional state information. We also assumed
that the plaintext and the ciphertext are known to the attacker. We finally ex-
ploited the information the device leaks about the 8-bit operands commuting on
its data bus. In total, it corresponds to 100 values per round, as described below:

– The AddRoundKey operation leaks information about the 16 state bytes
after the XOR with the key, as well as information about the key bytes
themselves, giving a total of 32 leaks per round.

– The SubBytes operation is implemented as a look-up table (LUT) and leaks
information about its 16 output state bytes (and not any other internal state
information), for a total of 16 leaks per round.

– The ShiftRows operation does not leak any information.



– The MixColumns operation is implemented using 8-bit XTIME and XOR
operations as specified in [8, §5.1], and leaks 36 additional bytes of internal
state and 16 leaks for its final state, resulting in a total of 52 leaks per round.

Note that the optimizer we used to perform TASCA was not memory-efficient
enough to represent the entire AES encryption in equation form. As a result, we
provided it with a known plaintext and the cipher equations for the first round
of encryption only. By contrast, the SAT solver was provided with a plaintext/
ciphertext pair, and all the cipher equations. In order to have comparable ex-
periments, we only exploited the 100 first round leakages, in both cases.

Regarding the leakage models, we considered two different scenarios. First,
we used the templates obtained from a PIC microcontroller. As illustrated in
Figure 1, this device closely follows a Hamming weight leakage model. Next, we
used the templates obtained from the AES S-box implemented in a 65-nanometer
CMOS technology, previously analyzed in [19]. In particular, we selected one of
the S-boxes for which the leakage model is not correlated with the Hamming
weight of the manipulated data, as illustrated in Figure 2. In both cases, the
signal-to-noise ratio was similar and relatively high (with the variance of the
signal approximately 10 times larger than the noise variance), yet leading to
some decoding errors, as will be investigated next. These setups were selected in
order to illustrate the efficiency of ASCA in different implementation contexts.

Fig. 1: PIC leakage model: average values (left) and grouped by HWs (right).

The solver used for the TASCA experiments was SCIP version 1.2.0 compiled
for Windows 64-bit [3]. This solver is currently the best non-commercial solver
available for non-linear optimization problems, as listed by [12]. The solver was
run on a quad-core Intel Core i7 950, running at 3.06GHz with 8MB cache. For
the set-ASCA experiments we used CryptoMiniSAT 2.9 [21]. This solver won
several prizes in SAT competitions (SAT Race 2010 [20] and SAT competition
2011 [1]) and is well adapted to deal with cryptographic problems, as XOR
operations (very frequent in cryptographic algorithms) are managed by the solver
using specific optimized clauses. The solver was run on on a quad-core Intel Core
Intel Xeon X5550 processor, running at 2.67 GHz with 8MB cache.



Fig. 2: 65nm S-box leakage model: average values (left) and grouped by HWs
(right).

Finally, we note that because of the previously mentioned memory limitation
issue, the success condition is defined differently for set-ASCA and TASCA.
In the set-ASCA scenario, the entire encryption operation is included in the
equation set, meaning that the solver either outputs the correct key or otherwise
runs for an intractable time. By contrast, the TASCA solver only exploits the
first round equations and, therefore, can sometimes return an incorrect key. We
deal with this condition by measuring the amount of incorrect bytes in the result
– if 4 bytes or less are incorrect, we assume that the correct key can be recovered
from this partially correct key by brute force3 and declare success. We also recall
that the amount of leaks exploited (i.e. 100) was the same in all our experiments.

3 Exploiting probabilistic information

As stated in the previous section, in an ASCA the attacker takes the output
of a decoding process and converts it into a series of measurement equations.
An example for such a decoding process would be a nearest neighbor decoder,
a näıve Bayes decoder [11, §13.2] or a template decoder [7]. In most cases this
decoder does not only output “hard” data (i.e. the most likely leak value) but also
some additional “soft” information, such as confidence information, a ranking of
several possible leaks by decreasing order of likelihood or, most generally, a full
vector listing the aposteriori probability for each possible leak value, conditioned
3 Assume that e of the 16 bytes are incorrect. The attacker must go over all(16

e

)
≈ 24e/e! possible locations for those errored bytes, then try 256e = 28e pos-

sible candidate assignments for these positions, resulting in an approximate total
effort of 24e · 28e = 212e AES operations. Most modern Intel CPUs have a native
implementation of AES (AES-NI), which allows a sustained rate of more than 231

AES operations per second [2]. Thus, an attacker can use a single machine with an
AES-NI implementation to probe the neighborhood of a candidate key and find the
correct key within less than 24 hours, even if 4 of the 16 bytes are incorrect.



on the received trace. In this section, we discuss an improvement of TASCA
which is capable of taking advantage of this soft (probabilistic) information.

For this purpose, let us start from the standard scenario of a Hamming
weight-based ASCA. In this context, the tradeoff between robustness and infor-
mation is generally achieved by choice of the set size k. It defines the number
of acceptable values for each individual side-channel leak in the equation set,
relative to the apriori selection of a leakage model (e.g. the Hamming weight of
the manipulated data). The value of k can be either determined as a global con-
stant for all equations in the set (e.g. as in [16,18]), or determined on a per-leak
basis according to some heuristic (e.g. as in [13,22] ). In the case of a precisely-
defined equation set, in which k = 1, only the most likely value output by the
decoder is accepted. This representation provides the most information, but it
cannot tolerate any errors. As the set size k grows, so does the robustness of the
equation set, but this comes at the price of a loss of information. The original
work on ASCA [17] investigated only the case of k = 1. Thus, the single value
chosen as most likely by the decoder was entered into the equation set. In the
set-ASCA experiments of [13,18,22], more than one value was listed as possible
to the solver, sacrificing information for robustness against errors. In this case,
each leakage equation would accept the k most likely values, as output by the
decoder. The TASCA attack of [16] also uses a set, and additionally uses a goal
function to mark one of the value in the set as likelier than the others, without
further quantification of this likelihood. This representation is more informative
than in a set-ASCA, but it still does not fully take advantage of the information
provided by the decoder.

We now present a more expressive way of representing the probability infor-
mation provided by the decoding phase. In the most general case, the decoder
outputs a full probability vector for each leak, listing the aposteriori probability
of the leak having each possible value, conditioned on the specific trace being
received. This output is typical for e.g. template decoders [7]. In the case of a
Hamming weight-based template decoder, each potential leak will have an asso-
ciated vector of 9 aposteriori probabilities corresponding to Hamming weights 0
to 8. If we further assume that individual leaks are uncorrelated, then the com-
bined probability of all leaks in the trace is proportional to the product of the
individual aposteriori probabilities. Of course, most of these combinations are
impossible, since they violate the cipher equations. The goal of the solver in this
case would be to find the set of leaks that maximizes the product of aposteriori
probabilities while still corresponding to a valid encryption. As shown in [18],
the exact values of the Hamming weight leaks provide enough information to
uniquely and efficiently find the correct key of an AES encryption. If we define
the exact value of leak i as xi, we can define the objective of the attack as:

x1 · · ·xm = arg max
x1···xm

∏
i=1···m

Pr(xi|trace) s.t. cipher eq’ns are satisfied.



Since the goal function of the SCIP solver is expressed as a sum of integers which
must be minimized, we represent the objective using this equivalent expression:

x1 · · ·xm = arg min
x1···xm

∑
i=1···m

− log (Pr(xi|trace)) s.t. cipher eq’ns are satisfied.

The representation of a probability vector px for a certain leaked Hamming
weight x with set size k as a side-channel leak equation is thus split into two parts:
the constraint set and the goal term. The constraint set is very straightforward –
it considers k different events called “HW(x) is 0”, “HW(x) is 1”, etc., describes
each event in terms of the relevant combination of bits in the leaked byte, and
finally requires that one and only one of these events be true in for each leak in
a satisfiable solution. The goal term matches each event with a corresponding
probability. Each probability p is represented in the goal term as −bC log pc,
where C is an implementation parameter. The goal terms of all leaks in the
system are then summed together to create the global goal function.

3.1 Experimental Validation

In order to compare set-ASCA, basic TASCA and TASCA with probabilities
in the Hamming weight leakage model, we designed a first set of experiments,
based on simulated leakages from the PIC device illustrated in Figure 1. For
each experiment, we list the decoding success rate – the proportion of traces for
which all 100 correct leaks are included in the 100 k-sized sets provided by the
decoder – and the key recovery success rate – the proportion of traces for which
the solver returned the correct key within a reasonable time. We also report
on the (median and maximum) solving time and show the average number of
correct key bytes in case of successful attacks. For set-ASCA, both the plaintext
and ciphertext are included in the equation system, meaning that an attack can
only succeed when every 16 key bytes are correct. On the other hand, in TASCA
instances only the plaintext is used, meaning that when the set size increases,
several keys can be valid according to the algebraic representation. In this latter
case the average number of correct key bytes can be below 16. As explained in
Section 2, the attack is still considered successful when at least 12 out of the 16
key bytes are correct. Our results are summarised in Table 1.

These experiments lead to a number of interesting observations. First and
as expected, they clearly illustrate the information vs. robustness tradeoff. That
is, the probability of decoding success grows as the set size grows (better ro-
bustness). However, this impacts the performances of the different attacks in
different manners. For set-ASCA, the solving time quickly increases to the point
of intractability, because of a lack of information. By contrast, the basic TASCA
are more resistant to the loss of information: as the set size grows the running
time increases, but the key recovery probability is much less affected. Yet, the
limited information available to the solver causes parts of the key to be recov-
ered incorrectly in some cases, which then requires an additional brute forcing
step. Combining probabilistic information with a set size of 3 finally allowed the



attack set
size

decoding
success

key rec.
success

med. solving
time

max. solving
time

# of correct
key bytes

set-ASCA 1 0% 0% N/A N/A N/A
set-ASCA 2 83% 83% 2 seconds 6 seconds 16
set-ASCA 3 100% 0% 24+ hours 24+ hours N/A

basic TASCA 1 0% 0% N/A N/A N/A
basic TASCA 2 83% 75% 43.7 minutes 11.8 hours 14.48
basic TASCA 3 100% 80% 16.8 hours 66 hours 13.25
prob. TASCA 1 0% 0% N/A N/A N/A
prob. TASCA 2 83% 82% 56.7 minutes 10.07 hours 15.88
prob. TASCA 3 100% 100% 8.2 hours 143 hours 16

Table 1: set-ASCA, basic TASCA and probabilistic TASCA experimental re-
sults against the PIC microcontroller simulated leakages with Hamming Weight
model.

optimizer to recover the correct key in virtually all experiments. It also reduced
the running time compared to the basic TASCA. Yet, both TASCA approaches
are still much slower than the set-ASCA approach when it succeeds (e.g. for
set sizes k ≤ 2), due to the more complex design of the optimizer. This is also
reflected by the larger memory requirements of the TASCA solving phase.

Summarizing, the TASCA approaches allow improved flexibility as they sys-
tematically deal with the information vs. robustness tradeoff during the solving
phase. By contrast, set-ASCA shift this problem to the decoder phase. In case of
low-noise scenarios, or whenever the adversary can average the measurements,
set-ASCA is the method of choice because of its reduced memory requirements
and solving times. It also allows exploiting all the leaks (i.e. not only the first
round ones). By contrast, the more the measurements are noisy and/or hard
to interpret by the adversary (e.g. because of countermeasures), the more the
TASCA approaches becomes interesting, thanks to its optimizing features.

4 Beyond the Hamming weight model

As illustrated in Section 2, Figure 2, the leakage of certain devices (e.g. in 65nm
and smaller technologies) cannot always be precisely expressed with simple mod-
els. As a result, it is interesting to investigate how ASCA/TASCA can be ex-
tended towards these more challenging scenarios. In this section, we show how
to move from Hamming weight-based models to more generic ones.

For this purpose, let us assume that the attacker has performed template-
based profiling of the DUT [7]. Given a power trace, the he can now create a
probability vector for each leak, where each entry in this vector matches a certain
possible leak value, and each value in the vector is the aposteriori probability of
this leak conditioned on the power trace being processed. Assuming the DUT has



an 8-bit architecture, each such vector contains 256 entries. The decoding process
will output a number of such vectors – one for every leak in the equation set. As
for the Hamming weight model, we use this side-channel information to restrict
the size of the solution space. In order to do so, we define a parameter called the
support size k′, which is comparable (though not identical) to the set size k in
the previous section. It corresponds to the amount of possible values associated
to each leak. These values are chosen according to the probability vector: the k′
most probable values are considered possible, and the others are rejected. Hence,
the value of k′ must be carefully chosen in order to avoid rejecting the correct
value from the set of possible ones, making the problem unsolvable.

Representing this generic leakage model as clauses or equations is less easy
than for the Hamming weight model. For the set-ASCA, the easiest way to
represent a set of k′ possible values for a leaked byte x is to exclude all impossible
values. For example, in order to exclude the value x = 9 ⇔ (x0, ..., x7) =
(0, 0, 0, 0, 1, 0, 0, 1), we add to the SAT problem the clause (x0 ∪ x1 ∪ x2 ∪ x3 ∪
−x4∪x5∪x6∪−x7). Each set of k′ possible values is thus translated into 256−k′
clauses with 8 literals per clause. In order to speed up the solving process, we
additionally apply some simplification techniques, e.g. reducing the length and
number of closes. For the TASCA, the representation of a probability vector px

for a certain leaked byte x with support size k′ as a side-channel leak equation is
again split into two parts: the constraint set and the goal term. The constraint
set describes k′ different events called “x is 0”, “x is 1”, etc., and requires that
one and only one of these events is true for each leak. The goal term matches
each event with a corresponding probability. An example of such a representation
can be found in Appendix A. Since this representation is especially suited for
template-based profiling, we call it template TASCA and set-ASCA.

4.1 Impact of the support size and goal function

A first natural question in this new setting is: how small must the support size
be for the attacks to succeed, and what is the impact of the probabilistic in-
formation that can be added to the optimizer? To answer it, we designed an
experiment in which we compared many pairs of template-TASCA instances of
single-round AES with different support sizes. In each pair, one of the instances
was provided with an unweighted probability vector (that is, all nonzero ele-
ments in the probability vector are considered of equal probability), while the
other was provided with a weighted vector function. The latter one was simu-
lated (independent of any actual leakage model) such that the single correct byte
value always had a higher probability than all the other ones in the support. For
the rest, the instances were identical, with only plaintext provided, such that
the solver could potentially output an incorrect key as in the previous section.

The results of this experiment are illustrated in Figure 3. As we can see,
they can be divided into four distinct phases. In the first phase (support sizes up
to 10), the performance of the weighted and unweighted instances is identical,
probably because enough information is available in the support of the function,
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Fig. 3: Template-TASCA attacks with weighted (solid line) and unweighted
(dashed line) probability vectors: experimental running time and success rate.

making the additional information in the goal function redundant. In the second
phase (support sizes 10 – 50) both the weighted and the unweighted instances
end in successful key recovery, but the weighted instances are faster by two
orders of magnitude. We see that in this range there is still enough information
in the unweighted instances to precisely specify the correct key, but the added
information of the goal function allows the optimizer to reach the correct answer
more quickly. In the third phase (support sizes 50 – 70) the success rate of the
unweighted instances slowly falls to 0, probably because more and more incorrect
keys can satisfy the constraint set. However, the additional information in the
goal function causes the optimizer to prefer the likeliest solution, which in our
case was the correct one. Finally, in the fourth phase (support sizes 70 and up)
the large amount of possible keys in the support makes the success rate of the
unweighted instances marginally small. Note that even with a full support (k′ =
256) the performance was still good. This implies that all information about the
instances can be encoded into the goal function and not into the constraints,
and thus that the correct key will never be excluded from the equation set.

Furthermore, it could be argued that the running time of the weighted tem-
plates is faster than that of the unweighted ones because the correct guess is
always the highest ranked. To investigate this scenario, we repeated the same
experiment, this time setting the rank of the correct key candidate to 2. The
change in rank caused the running time of the weighted case to increase, but
had no effect on the success rate. We verified this behavior for ranks of up to 14.



attack set
size

dec. SR key rec.
SR

med. solving
time

max. solving
time

# of correct
key bytes

set-ASCA 64 15.5% 15.5% 2 sec. 2 sec. 16
set-ASCA 90 90% 90% 265 sec. 24+ hours 16
set-ASCA 100 100% 29% 24+ hours 24+ hours 16

prob. TASCA 64 15.5% 15.5% 35.88 sec. 86.03 sec. 16
prob. TASCA 90 90% 90% 245.72 sec. 869.4 sec. 16
prob. TASCA 100 100% 100% 342.76 sec. 21271 sec. 16
prob. TASCA 256 100% 100% 62254 sec. 48+ hours 16

Table 2: Template set-ASCA and probabilistic TASCA experimental results
against simulated leakages from a 65nm S-box, with generic template model.

4.2 Experimental validation

As in the previous section, we verified the effectiveness of our attacks by perform-
ing several experiments. This time, we considered a DUT where the simulated
leakages are generated according to the model of the 65nm ASIC implementing
one AES S-box presented in Section 2. As illustrated in Figure 2, the leakage
function of this device is very different from the Hamming weight model. Thus, it
constitutes a perfect target for our template-based set-ASCA and TASCA. In a
first step, we profiled the AES S-box, resulting in 256 templates corresponding to
the 256 possible transition values. Each univariate template assumes a Gaussian
noise and was characterized by a mean value µ and a noise standard deviation
σ. In a second step, we used Bayesian inversion to simulate the classification
probability Pr (xi|trace) from the template output Pr (trace|xi).

The results of the attacks are summarized in Table 2, where we selected
different support sizes k′. As expected, smaller support sizes lead to more un-
satisfiable/unsolvable problems, but these problems are solved faster, meaning
a higher success rate for the computation phase. As soon as k′ ≥ 100, all the
problems are solvable, but the solving process becomes much longer. We com-
pared two attacks: the set-ASCA and the probabilistic TASCA. Both essentially
confirmed our previous observations. Namely, the set-ASCA instances are very
fast to solve for low support sizes, but suddenly increase in difficulty between
k′ = 90 and k′ = 100. By comparison, probabilistic TASCA instances for low
support sizes are much slower to solve than set-ASCA ones. Nevertheless, the
difficulty of solving TASCA instances increases slower than for set-ASCA ones.
In the end, probabilistic TASCA is able to solve problems with support size
k′ = 256, which is totally infeasible for set-ASCA (as k′ = 256 means no side-
channel information for set-ASCA instances). Summarizing, we again observe a
tradeoff between efficiency (set-ASCA) and flexibility (probabilistic TASCA).

Besides, Table 3 presents a comparison of the Hamming weight model and
the template model in terms of set size and support size. For each set size, i.e.
for each number of possible Hamming weight values, the table details the cor-
responding average support size k̄′ and the minimum and maximum support
sizes k′min and k′max. For instance if k = 2, the two consecutive Hamming weight



values HW(x) = {0 or 1} correspond to k′min = 9 possible transition values out
of 256. Similarly, the two Hamming weight values HW(x) = {3 or 4} correspond
to k′max = 126 possible transition values out of 256. On average, a leak that is
represented by a set of 2 possible Hamming weight values can also be repre-
sented by a set of k̄′ = 95 possible transition values. Contrarily to the attacks
using the template model where the support size is the same for every leak, the
attacks using the Hamming weight model present different support sizes. There-
fore, some sets of Hamming weight values offer more information than others. In
other words, the Hamming weight information is not uniformly distributed over
the 100 considered leaks in the first AES round. This table allows us to compare
and better understand the results from Table 1 and Table 2. For example, we
observe that solving set-ASCA problems with the Hamming weight model for
set size k = 2 takes about 2 seconds, while solving set-ASCA problems with the
template model for a similar support size k′ = 90 takes more than 250 seconds.
Hence, set-ASCA seems to take advantage of the non-uniform information pro-
posed by the Hamming weight model. This confirms observations already made
in [6]: the SAT solver usually exploits small parts of the equation system where
the information is most concentrated. Interestingly, the same is not true for prob-
abilistic TASCA: template instances with support size 90 or 100 are faster to
solve than Hamming weight instances with set size 2. Our hypothesis is that for
probabilistic TASCA, the goal function contains more information when using
the template model than the Hamming weight model, as the Hamming weight
model does not make any distinction between different transition values with
the same weight. As a consequence, the advantage offered by non-uniform infor-
mation is counterbalanced by a less informative goal function.

Set size k k̄′ k′
min k′

max

1 50 1 70
2 95 9 126
3 134 37 186

Table 3: Comparison between set sizes (Hamming weight model) and corre-
sponding average k̄′, minimum k′min and maximum k′max support sizes (template
model).

5 Concluding remarks

In this paper we showed how both optimizers and solvers can be used to perform
ASCA even if the leakage function does not conform to the Hamming weight
model. The solver-based approach (set-ASCA) was shown to be faster than the
optimizer-based approach (TASCA) when a high degree of robustness is not re-
quired (for example, if the traces can be preprocessed by averaging many traces).
However, in cases when robustness is required, the optimizer approach was shown
to be both faster and with higher success rate than the solver-based approach.
This is due to the additional flexibility afforded by the optimizer goal function,



which allowed us to construct a generic representation of the measured leak as a
vector of aposteriori probabilities. The new flexible representation presented in
this paper allows TASCA and set-ASCA attacks to be used as a natural match
for template attacks. To carry out a combined Template-TASCA or Template-
set-ASCA, the attacker should not only create templates for the original key
bytes, but also for all intermediate values. The solver step will then replace any
traditional post-processing step used in template attacks such as brute-force key
enumeration. As a result, we further illustrated how an ASCA can be used ef-
fectively as a post-processing step of a template attack, dramatically reducing
its data complexity. We believe that attention should be given to this capability
when evaluating the security of systems using template attacks.

Future work. Optimizers are less efficient than solvers in terms of running
time, but since a solver does not have any efficient way of representing the
objective function which contains the aposteriori probabilities, its running time
quickly becomes intractable when high robustness is desired. It may be possible
to increase the robustness of the solver-based approach by finding a better way
of choosing the set size k or support size k′. For example, instead of choosing the
k′ most likely value, the solver can set a threshold probability and include in its
support all values with a higher probability than this threshold. The solver might
also be used in an adaptive manner - slowly increasing the support size while the
solver returns unsatisfiability, until we reach the minimal sized support for which
a solution exists. Quite naturally, the opposite approach would be interesting too.
Namely, the search for improved optimizers, allowing to represent more complex
problems with reduced memory efficiency would be another way to close the
gap between set-ASCA and TASCA. Finally, it would be interesting to carefully
investigate the connection between the offline and online phases of a template
attack on the success of template-TASCA and template set-ASCA. A better
model obtained through better profiling in the offline phase should intuitively
allow the use of lower-quality data in the online attack phase, and vice versa.
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A Appendix: A Sample Template-TASCA Instance

The appendix demonstrates the format of leak equations used in a Template-
TASCA attack, following the notation introduced in Subsection 4. The equations
are given in the OPB format supported by the SCIP solver [3].

Assume that during the cryptographic operation the DUT processes two
bytes x and y. Using a template profiling step, the attacker creates a model
of the leakages produced by the processing of x and y. Given a trace, the at-
tacker can now use this information to calculate vectors of aposterioti proba-
bilities for x and for y (px, py), conditioned on the specific trace having been
received. The support size has been set to k′ = 4. The vectors passed to the
solver are px = { 1

2 ,
1
3 ,

1
12 ,

1
12 , 0 · · · 0}, py = { 1

5 ,
1
5 ,

1
5 , 0, 0,

2
5 , 0 · · · 0} . The attacker

also chooses the implementation parameter C = 10 to efficiently capture the
probability information while limiting the ultimate size of the goal term. The
attacker then uses the aposteriori probability vectors to generate the following
equations:

∗ Leak Equations :
+1 ˜ x i s 0 0 +1 ˜ x 0 ˜ x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 ˜ x i s 0 1 +1 x 0 ˜ x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 ˜ x i s 0 2 +1 ˜ x 0 x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 ˜ x i s 0 3 +1 x 0 x 1 ˜ x 2 ˜ x 3 ˜ x 4 ˜ x 5 ˜ x 6 ˜ x 7 = 1 ;
+1 x i s 0 0 +1 x i s 0 1 +1 x i s 0 2 +1 x i s 0 3 = 1 ;

+1 ˜ y i s 0 0 +1 ˜ y 0 ˜ y 1 ˜ y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 ˜ y i s 0 1 +1 y 0 ˜ y 1 ˜ y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 ˜ y i s 0 2 +1 ˜ y 0 y 1 ˜ y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 ˜ y i s 0 5 +1 y 0 ˜ y 1 y 2 ˜ y 3 ˜ y 4 ˜ y 5 ˜ y 6 ˜ y 7 = 1 ;
+1 y i s 0 0 +1 y i s 0 1 +1 y i s 0 2 +1 y i s 0 5 = 1 ;

∗ Goal term :
min : +6 x i s 0 0 +10 x i s 0 1 +24 x i s 0 2 +24 x i s 0 3 . . .

+16 y i s 0 0 +16 y i s 0 1 +16 y i s 0 2 +9 y i s 0 5 ;

In addition to these leak equations, the instance will also contain additional
equations which describe the cryptographic meaning of the variables x and y,
as well as equations which capture the auxiliary information available to the
attacker (such as known plaintext).
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