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Abstract. Multi-precision multiplication is one of the most fundamen-
tal operations on microprocessors to allow public-key cryptography such
as RSA and Elliptic Curve Cryptography (ECC). In this paper, we
present a novel multiplication technique that increases the performance
of multiplication by sophisticated caching of operands. Our method sig-
nificantly reduces the number of needed load instructions which is usually
one of the most expensive operation on modern processors. We evaluate
our new technique on an 8-bit ATmega128 microcontroller and compare
the result with existing solutions. Our implementation needs only 2, 395
clock cycles for a 160-bit multiplication which outperforms related work
by a factor of 10 % to 23 %. The number of required load instructions is
reduced from 167 (needed for the best known hybrid multiplication) to
only 80. Our implementation scales very well even for larger Integer sizes
(required for RSA) and limited register sets. It further fully complies to
existing multiply-accumulate instructions that are integrated in most of
the available processors.

Keywords: Multi-Precision Arithmetic, Microprocessors, Elliptic Curve
Cryptography, RSA, Embedded Devices.

1 Introduction

Multiplication is one of the most important arithmetic operation in public-key
cryptography. It engross most of the resources and execution time of modern
microprocessors (up to 80 % for Elliptic Curve Cryptography (ECC) and RSA
implementations [6]). In order to increase the performance of multiplication, most
effort has been put by researchers and developers to reduce the number of in-
structions or minimize the amount of memory-access operations.

Common multiplication methods are the schoolbook or Comba [4] technique
which are widely used in practice. They require at least 2n2 load instructions
to process all operands and to calculate the necessary partial products. In 2004,
Gura et al. [6] presented a new method that combines the advantages of these
methods (hybrid multiplication). They reduced the number of load instructions
to only 2dn2/de where the parameter d depends on the number of available



registers of the underlying architecture. They reported a performance gain of
about 25 % compared to the classical Comba multiplication. Their 160-bit im-
plementation needs 3,106 clock cycles on an 8-bit ATmega128 microcontroller.
Since then, several authors applied this method [7, 12, 14, 15, 17] and proposed
various enhancements to further improve the performance. Most of the related
work reported between 2,593 and 2,881 clock cycles on the same platform.

In this paper, we present a novel multiplication technique that reduces the
number of needed load instructions to only 2n2/e where e > d. We propose a
new way to process the operands which allows efficiently caching of required
operands. In order to evaluate the performance, we use the ATmega128 micro-
controller and compare the results with related work. For a 160-bit multiplica-
tion, 2,395 clock cycles are necessary which is an improvement by a factor of 10 %
compared to the best reported implementation of Scott et al. [14] (which need
2,651 clock cycles) and by a factor of about 23 % compared to the work of Gura
et al. [6]. We further compare our solution with different Integer sizes (160, 192,
256, 512, 1,024, and 2,048) and register sizes (e = 2, 4, 8, 10, and 20). It shows
that our solution needs about 15 % less clock cycles for any chosen Integer size.
Our solution also scales very well for different register sizes without significant
loss of performance. Besides this, the method fully complies with common ar-
chitectures that support multiply-accumulate instructions using a (Comba-like)
triple-register accumulator.

The paper is organized as follows. In Section 2, we describe related work on
that topic and give performance numbers for different multiplication techniques.
Section 3 describes different multi-precision multiplication techniques used in
practice. We describe the operand scanning, product scanning, and the hybrid
method and compare them with our solution. In Section 4, we present the results
of our evaluations. We describe the ATmega128 architecture and give details
about the implementation. Summary and conclusions are given in Section 5.

2 Related Work

In this section, we describe related work on multi-precision multiplication over
prime fields. Most of the work given in literature make use of the hybrid-
multiplication technique [6] which provides best performance on most micro-
processors. This technique was first presented at CHES 2004 where the authors
reported a speed improvement of up to 25 % compared to the classical Comba-
multiplication technique [4] on 8-bit platforms. Their implementation requires
3,106 clock cycles for a 160-bit multiplication on an ATmega128 [1]. Several
authors adopted the idea and applied the method for different devices and en-
vironments, e.g. sensor nodes. Wang et al. [18] and Ugus et al. [16] made use
of this technique and implemented it on the MICAz motes which feature an
ATmega128 microcontroller. Results for the same platform have been also re-
ported by Liu et al. [11] and Szczechowiak et al. [15] in 2008 who provide software
libraries (TinyECC and NanoECC) for various sensor-mote platforms. One of
the first who improved the implementation of Gura has been due to Uhsadel et
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al. [17]. They have been able to reduce the number of needed clock cycles to only
2,881. Further improvements have been also reported by Scott et al. [14]. They
introduced additional registers (so-called carry catchers) and could increase the
performance to 2,651 clock cycles. Note that they fully unrolled the execution
sequence to avoid additional clock cycles for loop instructions. Similar results
have been also obtained by Kargl et al. [7] in 2008 which reported 2,593 clock
cycles for an un-rolled 160-bit multiplication on the ATmega128.

In 2009, Lederer et al. [9] showed that the needed number of addition and
move instructions can be reduced by simply rearranging the instructions during
execution of the hybrid-multiplication method. Similar findings have been also
reported recently by Liu et al. [12] who reported the fastest looped version of the
hybrid multiplication needing 2,865 clock cycles in total.

3 Multi-Precision Multiplication Techniques

In the following subsections, we describe common multiplication techniques that
are often used in practice. We describe the operand scanning, product scanning,
and hybrid multiplication method1. The methods differ in several ways how to
process the operands and how many load and store instructions are necessary to
perform the calculation. Most of these methods lack in the fact that they load
the same operands not only once but several times throughout the algorithm
which results in additional and unnecessary clock cycles. We present a new mul-
tiplication technique that improves existing solutions by efficiently reducing the
load instructions through sophisticated caching of operands.

Throughout the paper, we use the following notation. Let a and b be two
m-bit large Integers that can be written as multiple-word array structures A =
(A[n−1], . . . , A[2], A[1], A[0]) and B = (B[n−1], . . . , B[2], B[1], B[0]). Further let
W be the word size of the processor (e.g. 8, 16, 32, or 64 bits) and n = dm/W e
the number of needed words to represent the Integers a or b. We denote the
result of the multiplication by c = ab and represent it in a double-size word
array C = (C[2n− 1], . . . , C[2], C[1], C[0]).

3.1 Operand-Scanning Method

Among the most simplest way to perform large Integer multiplication is the
operand-scanning method (or often referred as schoolbook or row-wise multipli-
cation method). The multiplication can be implemented using two nested loop
operations. The outer loop loads the operand A[i] at index i = 0 . . . n − 1 and
keeps the value constant inside the inner loop of the algorithm. Within the in-
ner loop, the multiplicand B[j] is loaded word by word and multiplied with the
operand A[i]. The partial product is then added to the intermediate result of the
same column which is usually buffered in a register or stored in data memory.

1 Note that we do not consider multiplications methods such as Karatsuba-Ofman or
FFT in this paper since they are considered to require more resources and memory
accesses on common microcontrollers than the given methods [8].
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A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

Fig. 1: Operand-scanning multiplication of 8-word large Integers a and b.

Figure 1 shows the structure of the algorithm on the left side. The individual
row levels can be clearly discerned. On the right side of the figure, all n2 partial
products are displayed in form of a rhombus. Each point in the rhombus repre-
sents a multiplication A[i] × B[j]. The most right-sided corner of the rhombus
starts with the lowest indices i, j = 0 and the most left-sided corner ends with
the highest indices i, j = n − 1. By following all multiplications from the right
to the lower-mid corner of the rhombus, it can be observed that the operand
A[i] keeps constant for any index i ∈ [0, n). The same holds true for the operand
B[j] and j ∈ [0, n) by following all multiplications from right to the upper-mid
corner of the rhombus. Note that this is also valid for the left-handed side of the
rhombus.

For the operand-scanning method, it can be seen that the partial products
are calculated from the upper-right side to the lower-left side of the rhombus (we
marked the processing of the partial products with a black arrow). In each row,
n multiplications have to be performed. Furthermore, 2n load operations and n
store operations are required to load the multiplicand and the intermediate result
C[i+ j] and to store the result C[i+ j]← C[i+ j] +A[i]×B[j]. Thus, 3n2 + 2n
memory operations are necessary for the entire multi-precision multiplication.
Note that this number decreases to n2 + 3n for architectures that can maintain
the intermediate result in available working registers.

3.2 Product-Scanning Method

Another way to perform a multi-precision multiplication is the product-scanning
method (also referred as Comba [4] or column-wise multiplication method). There,
each partial product is processed in a column-wise approach. This has several
advantages. First, since all operands of each column are multiplied and added
consecutively (within a multiply-accumulate approach), a final word of the result
is obtained for each column. Thus, no intermediate results have to be stored or
loaded throughout the algorithm. In addition, the handling of carry propagation
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Fig. 2: Product-scanning multiplication of 8-word large Integers a and b.

is very easy because the carry can be simply added to the result of the next
column using a simple register-copy operation. Second, only five working regis-
ters are needed to perform the multiplication: two registers for the operand and
multiplicand and three registers for accumulation2. This makes the method very
suitable for low-resource devices with limited registers.

Figure 2 shows the structure of the product-scanning method. By having
a look at the rhombus, it shows that by processing the partial products in a
column-wise instead of a row-wise approach, only one store operation is needed
to store the final word of the result. For the entire multi-precision operation, 2n2

load operations are necessary to load the operands A[i] and B[j] and 2n store
operations are needed to store the result. Therefore, 2n2+2n memory operations
are needed.

3.3 Hybrid Method

The hybrid multiplication method [6] combines the advantages of the operand-
scanning and product-scanning method. It can be implemented using two nested
loop structures where the outer loop follows a product-scanning approach and the
inner loop performs a multiplication according to the operand-scanning method.

The main idea is to minimize the number of load instructions within the
inner loop. For this, the accumulator has to be increased to a size of 2d + 1
registers. The parameter d defines the number of rows within a processed block.
Note that the hybrid multiplication is equals to the product-scanning method if
parameter d is chosen as d = 1 and it is equal to the operand-scanning method
if d = n.

Figure 3 shows the structure of the hybrid multiplication for d = 4. It shows
that the partial products are processed in form of individual blocks (we marked

2 We assume the allocation of three registers for the accumulator register whereas 2 +
dlog2(n)/W e registers are actually needed to maintain the sum of partial products.
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Fig. 3: Hybrid multiplication of 8-word large Integers a and b (d = 4).

the processing sequence of the blocks from 1 to 4). Within one block, all operands
are processed row by row according to the operand-scanning approach. Note that
these blocks use operands with a very limited range of indices. Thus, several load
instructions can be saved in cases where enough working registers are available.
However, the outer loop of the hybrid method processes the blocks in a column-
wise approach. So between two consecutive blocks no operands can be shared
and all operands have to be loaded from memory again. This becomes clear by
having a look at the processing of Block 1-3. Block 2 and 3 do not share any
operands that possess the same indices. Therefore, all operands that have already
been loaded for Block 1 and that can be reused in Block 3 have to be loaded
again after processing of Block 2 which requires additional and unnecessary load
instructions. However, in total, the hybrid method needs 2dn2/de+ 2n memory-
access instructions which provides good performances on devices that feature a
large register set.

3.4 Operand-Caching Method

We present a new method to perform multi-precision multiplication. The main
idea is to reduce the number of memory accesses to a minimum by efficiently
caching of operands. We show that by spending a certain amount of store opera-
tions, a significant amount of load instructions can be saved by reusing operands
that have been already loaded in working registers.

The method basically follows the product-scanning approach but divides the
calculation into several rows. In fact, the product-scanning method provides best
performance if all needed operands can be maintained in working registers. In
such a case, only 2n load instructions and 2n store instructions would be nec-
essary. However, the product-scanning method becomes inefficient if not enough
registers are available or if the Integer size is too large to cache a significant
amount of operands. Hence, several load instructions are necessary to reload
and overwrite the operands in registers.
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Fig. 4: Operand-caching multiplication of 8-word large Integers a and b (e = 3).

In the light of this fact, we propose to separate the product-scanning method
into individual rows r = bn/ec. The size e of each row is chosen in a way that all
needed words of one operand can be cached in the available working registers.
Figure 4 shows the structure of the proposed method for parameter e = 3. That
means, 3 registers are reserved to store 3 words of operand a and 3 registers
are reserved to store 3 words of operand b. Thus, we assume f = 2e + 3 = 9
available registers including a triple-word accumulator. The calculation is now
separated into r = b8/3c = 2 rows, i.e. r0 and r1, and consists of one remaining
block which we further denote as initialization block binit. This block calculates
the partial products which are not processed by the rows.

All rows are further separated into four parts. Part 1 and 4 use the clas-
sical product-scanning approach. Part 2 and 3 perform an efficient multiply-
accumulate operation of already cached operands.

The algorithm starts with the calculation of binit and processes the individual
rows afterwards (starting from the the smallest to the largest row, i.e. from
the top to the bottom of the rhombus). Furthermore, all partial products are
generated from right to left. In the following, we describe the algorithm in a
more detail.

Initialization Block binit. This block (located in the upper-mid of the rhom-
bus) performs the multiplication according to the classical product-scanning
method. The Integer size of the binit multiplication is (n− re), i.e. 8− 6 = 2
in our example, which is by definition smaller than e. Because of that, all
operands can be loaded and maintained within the available registers result-
ing in only 4(n − re) memory-access operations. Note that the calculation
of binit is only required if there exist remaining partial products, i.e. n mod
e 6= 0. If n mod e = 0, the calculation of binit is skipped. Furthermore,
consider the special case when n < e where only binit has to be performed
skipping the processing of rows (trivial case).

Processing of Rows. In the following, we describe the processing of each row
p = r − 1 . . . 0. Each row consists of four parts.
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Fig. 5: Processing of Part 2 and 3 of the row r1.

Part 1. This part starts with a product-scanning multiplication. All operands
for that row are first loaded into registers, i.e. A[i] with i = pe . . . e(p + 1)− 1
and B[j] with j = 0 . . . e− 1. The sum of all partial products A[i]× B[j] is
then stored as intermediate result to the memory location C[i] (same index
range as A[i]). Therefore, 2e load instructions and e store instructions are
needed.

Part 2. The second part, processes n − e(p + 1) columns using a multiply-
accumulate approach. Since all operands of A[i] were already loaded and
used in Part 1, only one word B[j] has to be loaded from one column to
the next. The operands A[i] are kept constant throughout the processing of
Part 2. Next to the needed load instructions for B[j], we have to load and
update the intermediate result of Part 1 with the result obtained in Part 2.
Thus, 2(n − e(p + 1)) load and n − e(p + 1) store instructions are required
for that part.

Part 3. The third part performs the same operation as described in Part 2
except that the already loaded operands B[j] are kept constant and that
one word A[i] is loaded for each column. Figure 5 shows the processing of
Part 2 and 3 of row r1 (p = 0). For each column, two load instructions are
necessary (marked in grey). All other operands have been loaded and cached
in previous parts. Operands which are not required for further processing
are overwritten by new operands, e.g. B[1] . . . B[4] in Part 2 of our example.

Part 4. The last part calculates the remaining partial products. In contrast to
Part 1, no load instructions are required since all operands have been already
loaded in Part 3. Hence, only e memory-access operations are needed to store
the remaining words of the (intermediate) result c.

Table 1 summaries the memory-access complexity of the initialization block
and the individual parts of a row p. By summing up all load instructions, we get

2(n− re) +

r−1∑
p=0

(4n− 4pe− 2e) = 2n + 4rn− 2er2 − 2er ≤ 2n2

e
. (1)
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Table 1: Memory-access complexity of binit and each part of row p = 0 . . . r − 1.

Component Load Instr. Store Instr. Total

binit 2(n− re) 2(n− re) 4(n− re)
Part 1 2e e 3e
Part 2 2(n− e(p + 1)) n− e(p + 1) 3(n− e(p + 1))
Part 3 2(n− e(p + 1)) n− e(p + 1) 3(n− e(p + 1))
Part 4 0 e e

The total number of store operations can be evaluated by

2(n− re) +

r−1∑
p=0

(2n− 2pe) = 2n + 2rn− er2 − er ≤ n2

e
+ n. (2)

Table 2 lists the complexity of different multi-precision multiplication tech-

niques. It shows that the hybrid method needs 2dn
2

d e load instructions whereas

the operand-caching technique needs about 2n2

e . Since the total number of avail-
able registers f equals to 2e + 3 for the operand-caching technique (2e registers
for the operand registers and three registers for the accumulator) and 3d+ 2 for
the hybrid method (d + 1 registers for the operands and 2d + 1 registers for the
accumulator), we obtain

2e + 3 = 3d + 2 =⇒ e =
3d− 1

2
and e > d. (3)

If we compare the total number of memory-access instructions for the hybrid
and the operand-caching method and express both runtimes using f , we get

2

⌈
3n2

f − 2

⌉
+ 2n >

6n2

f − 3
+ n (4)

Note that there are more parameters to consider. The number of additions
of the operand-caching method is 3n2 and the number of additions of the hybrid
method is n2(2 + d/2) (upper bound). Also the pseudocode of Gura et al. [6] for
the hybrid multiplication method is inefficient in the special case of n mod d 6= 0.

Table 2: Memory-access complexity of different multiplication techniques.

Method Load Store Memory
Instructions Instructions Instructions

Operand Scanning 2n2 + n n2 + n 3n2 + 2n
Product Scanning [4] 2n2 2n 2n2 + 2n
Hybrid [6] 2dn2/de 2n 2dn2/de+ 2n
Operand Caching 2n2/e n2/e + n 3n2/e + n
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Table 3: Unrolled instruction counts for a 160-bit multiplication on the ATmega128.

Method Instruction Clock
LD ST MUL ADD MOVW Others Cycles

Operand Scanning 820 440 400 1,600 2 464 5,427
Product Scanning 800 40 400 1,200 2 159 3,957
Hybrid (d=4) 200 40 400 1,250 202 109 2,904
Operand Caching (e=10) 80 60 400 1,240 2 68 2,395

4 Results

We used the 8-bit ATmega128 microcontroller for evaluating the new multiplica-
tion technique. The ATmega128 is part of the megaAVR family from Atmel [1].
It has been widely used in embedded systems, automotive environments, and
sensor-node applications. The ATmega128 is based on a RISC architecture and
provides 133 instructions [2]. The maximum operating frequency is 16 MHz. The
device features 128 kB of flash memory and 4 kB of internal SRAM. There ex-
ist 32 8-bit general-purpose registers (R0 to R31). Three 16-bit registers can
be used for memory addressing, i.e. R26:R27, R28:R29, and R30:R31 which
are denoted as X, Y, and Z. Note that the processor also allows pre-decrement
and post-increment functionalities that can be used for efficient addressing of
operands. The ATmega128 further provides an hardware multiplier that per-
forms an 8 × 8-bit multiplication within two clock cycles. The 16-bit result is
stored in the registers R0 (lower word) and R1 (higher word).

We used register R25 to store a zero value. Furthermore, we reserved R23,
R24, and R25 as accumulator register. Thus, 20 registers, i.e. R2...R21, can be
used to store and cache the words of the operands (e = 10 registers for each
operand a and b). All implementations have been done by using a self-written
code generator that allows the generation of (looped & unrolled) assembly code.

In order to demonstrate the performance of our method, we implemented
all multiplication techniques described in Section 3. For comparison reasons, we
decided to implement a 160 × 160-bit multiplication as it has been done by
most of the related work. Note that for RSA and ECC, larger Integer sizes
are recommended in practice [10, 13]. The Standards for Efficient Cryptography
(SEC) already removed the recommended secp160r1 elliptic curve from their
standard since SEC version 2 of 2010 [3].

Table 3 summarizes the instruction counts for the operand scanning, product
scanning, hybrid, and operand-caching implementation. The operand-scanning
and product-scanning methods have been implemented without using all the
available registers (as it usually would be implemented). For hybrid multiplica-
tion, we applied d = 4 because it allows a better optimization regarding necessary
addition operations compared to a multiplication with d = 5. The carry propa-
gation problem has been solved by implementing a similar approach as proposed
by Liu et al. [12]. Thus, 200 MOVW instructions have been necessary to handle
the carry propagation accordingly. For a fair comparison, all methods have been
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Table 4: Comparison of multiplication methods
for different Integer sizes.

Size Op. Prod. Hybrid Operand
[bit] Scan. Scan. Method Caching

160 5,427 3,957 2,904 2,395
192 7,759 5,613 4,144 3,469
256 13,671 9,789 7,284 6,123
512 53,959 38,013 28,644 24,317
1,024 214,407 149,757 113,604 96,933
2,048 854,791 594,429 452,484 387,195

160 256 512 1024 2048
103

104

105

106

Integer size

C
lo

ck
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yc
le

s

 

 

Op. Scan.
Prod. Scan.
Hybrid
Op. Caching

Fig. 6: Comparison chart.

optimized for speed and provide unrolled instruction sequences. Furthermore,
we implemented all accumulators as ring buffers to reduce necessary MOV in-
structions. After each partial-product generation, the indices of the accumulator
registers are shifted so that no MOV instructions are necessary to copy the carry.

Best results have been obtained for the operand-caching technique. By trad-
ing additional 20 store instructions, up to 120 load instructions could be saved
when we compare the result with the best reference values (hybrid implemen-
tation). Note that load, store, and multiply instructions on the ATmega128 are
more expensive than other instructions since they require two clock cycles in-
stead of only one. For operand-caching multiplication, almost the same amount
of load and store instructions are required. In total 2,395 clock cycles are needed
to perform the multiplication. Compared to the hybrid implementation, a speed
improvement of about 18 % could be achieved.

We also compare the performance of the implemented multi-precision meth-
ods for different Integer sizes. Table 4 shows the result for Integer sizes from 160
up to 2,048 bits3. The operand-caching technique provides the best performance
for any Integer size. It is therefore well suited for large Integer sizes such as it
is in the case of RSA. In average, a speed improvement of about 15 % could
be achieved compared to the hybrid method. Figure 6 shows the appropriate
performance chart in a double logarithmic scale.

3 Note that due to a fully unrolled implementation such large Integer multiplications
might be impractical due to the huge amount of code.

Table 5: Performance of operand-caching multi-
plication for different Integer sizes and available
registers.

Size e=2 e=4 e=8 e=10 e=20

160 3,915 2,965 2,513 2,395 2,205
192 5,611 4,255 3,577 3,469 3,207
256 9,915 7,531 6,339 6,123 5,671
512 39,291 29,915 25,227 24,317 22,451
1,024 156,411 119,227 100,635 96,933 89,529
2,048 624,123 476,027 401,979 387,195 357,581

2 4 8 10 20
103

104

105

106

Available registers e

C
lo

ck
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yc
le

s

 

 
2048
1024
512
256
192
160

Fig. 7: Performance chart.
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Table 6: Comparison with related work.

Method Instruction Clock
LD ST MUL ADD MOVW Others Cycles

Hybrid
Gura et al. [6] (d=5) 167 40 400 1,360 355 197 3,106
Uhsadel et al. [17] (d=5) 238 40 400 986 355 184 2,881
Scott et al. [14] (d=4)a 200 40 400 1,263 70 38 2,651
Liu et al. [12] (d=4) 200 40 400 1,194 212 179 2,865

Operand Caching
with loopinga,c (e=9) 92 66 400 1,252 41 276 2,685

unrolledb,c (e=10) 80 60 400 1,240 2 68 2,395

a binit, Part 1, and Part 4 unrolled. Part 2 and Part 3 looped.
b Fully unrolled implementation without overhead of loop instructions.
c w/o PUSH/POP/CALL/RET.

Table 5 and Figure 7 show the performance for different Integer sizes in re-
lation to parameter e. The parameter e is defined by the number of available
registers to store words of one operand, i.e. e = f−3

2 , where f = 2e + 3 denotes
the number of available registers in total (including the triple-size register for
the accumulator). It shows that for e > 10 no significant improvement in speed
is obtained. The performance decrease for smaller e and higher Integer sizes.
However, if we compare our solution (160-bit multiplication with smallest pa-
rameter e = 2 → f = 7 registers) with the product-scanning method (needing
f = 5 registers), we obtain 3,915 clock cycles for the operand-caching method
and 3,957 clock cycles for the product scanning method. It therefore provides
a good performance even for a smaller set of available registers. For the special
case e = 20, where all 20 words of one 160-bit operand can be maintained in reg-
isters (ideal case for product scanning), it shows that the number of clock cycles
reaches nearly the optimum of 2,160 clock cycles, i.e. 4n = 80 memory-access
instructions, n2 = 400 multiplications, and 3n2 = 1, 200 additions.

We compare our result with related work in Table 6. For a fair comparison, we
also implemented a operand-caching version that does not unroll the algorithm
but includes additional loop instructions. It shows that the operand-caching
method provides best performance. Compared to Gura et al. [6] 23 % less clock
cycles are needed for a 160-bit multiplication. A 10 % improvement could be
achieved compared to the best solution reported in literature [14]. Note that
most of the related work need between 167 to 238 load instructions which mostly
explains the higher amount of needed clock cycles.

5 Conclusions

We presented a novel multiplication technique for embedded microprocessors.
The multiplication method reduces the number of necessary load instructions
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through sophisticated caching of operands. Our solution follows the product-
scanning approach but divides the processing into several parts. This allows
the scanning of sub-products where most of the operands are kept within the
register-set throughout the algorithm.

In order to evaluate our solution, we implemented several multiplication tech-
niques using different Integer sizes on the ATmega128 microcontroller. Using
operand-caching multiplication, we require 2,395 clock cycles for a 160-bit multi-
plication. This result improves the best reported solution by a factor of 10 % [14].
Compared to the hybrid multiplication of Gura et al. [6], we achieved a speed
up of 23 %. Our evaluation further showed that our solution scales very well for
different Integer sizes used for ECC and RSA. We obtained an improvement of
about 15 % for bit sizes between 256 and 2,048 bits compared to a reference
implementation of the hybrid multiplication.

It is also worth to note that our multiplication method is perfectly suitable for
processors that support multiply-accumulate (MULACC) instructions such as ARM
or the dsPIC family of microcontrollers. It also fully complies to architectures
which support instruction-set extensions for MULACC operations such as proposed
by Großschädl and Savaş [5].
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A Algorithm for Operand-Caching Multiplication

The following pseudo code shows the algorithm for multi-precision multipli-
cation using the operand-caching method. Variables that are located in data
memory are denoted by Mx where x represents the name of the Integer a or
b. The parameter e describes the number of locally usable registers Ra[e −
1, . . . , 0] and Rb[e−1, . . . , 0]. The triple-word accumulator is denoted by ACC =
(ACC2, ACC1, ACC0).
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Require: word size n, parameter e, n ≥ e, Integers a, b ∈
[0, n), c ∈ [0, 2n).

Ensure: c = ab.
r = bn/ec.
RA[e− 1, . . . , 0]←MA[n− 1, . . . , re].
RB [e− 1, . . . , 0]←MB [n− re− 1, . . . , 0].
ACC ← 0.
for i = 0 to n− re− 1 do
for j = 0 to i do

ACC ← ACC + RA[j] ∗RB [i− j].
end for
MC [re + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
for i = 0 to n− re− 2 do
for j = i + 1 to n− re− 1 do

ACC ← ACC + RA[j] ∗RB [n− re− j + i].
end for
MC [n + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
MC [2n− re− 1]← ACC0.
ACC0 ← 0.



binit

for p = r − 1 to 0 do } Row Loop:

RA[e− 1, . . . , 0]←MA[(p + 1)e− 1, . . . , pe].
RB [e− 1, . . . , 0]←MB [e− 1, . . . , 0].
for i = 0 to e− 1 do
for j = 0 to i do
ACC ← ACC + RA[j] ∗RB [i− j].

end for
MC [pe + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for


Part 1

for i = 0 to n− (p + 1)e− 1 do
RB [e− 1, . . . , 0]←MB [e + i], RB [e− 2, . . . , 1].
for j = 0 to e− 1 do
ACC ← ACC + RA[j] ∗RB [e− 1− j].

end for
ACC ← ACC + MC [(p + 1)e + i].
MC [(p + 1)e + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for


Part 2
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for i = 0 to n− (p + 1)e− 1 do
RA[e− 1, . . . , 0]←MA[(p + 1)e + i], RA[e− 2, . . . , 1].
for j = 0 to e− 1 do
ACC ← ACC + RA[j] ∗RB [e− 1− j].

end for
ACC ← ACC + MC [(n + i].
MC [n + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for



Part 3

for i = 0 to e− 2 do
for j = i + 1 to e− 1 do
ACC ← ACC + RA[j] ∗RB [e− j + i].

end for
MC [2n− (p + 1)e + i]← ACC0.
(ACC1, ACC0)← (ACC2, ACC1).
ACC2 ← 0.

end for
MC [2n− 1− pe]← ACC0.
ACC0 ← 0.

end for
Return c.



Part 4

B Example: 160-Bit Operand-Caching Multiplication

A[19]B[19]

A[0]B[19]

A[19]B[0]

A[0]B[0]

C[0]C[19]C[38]

1

23

4 1

2
3

4

r0

r1

binit

Fig. 8: Operand-caching multiplication for n = 20 and e = 7.
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