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Abstract. 3D integration is a promising advanced manufacturing process offering a va-
riety of new hardware security protection opportunities. This paper presents a way of
securing 3D ICs using Hamiltonian paths as hardware integrity verification sensors. As
3D integration consists in the stacking of many metal layers, one can consider surround-
ing a security-sensitive circuit part by a wire cage.

After exploring and comparing different cage construction strategies (and reporting pre-
liminary implementation results on silicon), we introduce a ”hardware canary”. The ca-
nary is a spatially distributed chain of functions Fi positioned at the vertices of a 3D
cage surrounding a protected circuit. A correct answer (Fn ◦ . . . ◦ F1)(m) to a challenge
m attests the canary’s integrity.

1 Introduction
3D integration is a promising advanced manufacturing process offering a variety of new
hardware security protection opportunities. This paper presents a way of securing 3D ICs
using Hamiltonian paths1 as integrity verification sensors. 3D integration consists in the
stacking of many metal layers. Hence, one can consider surrounding a security-sensitive cir-
cuit part by a wire cage, for instance a Hamiltonian path connecting the vertices of a cube
(Fig. 1). In this paper, different algorithms to construct cubical Hamiltonian structures are
studied; those ideas can be extended to other forms of sufficiently dense lattices.
Since 3D integration is based on the vertical stacking of different dies, a Hamiltonian cage
can surround the whole target and protect its content from physical attacks. 3D ICs are rel-
atively hard to probe due to the tight bonding between layers [11]. Moreover, the 3D path
can even penetrate the protected circuit and connect points in space between the protected
circuit’s transistors.

Fig. 1: Hamiltonian cycle passing through the vertices of a 4× 4× 4 cube

1 A Hamiltonian circuit (hereafter ”cage” or simply ”path” for the sake of conciseness) is an undi-
rected path passing once through all the vertices of a graph.



A path running through different metal layers and different dies can thus serve as a digital
integrity verification sensor allowing the sending and the collecting of signals. In addition,
the wire can be used to fill gaps in empty circuit parts to increase design compactness and
make reverse-engineering harder.
Such a protection proves challenging in terms of design as it requires devising new manufac-
turing and synthesis tools to fit the technology used [1,2]. However the resulting structures
prove very helpful in protecting against active probing .
Throughout this paper n will represent the number of points forming the edge of a cubi-
cal Hamiltonian structure. We will focus our study on cubical structures, but the algorithms
and concepts that are presented hereafter can in principle be extended to many types of
sufficiently dense lattices of points.

2 Generating Random 3D Hamiltonian Paths

2.1 General Considerations

The problem of finding a Hamiltonian path in arbitrary graphs (HAMPATH) is NP-complete.
Membership in NP is easy to see (given a candidate solution, the solution’s correctness can
be verified in quasi-linear time). We refer the reader to [3] for more information on HAM-
PATH.

A quick glance reveals that a cube’s n3 vertices, potentially connectable by a mesh of 3n2(n−
1) edges, break-down into four categories, illustrated in Fig. 22:

– (n−2)3 vertices corresponding to the cube’s innermost edges (i.e. not facing the outside)
can be potentially connected in any of the possible 3D directions (right, left, up, down,
front, rear).

– 6(n − 2)2 vertices, facing the cube’s outside in exactly one direction, can be potentially
connected in five possible directions.

– 12(n− 2) vertices, facing the cube’s outside in exactly two directions, can be potentially
connected in four possible directions.

– 8 extreme corner vertices can be connected in only three possible manners.

Indeed: (n− 2)3 + 6(n− 2)2 + 12(n− 2) + 8 = ((n− 2) + 2)3 = n3
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Fig. 2: Potential edge connectivity

2 The depicted cube is shown as a solid opaque object for the sake of clarity.
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We observe that for HAMPATH to be solvable in a cube, n must be even. If we depart from
point the (0, 0, 0) and reach a point of coordinates (x, y, z) after visiting i vertices, then x +
y + z and i have the same parity. Given that the path must collect all the cube’s vertices, the
cube size must necessarily be even.

2.2 Odd Size Cubes

The above observation excludes the existence of odd-size cubes unless one skips in such
cubes an edge (x, y, z) such that x + y + z ≡ 1 mod 2. To extend the construction to odd
n = 2k + 1 while preserving symmetry, we arbitrarily decide to exclude the central vertex
(i.e. at coordinate (k, k, k)) when n is odd.

Assume that we color vertices in black and white alternatingly (the cube’s 8 extreme vertices
being black) with black corresponding to even-parity x+ y + z and white corresponding to
odd parity x+ y+ z. Here 0 ≤ x, y, z ≤ 2k. In other words, a (2k+1)-cube has 4k3+6k2+3k
white vertices and 4k3 + 6k2 + 3k + 1 black vertices.

The coordinate of the cube’s central vertex is (k, k, k) which parity is identical to the parity
of k. When k is even, vertex (k, k, k) is black and when k is odd vertex (k, k, k) is white. If we
remove vertex (k, k, k) it appears that:

– When k is even, (i.e. n = 2k + 1 = 4` + 1) we have as many black and white vertices
(namely 4k3 + 6k2 + 3k).

– When k is odd, we have 4k3 + 6k2 + 3k + 1 black vertices and 4k3 + 6k2 + 3k − 1 white
vertices.

Noting that each edge causes a color switch, we see that Hamiltonian paths in cubes of size
4`+3 cannot exist. Note that if one extra black vertex is removed3 then (the now asymmetric)
construction becomes possible for all k.

It remains to prove that cubes of size n = 4` + 1 exist for all ` 6= 0 (Fig. 3) . We refer the
reader to the extended version of this paper on the IACR ePrint server for further details.

Fig. 3: Constructive proof that cubes of size n = 4`+ 1 exist for all ` 6= 0

3 e.g. one of the cube’s extreme edges which is necessarily black.
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3 A Toolbox for Generating 3D Hamiltonian Cycles

3.1 From Two to Three Dimensions
We start by presenting a first algorithm for constructing random4 Hamiltonian cycles in
graphs having a minimum degree equal to at least half the number of their vertices.
Our application requires an efficient algorithm that outputs cycles passing through a very
large number of vertices. The first algorithm reduces the problem’s complexity by using
smaller cycles that we will progressively merge to form the final bigger cycle. Consider the
elementary Hamiltonian cycle forming a simple 2× 2 square. To combine two such squares
all we need are two parallel edges. Merging (denoted by the operator !) can be done in
two ways as shown Fig. 4. Note that this association not only preserves Hamiltonicity but
also extends it.

a b → a! b

a

b

→

a
!

b

Fig. 4: Association of squares along the x axis (leftmost figure), or the y axis (rightmost figure)

In other words, at each step two different Hamiltonian cycles in adjacent graphs are merged,
and a new Hamiltonian cycle is created. The process is repeated until only one Hamiltonian
cycle remains. We implemented this process in C. As explained previously, our program
cannot find Hamiltonian cycles for odd cardinality values simply because such cycles do not
exist (see Algorithm 1). The code starts by filling the lattice with 2 × 2 squares, and then
associates them randomly. The program ends when only one cycle is left (Fig. 5).

Fig. 5: Rewriting 125 squares filling a 50× 10 lattice as a Hamiltonian cycle using Algorithm 1

Algorithm 1 Cycle Merging
1: Input p, q ∈ 2N.
2: let Q = Q1, ..., Qv be the v = pq

4
squares of size 2 filling the lattice of p× q points.

3: while Card(Q) 6= 1 do
4: choose randomly {a, b} ∈ Q2 with a 6= b.
5: if a and b have at least one couple of neighbouring parallel edges then
6: Break a randomly chosen couple of parallel neighbouring edges, verify that they form a single

Hamiltonian circuit and merge c = a! b.
7: let Q = Q ∪ {c} − {a, b}
8: else
9: goto line 4

10: end if
11: end while

4 As explained in the IACR ePrint version of this work , the entropy of our structure generators seems
very complex to estimate.
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The algorithm is pretty fast, and we were able to build Hamiltonian cycles of 105 points
using a laptop5 within few seconds. For some p and q values, we observed some runtime
spikes in single measurements due to convergence issues. Fig. 6 shows the average runtime
over 100 measurements as well as the standard deviation at each point in red.
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Fig. 6: Cycle Merging runtime as a function of the number of points ×103 (average over 100
measurements)

To transform a rectangular 2D Hamiltonian cycle into a 3D one, we run Algorithm 1 for
{p, q} = {p, p2} to get a p× p2 rectangle L similar in nature to the one shown in Fig. 5.

Then, letting (xi, yi) denote the Cartesian coordinates of points inL, with the first point being
(0, 0), we fold L into a 3D structure of coordinates (x′i, y

′
i, z
′
i) using the following transform

where j = bxi

p c and ` ≡ j mod 2:

ϕ =

x′i = (−1)`(xi − jp) + `(p− 1)
y′i = yi
z′i = j

The result is shown in Fig. 24 (Appendix A).

It remains to destroy the folded nature of the construction while preserving Hamiltonicity.
This is done as follow: Identify anywhere in the generated structure the red pattern shown
at the leftmost part of Fig. 7 where at positions a, b, c, d edges take any of the blue positions.
Iteratively apply this rewriting rule along any desired axis until the resulting structure gets
”mixed enough” to the designer’s taste. Evidently, this is only one possible rewriting rule
amongst several.
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Fig. 7: Rewriting rule

Note that the zig-zag folding ϕ is only one among many possible folding options as ϕ may
be replaced by any 2D (preferably random) plane-filling curve of size p × p (e.g. a Peano
curve [8]).

5 MacBook Air 1.8 GHz Intel Core i7.
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3.2 Random Cube Association

Another approach consists in generalizing Algorithm 1 to the associating of elementary 3D
cubes. As shown in Fig. 26, one can fill the target lattice by a random sampling of six ele-
mentary Hamiltonian cubes (Fig. 25), associate them randomly and further randomize the
resulting structure by rewriting.

The algorithm proves very efficient (Fig. 8) and takes a few seconds6 to compute a random
Hamiltonian cube of size 50 (125 000 points).
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Fig. 8: Random Cube Association runtime as a function of the number of points ×103 (average over
100 measurements)

The algorithm picks random parallel edges from different Hamiltonian cycles and attempts
to associate them in one new structure. By opposition of the 2D case, the 3D case presents a
new difficulty which is that in some cases associable parallel edges suddenly cease to exist.
To force termination we abort and restart from scratch if the number of iterations executed
without finding a new association exceeds the upper bound p3. To compute structures over
huge lattices (e.g. n = 100), one might need to introduce additional association rules (e.g.
the rule shown in Fig. 9) to avoid such deadlocks.

!

Fig. 9: An additional association rule (example)

3.3 Cycle Stretching

Our third algorithm maintains and extends a set of edges E initialized with the four edges
defined by the square of vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and (1, 0, 0). At each iteration, the
algorithm selects a random edge e ∈ E and one of the four extension directions shown in
Fig. 10. If such an extension is possible (in other words, by doing so we do not bump into an
edge already in E) then E is extended by replacing e by three new edges (one parallel to e
and two orthogonal to e in the chosen extension direction). If e cannot be replaced, i.e. none
of the four extensions is possible, we pick a new e′ ∈ E and try again.

6 MacBook Air 1.8 GHz Intel Core i7.
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e e

Fig. 10: Extension options

The algorithm keeps track of a subset of E, denoted B, interpreted as the set of potentially
stretchable edges of E. B avoids trying to stretch the same e over and over again.

At each stretching attempt the algorithm picks a random e ∈ B. As the algorithm tries to
stretch e, e is removed from B (no matter if the stretching attempt is successful or not). If
stretching succeeded, e is also removed from E and three new edges replacing e are added
to B and E.

The algorithm halts when B = ∅. If upon halting |E| = n3 − (n mod 2) then the algorithm
succeeds, otherwise the algorithm fails and has to be re-launched. Since at most 3n2(n − 1)
vertices can be added to B, the algorithm will eventually halt.

A non-optimized implementation running on a typical PC found a solution for n = 6 in about
a minute and a solution for n = 8 in 30 hours. The same code was unable to find a solution
for n = 10 in three weeks. An empirical human inspection of the obtained cubes shows
that the resulting structures seem very irregular. Hence, an interesting strategy consists in
generating a core cube of size n = 8 by cycle stretching, surrounding it by elementary size 2
cubes and proceeding by random cube association and rewriting.

Algorithm 2 Edge Stretching
1: let E = the four vertices defined by the square (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0).
2: let B = E.
3: while B 6= ∅ do
4: let e ∈R B, we denote the vertices of e by e = [e1, e2].
5: let B = B − {e}
6: let dir = {←,→, ↑, ↓,↗,↙}
7: while dir 6= ∅ do
8: let d ∈R dir
9: let dir = dir− {d}

10: if d and e are not aligned and stretching is possible then
11: E = E − {e}.
12: E = E ∪ {[e1, v1], [v1, v2], [v2, e2]}.
13: break
14: end if
15: end while
16: end while

In the above algorithm the sentence ”stretching is possible” is formally defined as the fact
that no edges inE pass through the two vertices v1,v2 such that the segment [v1, v2] is parallel
to e in direction d. Arrows represent right, left, up, down, front and backwards directions,
i.e. ↑ ↗

← →
↙ ↓
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3.4 Constraining Existing Hamiltonian Pathfinding Algorithms

A fourth experimented approach consisted in adapting existing HAMPATH solving strategies.
(Dharwadker) [4] presents a polynomial time algorithm for finding Hamiltonian paths in
certain classes of graphs. Assuming that the graphs that we are interested in are in such a
class, we tweaked [4]’s C++ code to find Hamiltonian cycles in cubes. The resulting code
succeeded in finding solutions, but these had a too regular appearance and had to be post-
processed by re-writing.

We hence constrained the algorithm by working in a randomly chosen subgraph E of the
full n3 cube. We define a density factor γ ≤ 1 allowing to control the number of edges in E
to which we apply [4]. The ratio of edges inE and n3 is expected to be approximately γ. Note
that because of the heuristic corrective step (9), meant to reduce the odds that certain points
remain unreachable, E’s density is expected to be slightly higher than γ. The corresponding
algorithm is:

Algorithm 3 Edges Selection Routine
1: E = ∅
2: for each vertex v = (x, y, z) of the full cube do
3: for each move dv = (dx,dy,dz) in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} do
4: generate a random r ∈ [0, 1]
5: if r < γ and (0, 0, 0) ≤ v + dv ≤ (n− 1, n− 1, n− 1) then
6: add edge [v, v + dv] to E
7: end if
8: end for
9: if loop 3 didn’t add to E any edge having v as en extremity then

10: goto line 3
11: end if
12: end for

Practical experiments show indeed that as γ diminishes, the generated Hamiltonian cycles
seem increasingly irregular (for high (i.e.' 1) γ values the algorithm fills the cube by succes-
sive ”slices”). Finding solutions becomes computationally harder as γ diminishes, but using
a standard PC, it takes about a second to generate an instance for {γ = 0.8, n = 6} and an
hour to generate a {γ = 0.86, n = 10} one. The reader is referred to the IACR ePrint version
of this paper for visual illustrations of experimental results.

Fig. 11: A n = 10 Hamiltonian cycle obtained by a modified version of Dharwadker’s algorithm [4]
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3.5 Branch-and-Bound

Another experimented approach was the use of branch-and-bound: Using a recursive func-
tion, we can try all different cycles. Given a connected portion of a potential Hamiltonian
path, this function tries to add all the possible new edges and calls itself recursively. If the
function is called with a complete path, the job is done.

We added several heuristic improvements to this method:

1. If the set of vertices unlinked by the current path is disconnected, it is clear that we won’t
be able to find any Hamiltonian path, and thus we can stop searching.

2. If this set is not connected to the extremities of the current path, we can also halt.

3. The existence of an Hamiltonian path containing a given sub-path only depends on the
extremities and on the set of vertices in the path. We can hence use a dynamic program-
ming approach to avoid redundant computations.

4. We tried multiple heuristics to chose the order of recursive calls.

However, those approaches proved much slower than cycle stretching: it appears that the
branch-and-bound algorithm makes decisive choices at the beginning of the path without
being able to re-consider them quickly. We tried to count all the Hamiltonian cycles when
n = 4 using this algorithm, but the code proved too slow to complete this task in a reasonable
time.

Those results suggest a meta-heuristic approach that would be intermediate between branch-
and-bound and stretching: we can make a cycle evolve using meta-heuristics until we obtain
an Hamiltonian cycle. Using this method (that we did not implement) we should be able to
re-consider any previous choice without restarting the search process.

3.6 Rewriting 3D Moore Curves
Finally, one can depart from a know regular 3D cycle (e.g. a 3D Moore curve as shown in
Fig.12) and rewrite it. Moore curves are particularly adapted to such a strategy given that
the maze entrance and exit are two adjacent edges. However, as shown in Fig.12c (a top-
down view of Fig.12b), Moore curves are inherently regular and must be re-rewritten to
gain randomness.

(a) (b) (c)

Fig. 12: Example of Moore Curves [5]

9



4 Silicon Experiments

To test manufacturability in silicon we created a first passive cage meant to protect an 8-bit
register. We notice that the compactness of the cage provides a very good reverse-engineering
protection.

Fig. 13: 3D layout of a cage of size 6 (130nm, 6 Metal Layers Technology)

The implemented structure (Fig. 13) is a 6×6×6 Hamiltonian cube stretching over six metal
layers, the first four metal layers are copper ones, and the last two metal layers are thicker
and made of aluminum (130nm RF technology, Fig. 14). The cube is 26µm wide and covers
an 8 bit register.
As will be explained in the next section, this first prototype is not dynamic, the Hamiltonian
path is not connected to transistors. The implementation of a simplified dynamic structure as
described in section 5 is underway and does not seem to pose insurmountable technological
challenges. Moreover, all layers of the prototype are processed in one side of the silicon, so
this implementation does not prevent backside attack. Backside metal deposit and back to
back wafer stacking must thus be investigated to thwart backside attacks as well.

(a) (b)

Fig. 14: Top layer view (a) and tilted SEM view (b) of a 26µm wide 6× 6× 6 cage
implemented in a 130nm technology (×2500)7

7 The structure implemented in silicon is surrounded by fill shapes used as a gaps filler, due to man-
ufacturing constraints (polishing).
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5 Dynamically Reconfigurable 3D Hamiltonian Paths
A canary is a binary constant placed between a buffer and stack data to detect buffer over-
flows. Upon buffer overflow, the canary gets corrupted and an overflow exception is thrown.
The term ”canary” is inherited from the historic practice of using canaries in coal mines as
toxic gas biological alarms. The dynamic structures presented in this section are hardware
equivalents of biologic canaries: our ”hardware canary” is formed of a spatially distributed
chain of functions Fi positioned at the vertices of a 3D cage surrounding a protected circuit.
In essence, a correct answer (Fn ◦ . . . ◦ F1)(m) to a challenge m will attest the canary’s in-
tegrity. The device described in this section relies on a library of paths precomputed using
the toolbox of algorithms described in the previous section.

5.1 Reconfigurable 3D Mazes
The construction of a 3D dynamic grid begins with the description of a Network On Silicon
(NOS) with speed, power and cost constraints [7,12]. As described in [6,9], metal wires are
shared, or made programmable, by introducing switch-boxes, that serve as the skeleton of
the dynamic Hamiltonian path. Each switch-box is an independent cryptographic cell that
corresponds to a vertex of the graph. The switch-boxes are reconfigurable and receive recon-
figuration information as messages flow through the Hamiltonian path during each session
c. All boxes are clocked8, and able to perform basic cryptographic operations. Six cell-level
parameters are used to define each switch-box:

– A coordinate identifier i is a positive integer representing the ordinal number of the box’s
Cartesians coordinates: i.e. i = x+ ny + n2z.

– A session identifier c is an integer representing the box’s configuration: this value is
incremented at each new reconfiguration session.

– A key ki shared with the protected processor located inside the cage.

– A routing configuration wi,c chosen between the thirty possible routing positions of a 3D
bi-directional switch (Fig. 15)9.

– A state variable si,c computed at each clock cycle from the incoming data mi,c (see here-
after) and the preceding state, si,c−1. The state si,c is stored in the switch-box’s internal
memory10.

{
mi+1,c = F (mi,c, ki, wi,c, si,c)
si,c+1 = G(mi,c, ki, wi,c, si,c)

(1)

The output datami+1,c is computed within box i using the input datami,c and an integrated
cryptographic function F , serving as a lightweight MAC. The final output mn3,c attests the
cage’s integrity during session c.

z+

x−

y−

z−

x+

y+
mi,c

mi+1,c

wi↘ x+ x− y+ y− z+ z−

x+ - 00 01 02 03 04
x− 10 - 05 06 07 08
y+ 11 15 - 09 0A 0B
y− 12 16 19 - 0C 0D
z+ 13 17 1A 1C - 0E
z− 14 18 1B 1D 1E -

signal output

si
gn

al
in

pu
t

Fig. 15: Example of a 3D switch-box programmed with a routing configuration wi = 0x13

8 We denote by t the clock counter.
9 For switch-boxes depicted in red, blue and green (Fig. 2) the number of possible configurations

drops to (respectively) 6, 12 and 20.
10 Upon reset si,0 = 0 for all i.
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Each switch-box comprises five logic parts (Fig. 16) that serve to route the integrity attesta-
tion signal through the box’s six IOs and successively MAC the input values mi,c:

– Two multiplexers routing IOs, with three state output buffers to avoid short-circuits dur-
ing re-configuration.

– A controller commanding the two multiplexers’ configuration.

– A MAC cell for processing data and a register for storing results.

– A register storing the state variable si,c, the key ki, the present configuration wi,c, the
next box configuration wi,c+1 and the clock counter t.

input
pins

6 to 1
Multiplexer Controller

CLK

MAC and
registry

CLK

1 to 6
Multiplexer
with three-

state buffers

output
pins

z−
z+
y−
y+
x−
x+

z−
z+
y−
y+
x−
x+

Fig. 16: Logic diagram of a 3D switch-box

The input message m0,c, sent through the Hamiltonian path, is composed of two parts serv-
ing different goals (Fig. 17):

w0,c+1 w1,c+1 wi,c+1 wn3−1,c+1 cryptographic payload

reconfiguration information

Fig. 17: Structure of message m0,c

– The first message part is dedicated to reconfiguring the grid. For a cube of size n, the
reconfiguration information has n3 parts, each containing the next routing configuration
wi,c+1 of switch-box i. As the routing information of each switch-box can be coded on
5 bits, the reconfiguration information is initially 5n3 bits long11. Basically, this message
part carries the position of all switches for the next Hamiltonian path of session c+ 1.

– The second message part (cryptographic payload) is used to attest the circuit’s integrity,
the 64-bits payload will be successively MACed by all switch-boxes and eventually com-
pared to a digest computed by the protected circuit. If possible, one should select a func-
tion F that simplifies after being composed with itself to reduce the protected circuit’s
computational burden.

11 Note that the reconfiguration information part of the mi,c’s gets shorter and shorter as i increases,
i.e. as the message approaches the last switch-box.
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5.2 Description of the Dynamic Grid and the Integrity Verification Scheme

Upon reset, each switch-box is in a default configuration wi,0 corresponding to an initial
predefined hardwired Hamiltonian path for session c = 0. The input and the output boxes
(S0 and Sn3−1) are only partially reconfigurable; namely, the routing of S0’s input and the
routing of Sn3−1’s output cannot be changed. To clarify the reconfiguration dynamics, we
denote by t the number of clock ticks elapsed since system reset assuming a one bit per clock
tick throughput; given that 5 bits are dropped at each ”station”, a full reconfiguration route
(session) claims

5

n3−1∑
j=0

(n3 − j) = 5

2
n3(n3 + 1)

clock ticks, which is the time needed for the reconfiguration information to flow through all
n3 switch-boxes i.e. the number of clock ticks elapsed between the entry of the first bit of
m0,c into S0 and the exit of the last bit of mn3,c from Sn3−1. Note that this figure does not
account for the time necessary for payload transit12.

At t = 0: A new session c starts and the first bit of m0,c is received by S0 form the protected
processor.

For 5
∑i−1

j=0 (n
3 − j) = 5

2 i(2n
3 + 1− i) ≤ t ≤ 5

∑i
j=0 (n

3 − j)− 1 = 5
2 (i+ 1)(2n3 − i)− 1: All

switch-boxes except Si−1 and Si are inactive (dormant). Si−1 sends the message mi−1,c
to Si which performs the following operations:

– Store the reconfiguration information wi,c+1, for the next Hamiltonian route of ses-
sion c+ 1.

– Compute mi+1,c and update si,c+1 as defined in formula (1).

At t = 5
∑n3−1

j=0 (n3 − j) = 5
2n

3(n3 + 1): The first bit of messagemn3,c emerges from the grid
(from Sn3−1) and all switch-boxes re-configure themselves to the new Hamiltonian path
c+ 1. mn3,c is received by the protected processor who compares it to a value computed
by its own means. At the next clock tick a new message m0,c+1 is sent in, and the process
starts all over again for a new route representing session number c+ 1.

Switch-Box 0
(w0, k0,m0, s0)

Switch-Box 1
(w1, k1,m1, s1)

Switch-Box 2
(w2, k2,m2, s2)

Switch-Box 3
(w3, k3,m3, s3)

Switch-Box 4
(w4, k4,m4, s4)

Switch-Box 5
(w5, k5,m5, s5)

Switch-Box 6
(w6, k6,m6, s6)

Switch-Box 7
(w7, k7,m7, s7)

Switch-Box 8
(w8, k8,m8, s8)

Switch-Box 9
(w9, k9,m9, s9)

Switch-Box 10
(w10, k10,m10, s10)

Switch-Box 11
(w11, k11,m11, s11)

Switch-Box 12
(w12, k12,m12, s12)

Switch-Box 13
(w13, k13,m13, s13)

Switch-Box 14
(w14, k14,m14, s14)

Switch-Box 15
(w15, k15,m15, s15)

m0,c

m0,c+1

m16,c

m16,c+1

at session c

at session c+ 1

Fig. 18: 4× 4 dynamic switch-box grid routed at c and c+ 1 (illustration)

12 p(n3 + 1) where p is the payload size in bits.
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If one of the switch-boxes is compromised then the digest output by the path will be altered
with high probability and the fault will be detected by the mirror verification routine imple-
mented in the protected processor (Fig. 19). The device could then revert to a safe mode, and
sanitize sensitive data.

challenge
m0,c

MAC using the
Hamiltonian circuit

MAC using the
co-processor

if 1 then
revert to

safe mode

Fig. 19: Device integrity verification scheme

The verification circuit’s size essentially depends on the MAC’s size and complexity. Note
that the XOR gate is a weak point: if it is bypassed the entire canary becomes pointless.
Luckily, the XOR is spatially protected by the Hamiltonian path that surrounds it.

5.3 Vulnerability to Focused Ion Beam (FIB) Attacks

The proposed dynamic structure complies with the Read-Proof Hardware requirements de-
scribed in [10]: the structure is easy to evaluate, relatively cheap (in some case no additional
masks would be required) and can’t be easily removed without damaging the chip.

Even though an attacker might modify some switch-box interconnections using FIB equip-
ment, one cannot bypass a switch-box without modifying the digest computation logic and
thus triggering the canary. In theory, an attacker may microprobe the input of the first switch-
box to get the reconfiguration path, feed it into an FPGA simulating the grid and re-feed the
MAC into the target, thus bypassing the canary. The state function si implemented in each
switch-box should prevent such attacks by keeping state information. Moreover, switch-
boxes are defined at transistor level (first metal level): to microprobe each cell the attacker
has to bypass many interconnections, making such an attack very complex. Fig. 20 describes
schematically the dynamic grid concept.

S1 S2 S3

Fig. 20: Three switch-boxes embedded at substrate level with interconnections over the top layers

The successive grid configurations are precomputed by an external Hamiltonian path gen-
erator using the strategies described in Section 3. This configuration data should be stored
in a non-volatile memory located under the cage.
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6 Perspectives and Open Problems
Hardware canaries present an advantage with respect to analog integrity protection such as
PUFs and sensors: being purely digital, hardware canaries can be integrated at the HDL-level
design phase be portable across technologies. The proposed solution would, indeed, increase
manufacturing and testing complexity but, being purely digital, would also increase relia-
bility in unstable physical conditions, a common problem encountered when implementing
analog sensors and PUFs.

The previous sections raise several sophistication ideas. For instance, instead of having the
processor simply pick a reconfiguration route in a pre-stored table, the processor may also
re-write the chosen route before configuring the canary with it. Devising more rewriting
rules and developing lightweight heuristics to efficiently identify where to apply such rules
is an interesting research direction.

Another interesting generalization is the interleaving in space of several disjoint Hamilto-
nian circuits. Interleaved canaries will force the attacker to overcome several spatial barriers.
It is always possible to interleave a cube of size n− 1 in a cube of size n without having the
two cubes intersect each other13 as illustrated in Fig. 21.

Fig. 21: A size 4 cube interleaved with a size 3 cube (3D and front view)

Fig. 22 shows the result of such a (laborious!) physical interleaving for a cube of size 4 and a
cube of size 5. Note that interleaving remains compatible with a dynamic evolution of both
cubes as canaries do not touch each other nor share any hardware (edges or vertices).

Fig. 22: Interleaving a Hamiltonian cube of size 4 and a Hamiltonian cube of size 5

Finally, functions F for which the evaluation of F (x) = (Fn3−1 ◦ . . . ◦F0)(x) is faster than n3

individual evaluations of Fi are desirable for efficiency reasons. XOR, bit permutation, ad-
dition, multiplication and exponentiation (e.g. modulo 251) all fall into this category14. Note
that Fi(x) = ki × xk

′
i mod p works as well.

In the first dynamic prototype the Fi’s will be formed of XORs and bit permutations. De-
vising computational shortcuts taking into account an evolving internal state si,c are also
desirable.
13 Remove the (k, k, k) point from the center of the odd cube as explained before.
14 Evidently, input should be nonzero for multiplication, nonzero and 6= 1 for exponentiation etc.
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A Circuit Folding

Fig. 23: 10× 100 Hamiltonian rectangle L prepared to be folded

Fig. 24: 10× 10× 10 Hamiltonian cube ϕ(L) obtained by folding Fig. 23

B Random Cube Association

Five elementary cubes in Fig. 26 are shown in red to underline that all cubes forming Fig. 26
are still disjoint.

Fig. 25: The six elementary Hamiltonian cubes of size 2

Fig. 26: Elementary 2× 2 cubes filling the lattice of points forming a cube of size n = 10
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Fig. 27: An n = 10 Hamiltonian path obtained by randomly associating Fig. 26

C Experimental Pre-Silicon Models
Having obtained several construction plans, we decided to try and construct concrete exam-
ples using copper supplies before migrating to silicon. We used an industrial robot to cut
12mm∅ copper segments of various sizes. A measurement of the dimensions of off-the-shelf
right angle connectors (Fig. 28) revealed that if a 1-unit segment is h millimeters long, then
an i-unit segment has to measure (h+ 16)× i− 16 millimeters.

Fig. 28: Angle connector

C.1 Visualizing and Layering
Layering and visualizing the prototypes (and chip metal layers) was done using an ad-hoc
software suite written in C and in Processing15. The software allows decomposing a 3D struc-
ture into layers and rotating it for inspection.

3 1 1 2

floor 0 floor 1

13 1

1 1

2

1 1

11

1 1

1 1

1

1

floor 2 floor 3

Fig. 29: Layering, visualizing and constructing the prototypes.

15 http://processing.org/
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C.2 Assembly Options

Segments were assembled using several techniques ranging from soldering to super-glue.
The disadvantage of welding was the risk of unsoldering an angle connector while solder-
ing the nearby one (and this indeed happened at times). Super-glue happened to be less
risky but called for dexterity as the glue would harden in a couple of seconds and thereby
make any further correction impossible. All in all super-glue was preferred and allowed the
generation of a variety of experimental pre-silicon cubes shown in Fig. 30. 3D printing using
stereolitography or thermoplastic extrusion (fused deposition modeling) were considered as
well.

Fig. 30: Experimental pre-silicon cubes
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