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Abstract. A large number of secret key cryptographic algorithms com-
bine Boolean and arithmetic instructions. To protect such algorithms
against first order side channel analysis, it is necessary to perform conver-
sions between Boolean masking and arithmetic masking. Louis Goubin
proposed in [7] an efficient method to convert from Boolean to arith-
metic masking. However the conversion method he also proposed in [7]
to switch from arithmetic to Boolean is less efficient and could be a bot-
tleneck in some implementations. Two faster methods were proposed in
[3] and [11], both using precomputed tables. We show in this paper that
the algorithm in [3] is bugged, and propose an efficient correction. Then,
we propose an alternative to the algorithm in [11] with a valuable tim-
ing/memory tradeoff. This new method offers better security in practice
and is well adapted for 8-bit architectures in terms of time performance
(3.3 times faster than Goubin’s algorithm for one single conversion).

Key Words: side channel analysis, differential power analysis, Boolean
masking, arithmetic masking, conversion from arithmetic to Boolean mask-
ing.

1 Introduction

In 1999, the concept of Differential Power Analysis (DPA) was intro-
duced in [9] by Paul Kocher. It consists in retrieving information about
the secret key of an algorithm by analyzing the power consumption curves
generated by the device in which the algorithm is implemented, during
its execution. It was extended to some other techniques like CPA (Cor-
relation Power Analysis), and EMA (Electromagnetic Analysis), based
on similar principles. All these attacks relying on physical leakage of an
electronic device are more generically called side channel analysis.

Countermeasures were soon developed to thwart these attacks. The
most commonly used method, initially proposed in [2] and [8], consists in
splitting all key-dependant intermediate variables processed during the
execution of the algorithm into several shares. The value of each share,
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considered independently from the other ones, is randomly distributed
and independent of the value of the secret key: thefefore, the power leak-
age of one share does not reveal any secret information. It is shown in [2]
that the number of power curves needed to mount an attack grows expo-
nentially with the number of shares. When only two shares are used, the
method comes to masking all intermediate data with random. In this case
it is said that the implementation is protected against first order DPA.
For algorithms that combine Boolean and arithmetic operations, two dif-
ferent kinds of masking must be used: Boolean masking and arithmetic
masking. A large number of algorithms have this property: all software
oriented finalists of the eSTREAM stream cipher competition [5], some
other stream ciphers like Snow 2.0 [4] and Snow 3G, the block cipher
IDEA [10], and several hash function designs used for HMAC construc-
tions. The security of DPA-protected implementations of such ciphers
strongly depends on the security of conversions between arithmetic and
Boolean masking in both directions.

Two secure conversion algorithms (one for each direction) were pro-
posed by Goubin in [7], but the arithmetic to Boolean method of [7] is
quite slow and can be a bottleneck in some implementations. Then a sec-
ond arithmetic to Boolean algorithm using two precomputed tables was
proposed by Jean-Sébastien Coron and Alexei Tchulkine in [3]. Finally,
an extension of the method of [3] was proposed by Olaf Neiße and Jürgen
Pulkus in [11], allowing to reduce memory consumption.

In this paper we first recall the mechanisms of these three methods,
showing that the Coron-Tchulkine algorithm is not correct in most cases.
Then we propose a modification of Coron-Tchulkine’s algorithm, correct-
ing the bug and improving time performance. We also propose a new fast
and secure arithmetic to Boolean conversion technique. Finally we give
some performance comparisons between all methods.

2 Definitions and previous work

The masking technique introduced in [2] and [8] consists in splitting each
intermediate variable that appears in the cryptographic algorithm, using
a secret sharing scheme. Therefore, an attacker must analyze multiple
point distributions, which requires a number of power curves exponential
in the number of shares. To protect implementations against first order
DPA, this technique has to be applied with two shares.
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For algorithms that combine Boolean and arithmetic functions, two
kinds of masking are used:

1. Boolean masking : x′ = x⊕ r
2. Arithmetic masking : x′ = x− r mod 2K .

Here ⊕ is the exclusive or. The variable x refers to the secret intermediate
data, r to the random value used to obtain the masked data x′, these three
data having size K.

The conversion algoritms from one masking to another must also be
secure against side channel analysis. This means that all intermediate
variables must be independent of the secret data.

2.1 First secure method

In [7] Louis Goubin proposed an efficient method to convert a Boolean
masking into an arithmetic masking, relying on the fact that the function
fx′(r) = (x′ ⊕ r)− r is affine in r over the field with two elements.

An algorithm converting from arithmetic to Boolean masking was also
proposed in [7], based on the following recursion formula:

(A+ r)⊕ r = uK−1, where:

{
u0 = 0,
∀k ≥ 0, uk+1 = 2[uk ∧ (A⊕ r)⊕ (A ∧ r)].

But this method is less efficient than from Boolean to arithmetic, as
the number of operations is linear in the size of the intermediate data.

2.2 Coron-Tchulkine method

In [3], Jean-Sébastien Coron and Alexei Tchulkine proposed a second
method to convert from arithmetic to Boolean masking. This method is
based on the use of two precomputed tables. Let us recall its principle:
two tables G and C are generated during the precomputation phase of the
algorithm. Both tables have size 2k, where k is the size of the processed
data; the value of k is typically 4 or 8. For example if k = 4, a 32-bit
variable is divided into 8 nibbles: the algorithm works then in 8 steps,
each step processing one nibble of the 32-bit variable. Table G converts a
nibble from arithmetic to Boolean masking, while Table C manages car-
ries coming from the modular addition. Indeed, let us consider a masked
data x′ splitted into n nibbles x′n−1||...||x′i||...||x′0 : each value xi = x′i + r
can be possibly more than 2k. In this case the carry must be added to
the nibble x′i+1 before its conversion. As the carry value is correlated to
the secret data, it must be masked. Therefore, for each input x′i, the table
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C outputs the carry value c masked by the addition of a random k-bit
value γ. Both Tables G and C can be described as follows:

Algorithm 2.1: Precomputation of tables

Table G generation

Input: a nibble size k
1. Generate a random k-bit r

2. For A = 0 to 2k − 1 do

G[A] = (A+ r)⊕ r
3. Output G and r.

Table C generation

Input: a k-bit value r.
1. Generate a random k-bit γ

2. For A = 0 to 2k − 1 do

C[A] ←
{
γ, if A+ r < 2k

γ + 1 mod 2k, if A+ r ≥ 2k

3. Output C and γ.

Finally the conversion phase can be described by the following algorithm,
where the symbol || means concatenation:

Algorithm 2.2: Conversion of a (n · k)-bit variable

Input: (A,R) such that x = A+R mod 2n·k

and r, γ generated during precomputation phase
1. For i = 0 to n− 1 do
2. Split A into Ah||Al and R into Rh||Rl such that

Al and Rl have size k

3. A← A− r mod 2(n−i)·k

4. A← A+Rl mod 2(n−i)·k

5. if i < n− 1 do

6. Ah ← Ah + C[Al] mod 2(n−i−1)·k

7. Ah ← Ah − γ mod 2(n−i−1)·k

8. x′i ← G[Al]⊕Rl

9. x′i ← x′i ⊕ r
10. A← Ah and R← Rh

11. Output x′ = x′n−1||...||x′i||...||x′0

Let us specify that the value Ah and Al are updated at the same time
as A: the value A is splitted into Ah and Al throughout all the algorithm.
This remark is true for all conversion algorithms of this paper.

But this algorithm is actually not correct in case n > 2. Indeed, let
us suppose that the following propositions are true together:

1. n > 2,
2. γ takes the value 2k − 1,
3. The carry equals 1.

Then in the first iteration of the loop of Algorithm 2.2 (i.e. when i = 0),
the size of Ah is greater than k. In this case the value Ah + C[Al] − γ
does not equal Ah + 1. Thus the table C generation must be modified to
obtain an algorithm outputting always the correct value.

In Section 3, we propose a method combining correction and time
performance improvement of Coron-Tchulking method.
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2.3 Neiße-Pulkus method

A third method was proposed in 2004 by Olaf Neiße and Jürgen Pulkus
in [11]. As Coron-Tchulkine algorithm, it is based on the precomputation
of tables. The principle is first to store the values of each possible nibble
updated in the new masking mode in a 2k-entry table, as Table G of
Section 2.2. The carry is also stored in a 2k-entry table C, but contrary
to Coron-Tchulkine method, it is here stored unmasked. Tables G and C
can be possibly combined in one table to reduce RAM space requirements.

The carry is masked during conversion step by the fact that sometimes
the direct value of the intermediate variable is processed and sometimes
its complement is processed. A random bit z generated at the beginning
of each conversion step decides if the complement is used or not.

The method is based on the fact that, for any l-bit value x and its
complement x̄, the equation x + x̄ + 1 = 2l holds. Thus for a bit z, if x̃
denotes x when z = 0, and x̄ when z = 1, we obtain x̃ = x − z mod 2l.
And for two l-bit values x1 and x2 it can easily proved that x̃1 + x2 =
x̃1 + x̃2 + z mod 2l.

Let us take the notations of Section 2.2 (Algorithm 2.2): a random
k-bit mask r used as input and output mask of Table G, and (A,R) such
that x = A+R mod 2n·k. Then x̃− (r|| · · · ||r) = Ã+ R̃− (r|| · · · ||r) + z,
where each nibble of x̃ − (r|| · · · ||r) is taken as input of the table, the
output being the corresponding nibble of x̃ ⊕ (r|| · · · ||r). Thus the bit
z must be added to the intermediate variable A at the beginning of each
conversion step. At the end, as Ã ⊕ R̃ = A ⊕ R, the correct result is
then obtained.

The main principle of the conversion algorithm of [11] can be summa-
rized by Algorithm 2.3.

Security of the method. The authors of [11] claim that their algorithm
is resistant against DPA. From a DPA-only point of view, the value of
the bit C[Al] (line 9 of Algorithm 2.4) is indeed independent of the value
of the secret data, due to the fact that for a k-bit value w, the number of
k-bit values r such that w + r ≥ 2k is w, and the number of k-bit values
r such that w̄ + r ≥ 2k − 1 is 2k − w − 1, inducing a constant number
2k − 1 of possible r contributing to a non-zero carry.

But in practice this algorithm may pose a security problem, as the
value −z mod 2n·k is manipulated several times during one conversion
step: as z is a random bit, this value is either 0 or 0xFF...FF. It could
be distinguished by the attacker in some context, using SPA techniques.
With this information, the attacker could mount a DPA attack, using the
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fact that the carries are then unmasked. This implies that the behavior
of the component in terms of power and electromagnetic leakage must be
studied very carefully before choosing this conversion method.

Algorithm 2.3: Conversion of a (n · k)-bit variable

Input: (A,R) such that x = A+R mod 2n·k and r, generated
during precomputation phase

1. Generate a random bit z

2. Z ← −z mod 2n·k

3. A← (A⊕ Z)− (r|| · · · ||r) mod 2n·k

4. R← R⊕ Z
5. For i = 0 to n− 1 do
6. Split A into Ah||Al and R into Rh||Rl such that

Al and Rl have size k

7. A← A+Rl mod 2(n−i)·k

8. if i < n− 1 do

9. Ah ← Ah + C[Al] mod 2(n−i−1)·k

10. x′i ← G[Al]⊕Rl

11. A← Ah and R← Rh

12. Output x′ = (x′n−1||...||x′i||...||x′0)⊕ (r|| · · · ||r)

The final method proposed in [11] is slightly different from Algorithm
2.3, as a technique is added in [11] to reduce memory consumption (it is
recalled in Section 4.2). The use of this technique implies a decrease in the
speed of the algorithm. As our paper mainly focuses on time performance,
we propose in Appendix C another modification of the algorithm in order
to reach maximal speed. This algorithm is used for the performance tests
described at section 5.

3 Correction and improvement of Coron-Tchulkine
method

We show in Appendix A that the immediate possible corrections of Coron-
Tchulkine method keeping the size of the carry’s mask γ to k bits are not
first order DPA resistant: the size of γ must be at least (n−1) ·k to obtain
complete independence of intermediate data from the secret key.

Let us remark that both the information provided by Table G of
Coron-Tchulkine method (update of the nibble in the new masking mode)
and the information of Table C (additively masked carry) can be sum-
marized in one unique table T whose outputs have size n · k:

Algorithm 3.1: Table T generation

1. Generate a random k-bit r and a random (n · k)-bit γ

2. For A = 0 to 2k − 1 do

T [A] = ((A+ r)⊕ r) + γ mod 2n·k

3. Output T , r and γ
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The number of entries of the table is 2k, and the size of each entry is
n·k
8 bytes. For typical values k = 8 and n = 4, the memory consump-

tion is doubled here compared to the adaptation of Neiße-Pulkus method
proposed in Appendix C.

The resulting conversion algorithm is as follows:

Algorithm 3.2: Conversion of a (n · k)-bit variable

Input: (A,R) such that x = A+R mod 2n·k

and r, γ generated during precomputation phase
1. For i = 0 to n− 1 do
2. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k

3. A← A− r mod 2(n−i)·k

4. A← A+Rl mod 2(n−i)·k

5. A← Ah||0 + T [Al] mod 2n·k

6. A← A− γ mod 2n·k

7. x′i ← Al ⊕Rl

8. x′i ← Al ⊕ r
9. A← Ah and R← Rh

10. Output x′ = x′0||...||x′i||...||x′n−1

Here, as T ’s outputs have the same size as the processed data, if the value

A+r is greater than 2k during the precomputation of T , the (k+1)th least
significant bit of T [A] is automatically set to 1 before being masked by
the addition of γ. During the conversion algorithm, the carry is added to
the current variable (line 5) at the same time as the nibble Al is updated.

The use of one table instead of two is clearly an advantage in terms
of time performance. But it is still possible to reduce the execution time
of the conversion algorithm by moving some instructions out of the loop.
These improvements are described in Appendix B.

4 New Method

In terms of performance, for a 16-bit or an 8-bit processor, the drawback
of the method described in Section 3 is the fact that the size of the
manipulated data is the same as the size of the intermediate data of the
algorithm. Indeed, the typical size for intermediate data is 32 bits: the
time of the conversion algorithm is then multiplied by 2 with a 16-bit
processor, and by 4 with an 8-bit processor. In this section we propose a
method more appropriate for processors whose registers have size smaller
than the intermediate data of the algorithm.
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4.1 Principle

Let us remark that using precomputed tables to keep data masked during
the algorithm execution comes to treating masked information as memory
address information. As a carry is a 1-bit information, our goal in this
section is to apply this principle to 1-bit information.

Let us suppose that instead of being masked arithmetically as pro-
posed in Sections 2.2 and 3, carries are protected by Boolean masks. The
protection comes then to adding by exclusive or a random bit to the carry
value. For example, if we call ρ such a random bit, a 2-entry table C can
be generated during the precomputed step in the following way:

Algorithm 4.1: Table C generation

1. Generate a random bit ρ and a random (n · k)-bit value λ
2. C[ρ] = λ

3. C[ρ⊕ 1] = λ+ 1 mod 2n·k

4. Output C and λ.

Now let us suppose that a carry c, protected by the Boolean mask ρ,
is manipulated during the conversion algorithm. Thus the masked value
b = c⊕ ρ can be used in the following way to add the carry c to the value
Ah in a secure way:

Algorithm 4.2: Carry addition

Inputs: – a value Ah (masked arithmetically),
– a carry bit b (c masked in a Boolean way)
– C, λ generated during precomputation phase

1. Ah = Ah + C[b] mod 2n·k

2. Ah = Ah − λ mod 2n·k

3. Output Ah

It is easy to convince oneself about:

1. The correctness of the method : whatever the value of ρ is, the value
C[b] is equal to the carry c added to λ modulo 2n·k.

2. The resistance against order 1 DPA: all processed intermediate vari-
ables are independent of the unmasked values. The masked carry is
treated as information about the address of a RAM location. This
address is independent from the value of the carry, as it changes from
one execution to the other.

In next Section, we propose a method combining the information of
both the nibble to be updated and of the carry masked by exclusive or,
using this combination as an address in a conversion table.
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4.2 Algorithm

In this section a new method for switching from arithmetic to Boolean
masking is proposed. As the method described in Section 3, it requires the
precomputation of one table T whose outputs must contain information
about both the nibble updated in the new masking mode and the next
carry bit. Here the output of T is directly the value (A+ r+ c)⊕ r, where
c is the carry resulting from the previous addition.

The precomputed table T has the following properties:

– The carry value is masked by exclusive or with a random bit.

– During conversion phase, the choice of the address in the table not only
depends on the value of the nibble but also on the value of the maksed
previous carry. This implies T has size 2k+1. The needed amount of
memory is then doubled compared to Neiße-Pulkus method, and is
the same compared to the correction of Coron-Tchulkine method for
typical values k = 8 and n = 4.

The value of the random bit used to mask carries decides during pre-
computation step if the values of the addresses of nibbles of type (A+r)⊕r
are greater or less than the addresses of nibbles of type (A+r+1)⊕r. And
during conversion step, the value of the masked carry is used to compute
the address of the next nibble to be loaded from the table.

The method is outlined in Algorithms 4.3 and 4.4. Here again, all
processed variable are independent of secret data, inducing resistance of
the algorithm against first order DPA.

Algorithm 4.3: Table T generation

1. Generate a random k-bit r and a random bit ρ

2. For A = 0 to 2k − 1 do
T [ρ||A] = (A+ r)⊕ (ρ||r)
T [(ρ⊕ 1)||A] = (A+ r + 1)⊕ (ρ||r)

3. Output T , r and ρ

If k = 8, the time of the conversion phase is optimized. But in this case
the size of the output data of the table is k + 1 = 9 bits. This implies
that this data needs two bytes to be stored, and the size of the table in
RAM is then 1024 bytes. This amount of memory is possible today on
many embedded components, but could still be too large in some cases.
As in [11], the fact that the Boolean masking of a secret data x′b = x⊕ r
and the arithmetic masking of the same data x′a = x − r mod 2k have
always the same least significant bit can be used to reduce the size of the
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precomputed table. Thus storing the least significant bit of (A + r) ⊕ r
or of (A + r + 1) ⊕ r is not necessary. The place of this useless bit can
be taken by the carry bit. The resulting algorithm is then slower but the
needed amount of memory is reduced by half. In our method it is then
512 bytes.

Algorithm 4.4: Conversion of a n · k-bit variable

Input: (A,R) such that x = A+R mod 2n·k,
r, ρ generated during precomputation phase

1. A← A− (r||...||r||...||r) mod 2n·k

2. β ← ρ
3. For i = 0 to n− 1 do
4. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k.

5. A← A+Rl mod 2(n−i)·k

6. β||x′i ← T [β||Al]
7. x′i ← x′i ⊕Rl

8. A← Ah and R← Rh

9. Output x′ = (x′0||...||x′i||...||x′n−1)⊕ (r||...||r||...||r)

5 Performance Tests

In this section we propose some performance comparisons between Goubin’s
method and the three methods based on precomputed tables. The ver-
sions chosen for the tests are the ones that are optimized in terms of time
performance:

– Algorithms C.1 and C.2 (Appendix C) for the modified Neiße-Pulkus
method (named Mod. N.-P. in Tables 1, 2 and 3).

– Algorithms B.1 and B.2 (Appendix B) for the correction of Coron-
Tchulkine method (named Mod. C.-T. in Tables 1, 2 and 3).

– Algorithms 4.3 and 4.4 (Section 4.2) for the new method proposed in
this paper.

We first chose to perform C implementations of these algorithms and
test them on 8051 architectures: one 8-bit and one 16-bit microproces-
sors. Table 1 and Table 2 summarize the performance comparison results
for both components. These results are given in clock cycles numbers,
computed with the help of a simulation tool. The size of the data to be
converted from arithmetic to Boolean masking is 32 bits, as it is the most
common size for intermediate data of cryptographic algorithms. For the
table-based algorithms, two nibble sizes were tested: k = 4 and k = 8.
The size of the precomputed tables in RAM are given in number of bytes.
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We also performed performance comparison tests for the same algo-
rithms in ARM assembler on a 32-bit 26 MHz microprocessor. In Table 3
the time results of these tests are given in microseconds.

Table 1. Smart card 8-bit microprocessor

Goubin’s Mod. N.-P. Mod. C.-T. New method
method k = 4 k = 8 k = 4 k = 8 k = 4 k = 8

Precomputation time 10325 2562 40274 18589 109391 3166 93007

Conversion time 39213 15479 9208 13969 7060 11720 6111

Table size 0 16 512 64 1024 32 1024

Table 2. Smart card 16-bit microprocessor

Goubin’s Mod. N.-P. Mod. C.-T. New method
method k = 4 k = 8 k = 4 k = 8 k = 4 k = 8

Precomputation time 86 377 3734 921 5933 439 5174

Conversion time 934 558 308 512 274 445 257

Table size 0 16 512 64 1024 32 1024

The generation of random numbers is required by all methods. For
Goubin’s algorithm (see [7]), the size of the random value is 32 bits,
and only one such random word is necessary for each execution. For this
reason, the time of this generation is set in precomputation step. Thus
we remark that, depending on the chip, the time of the generation of the
random values is generally not negligible for these conversion algorithms.
This also explains the time difference between the precomputation steps
of the Neiße-Pulkus method and of the Coron-Tchulkine method (one
random byte is generated in N.-P. against four in C.-T. method).

From the figures given in Table 1 and Table 2, we remark that the
new method is more efficient on these microcontrollers than the improved
correction of Coron-Tchulkine algorithm. This confirms the fact that the
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Table 3. Smart card 32-bit microprocessor

Goubin’s Mod. N.-P. Mod. C.-T. New method
method k = 4 k = 8 k = 4 k = 8 k = 4 k = 8

Precomputation time 15.1 9.6 156.2 25.5 188.8 12.1 180.3

Conversion time 32.9 12.9 10.3 12.1 8 14.9 9.2

Table size 0 16 512 64 1024 32 1024

new method is better adapted to 8-bit and 16-bit architectures. On the
8-bit architecture, the conversion step of the new method is the fastest.

Choosing k = 4, the improved Neiße-Pulkus and the new method are
both faster than Goubin’s algorithm on all architectures, even for a single
conversion, with a small amount of needed memory. Neiße-Pulkus method
is about twice faster on the 32-bit microcontroller, and the new method
about three times faster on the 8-bit microcontroller.

6 Conclusion

In this paper we sought the fastest methods for switching from arithmetic
to Boolean masking. We first analyzed the two known methods [3, 11]
based on precomputed tables: we showed that the algorithm proposed in
[3] is not correct and proposed an improved correction. We also proposed
a new method, which is well adapted for 8-bit architectures in terms of
time preformance. As the correction of [3], it offers better security against
side channel analysis in practice than the algorithm in [11].
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Appendices

A Security weaknesses of two immediate modifications of
Coron-Tchulkine method

Two immediate modifications of the method proposed in [3] seems possi-
ble. We call these two possible tables C ′ and C ′′:

Algorithm A.1:
Carry table C′ generation

Input: a random r of k bits.
1. Generate a random k-bit γ

such that γ < 2k − 1

2. For A = 0 to 2k − 1 do

C’[A] ←
{
γ, if A+ r < 2k

γ + 1, if A+ r ≥ 2k

3.Output C′ and γ.

Algorithm A.2:
Carry table C′′ generation

Input: a random r of k bits.

1. Generate a random k-bit γ

2. For A = 0 to 2k − 1 do

C”[A] ←
{
γ, if A+ r < 2k

γ + 1, if A+ r ≥ 2k

3. Output C′′ and γ.

But both corrections imply that some manipulated data are not com-
pletely decorrelated from the value of the secret data. Indeed, the least
significant bit of the output of Table C ′ is correlated to the corresponding
carry bit. Let us compute the correlation coefficient.

Using the notations from Section 2.2, let us call b0 the least signifi-
cant bit of the output of Table C ′, and c the corresponding carry value.
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Let us define a set χ:

χ = { (A, r, γ) : A ∈ N such that A < 2n,

r ∈ N such that r < 2n,

γ ∈ N such that γ < 2n − 1}

The correlation coefficient between b0 and c conditionned on the sub-
set χ is as follows:

Cor (b0 , c | χ) = |P(b0(x) = c(x) | x ∈ χ)− P(b0(x) 6= c(x) | x ∈ χ)|

=

∣∣∣∣∣ 1

#χ

∑
x∈χ

(−1)b0(x)⊕c(x)

∣∣∣∣∣
Actually the value b0(x)⊕ c(x) neither depends on the value of A nor

on the value of r, but only depends on the value of the least significant
bit of γ. We call this bit γ0. As 2k−1 times out of 2k − 1, γ0 = 0, and
2k−1 − 1 times out of 2k − 1, γ0 = 1, we have:

Cor (b0 , c | χ) =

∣∣∣∣∣ 1

2k − 1

∑
x∈χ

(−1)γ0(x)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

2k − 1

 ∑
γ<2k−1,γ0=0

(−1)0 +
∑

γ<2k−1,γ0=1

(−1)1

∣∣∣∣∣∣
=

∣∣∣∣ 1

2k − 1

(
2k−1 − (2k−1 − 1)

)∣∣∣∣ =
1

2k − 1

If k = 4, the correlation coefficient is then 1
15 .

It could be shown in a similar way that the correlation coefficient between

the most significant bit of the output of Table C ′′ (the (k+ 1)th bit) and
the carry bit has value 31

256 .
Many other modifications of carry Table C are possible, each one

corresponding to a specific interval in which the random carry’s mask γ
takes its values. In each of these cases it can be shown in a way similar
as above that if this interval is smaller than [0, 2(n−1)·k − 1], a correlation
exists between the output of the table and the carry bit.
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In case the interval is [0, 2(n−1)·k − 1], as the addition of Table C’s
output is performed modulo at most 2(n−1)·k (line 6 of Algorithm 2.2), the
precomputed addition “γ+carry” can be also performed modulo 2(n−1)·k

without the lack of correctness of the initial Coron-Tchulkine method.

B Time Performance improvement of Algorithm 3.2

To reduce the execution time of Algorithm 3.2, some instructions can be
set out of the loop. Three of them can be removed from the loop without
weakening security:

– The arithmetic masking with the random r (line 3) can be performed
before the loop.

– The subtraction of the value γ (line 6) can be performed before the
loop (inducing a modification of the precomputed table T ).

– The Boolean unmasking with the random r (line 8) can be performed
after the loop.

Indeed, in case these instructions are moved out of the loop, all nibbles
of A but one remain masked with the initial mask R during the execution
of the algorithm, and the lasting nibble is masked by the random value r.
All intermediate variables are then independent of secret data throughout
the execution.

Some extra calculations must be performed during precomputation
step, allowing to minimize the cost of the subtraction of γ during conver-
sion step. The improved version of the method is then as follows:

Algorithm B.1: Table T generation

1. Generate a random k-bit r and a random ((n− 1) · k)-bit γ

2. Compute Γ =
∑k−1

i=1 2i·k · γ mod 2n·k

3. γ′ ← γ||r
4. For A = 0 to 2k − 1 do

T [A] =
(
A+ γ′ mod 2n·k)⊕ r

5. Output T , r and Γ
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Algorithm B.2: Conversion of a n · k-bit variable

Input: (A,R) such that x = A+R mod 2n·k

and r, E generated during precomputation phase

1. A← A− (r||...||r||...||r) mod 2n·k

2. A← A− Γ mod 2n·k

3. For i = 0 to n− 1 do
4. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k

5. A← A+Rl mod 2(n−i)·k

6. A← Ah||0 + T [Al] mod 2n·k

7. x′i ← Al ⊕Rl

8. A← Ah and R← Rh

9. Output x′ = (x′0||...||x′i||...||x′n−1)⊕ (r||...||r||...||r)

C Time Performance improvement of Neiße-Pulkus
method.

The principle of the method described in [11] is a direct extension of the
Coron-Tchulkine method. Therefore the two precomputed tables of [11]
can be generated at the same time in one unique table exactly the same
way as proposed in section 3 for Coron-Tchulkine method.
The adapted version of Neiße-Pulkus method is then as follows:

Algorithm C.1: Table T generation

1. Generate a random k-bit r

2. For A = 0 to 2k − 1 do
T [A] = (A+ r)⊕ r

3. Output T and r

Algorithm C.2: Conversion of a n · k-bit variable

Input: (A,R) such that x = A+R mod 2n·k

and r generated during precomputation phase
1. Generate a random bit z

2. Z ← −z mod 2n·k

3. A← (A⊕ Z)− (r|| · · · ||r) mod 2n·k

4. R← R⊕ Z
5. For i = 0 to n− 1 do
6. Split A into Ah||Al and R into Rh||Rl,

such that Al and Rl have size k

7. A← A+Rl mod 2(n−i)·k

8. A← Ah||0 + T [Al] mod 2n·k

9. x′i ← Al ⊕Rl

10. A← Ah and R← Rh

11. Output x′ = (x′0||...||x′i||...||x′n−1)⊕ (r||...||r||...||r)
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Let us remark that the instructions inside the loop are the same in
algorithm B.2 and in algorithm C.2. Concerning memory consumption,
for typical values k = 8 and n = 4, the size of T ’s outputs is here 9 bits:
the required amount of memory is then 512 bytes. It is reduced by half
compared to the improved Coron-Tchulkine algorithm of Appendix B.


