
Meet-in-the-Middle and Impossible Differential Fault

Analysis on AES

Patrick Derbez1, Pierre-Alain Fouque1, and Delphine Leresteux2

1 École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris CEDEX 05
2 DGA Information Superiority, BP7, 35998 Rennes Armées

patrick.derbez@ens.fr

pierre-alain.fouque@ens.fr

delphine.leresteux@dga.defense.gouv.fr

Abstract. Since the early work of Piret and Quisquater on fault attacks against
AES at CHES 2003, many works have been devoted to reduce the number of faults
and to improve the time complexity of this attack. This attack is very efficient as
a single fault is injected on the third round before the end, and then it allows
to recover the whole secret key in 232 in time and memory. However, since this
attack, it is an open problem to know if provoking a fault at a former round of the
cipher allows to recover the key. Indeed, since two rounds of AES achieve a full
diffusion and adding protections against fault attack decreases the performance,
some countermeasures propose to protect only the three first and last rounds. In
this paper, we give an answer to this problem by showing two practical crypto-
graphic attacks on one round earlier of AES-128 and for all keysize variants. The
first attack requires 10 faults and its complexity is around 240 in time and memory,
an improvement allows only 5 faults and its complexity in memory is reduced to
224 while the second one requires either 1000 or 45 faults depending on fault model
and recovers the secret key in around 240 in time and memory.

Keywords : AES, Differential Fault Analysis, Fault Attack, Impossible Differen-
tial Attack, Meet-in-the-Middle Attack.

1 Introduction

Fault Analysis was introduced in 1996 by Boneh et al. [8] against RSA-CRT implemen-
tations and soon after Biham and Shamir described differential fault attack on the DES
block cipher [4]. Several techniques are known today to provoke faults during compu-
tations such as provoking a spike on the power supply, a glitch on the clock, or using
external methods based on laser, Focused Ion Beam, or electromagnetic radiations [18].
These techniques usually target hardware or software components of smartcards, such as
memory, register, data or address bus, assembly commands and so on [1]. After a query
phase where the adversary collects pairs of correct and faulty ciphertexts, a cryptographic
analysis of these data allows to reveal the secret key. The knowledge of a small difference
at an inner computational step allows to reduce the analysis to a small number of rounds
of a block cipher for instance. On the AES block cipher, many such attacks have been
proposed [6, 14, 17, 23, 27] and the first non trivial and the most efficient attack has been
described by Piret and Quisquater in [27].

Related Works. The embedded software and hardware AES implementations are par-
ticularly vulnerable to side channel analysis [5, 7, 30]. Considering fault analysis, it exists
actually three different categories of attacks. The first category is non cryptographic and
allows to reduce the number of rounds by provoking a fault on the round counter [1,
11]. In the second category, cryptographic attacks perform fault in the state during a
round [6, 14, 17, 23, 27] and in the third category, the faults are performed during the key
schedule [10, 17, 31].

Several fault models have been considered to attack AES implementations. The first
one and the less common is the random bit fault [6], where a fault allows to switch
a specific bit. The more realistic and widespread fault model is the random byte fault
model used in the Piret-Quisquater attack [27], where a byte somewhere in the state is
modified. These different fault models depend on the technique used to provoke the faults.

Piret and Quisquater described a general Differential Fault Analysis (DFA), against
Substitution Permutation Network schemes in [27]. Their attack uses a single random
byte fault model injected between the two last MixColumns of AES-128. They exploited
only 2 pairs of correct and faulty ciphertexts. Since this article was published in 2003,
many works have proposed to reduce the number of faults needed in [24, 32], or to apply
this attack to AES-192 and to AES-256 [20].

There exist two kinds of countermeasures to protect AES implementations against
fault attacks. The first category detects fault injection with hardware sensors for instance.
However, they are specifically designed for one precise fault injection mean and do not
protect against all different fault injection techniques. The second one protects hardware
implementation against fault effects. This kind of countermeasures increases the hardware
surface requirement as well as the number of operations. As a consequence, there is a
tradeoff between the protection and the efficiency and countermeasures essentially only
protect from existing fault attacks by taking into account the known state-of-the-art fault
analysis. Therefore, the first three and the last three rounds used to be protected [12].
The same kind of countermeasures has been performed on DES implementation and a
rich literature has been devoted to increase the number of attacked rounds as it is done
in [28]. Securing AES implementation consists in duplicating rounds, verifying operation
with inverse operation for non-linear operations and with complementary property for
linear ones, for example. Moreover, another approach computes and associates to each
vulnerable intermediate value a cyclic redundancy checksum or, an error detection or
correction code, for instance fault detection for AES S-Boxes [19] as it has been proposed
at CHES 2008. Our attacks could target any operation between MixColumns at the 6th

round and MixColumns at the 7th round. Another countermeasure consists in preventing
from fault attack inside round [29]. However, it is possible to perform fault injection
between rounds.

Our Results. We show that it is possible to mount realistic attacks between MixColumns
at the 6th round and MixColumns at the 7th round on AES-128. In particular, we present
one new attack and improve a second one at the 7th round on AES-128. We mount our
attacks in two different fault models. The first attack corresponds of a strong adversary
who could choose or know the attacked byte at the chosen round. The cryptographic
analysis relies on a meet-in-the-middle and its complexity is around 242 in time and

memory. It only requires 10 pairs of correct and faulty ciphertexts. Recently, in [9], authors
developed automatic tool that allows us to automatically recover an improved attack with
only 5 pairs and 224 in memory. The second attack describes an adversary that targets
any byte among 16 bytes of the inner state at the targeted round. It uses ideas similar to
impossible differential attack and allows to recover the secret key using around 240 time.
However, this attack requires 1000 pairs. If the position is fixed, the number of faults is
reduced to 45. We have verified this attack experimentally using glitch fault on the clock
on an embedded microprocessor board which contains an AES software and simulated
these two last attacks. Finally, we extend all the attacks to AES-192 and AES-256.

Attack Section Fault model # of faults AES-128 AES-192 &
cost AES-256 cost

Meet-in-the-Middle 3.2 known byte 10 ≃ 240
≃ 240

Meet-in-the-Middle 3.3 unknown byte 10 ≃ 260
≃ 260

Meet-in-the-Middle 3.4 fixed unknown byte 5 ≃ 240
≃ 240

Impossible 4.2 random unknown byte 1000 ≃ 240
≃ 240

Impossible 4.3 fixed unknown byte 45 ≃ 240
≃ 240

Table 1. Summary of Differential Fault Analysis presented in this paper

Organization of the paper. In Section 2, we recall the backgrounds on AES and on
the Piret-Quisquater attack. Then, we describe our meet-in-the-middle and our impossible
differential attack on the 7th round in Sections 3 and 4 for AES-128. Finally, in Section
5, we extend these results to the other versions of AES.

2 Backgrounds and Previous Attacks

In this section, we recall the AES operations and we briefly explain how the Piret-
Quisquater attack works.

2.1 Description of the AES

AES [15] has a 128-bit input block and can be used with three different keysizes 128, 192
or 256-bit. It iterates 10 rounds (resp. 12 and 14) for the 128-bit version (resp. for the
192-bit version and for the 256-bit version). According to the bitlength version, we define
n as the number of rounds. In Figure 1, we describe one round of the AES which is a
composition of the SubBytes, ShiftRows, MixColumns and AddRoundKey operations.

SubBytes (SB). This operation substitutes a value to another one according to the
permutation table S-Box, which associates 256 input toward 256 output values. Its goal
is to mix non-linearly the bits into one byte.

ShiftRows (SR). This operation changes byte order in the state depending on the row.
Each row has its own permutation. The first row changes nothing, the second row is

Fig. 1. SubBytes, ShiftRows and MixColumns operations [15]

rotated by one position to the left, the third row is rotated by two positions to the left,
the fourth row is rotated by three positions to the left.

MixColumns (MC). This operation linearly mixes state bytes by columns and consists
in the multiplication of each columns of the state by an MDS matrix (Maximum Distance
Separable) in the finite field GF (28). We will use the property that, when the input
column has one non-null difference in one byte, all the bytes after this operation have a
non-null difference.

AddRoundKey Operation (ARK). This operation is only a XOR between interme-
diate state and the subkey generated by the key schedule.

KeySchedule. The key schedule, which derives the symmetric key K, is composed of two
operations, RotWord and SubWord. RotWord is a circular permutation of four elements
of one column. SubWord operation corresponds to SubBytes. It is well-known that one
subkey of AES-128 allows to retrieve master key K and two consecutive subkeys of AES-
192 and AES-256 allow to recover the whole key K. We denote by K10 the last subkey
of AES-128 and by K10(0) the first byte of the last subkey of AES-128.

2.2 Previous Differential Fault Analysis

In [27], Piret and Quisquater assume a fault injection on one byte during the state com-
putation between the 2 last MixColumns on AES-128 as it is represented in the Figure 2.
This attack allows to recover the last subkey in 240 in time and 232 in memory. The idea
of the attack consists of expressing 4 differential equation systems at the beginning of the
last round state S12. One system is described for each column like equation system (1),
where X denotes a non-null byte difference in state S10. After collecting two couples of
correct and faulty ciphertexts, they entirely retrieve the subkey K10.

SB−1(C(0) ⊕ K10(0)) ⊕ SB−1(C̃(0) ⊕ K10(0)) = X

SB−1(C(13) ⊕ K10(13)) ⊕ SB−1(C̃(13) ⊕ K10(13)) = X

SB−1(C(10) ⊕ K10(10)) ⊕ SB−1(C̃(10) ⊕ K10(10)) = 3X

SB−1(C(7) ⊕ K10(7)) ⊕ SB−1(C̃(7) ⊕ K10(7)) = 2X

(1)

The right-hand side of the equation system is described one round earlier in an-
nexe B. With only one couple of right and wrong associated results, these equations (1)
allow to reduce the possible subkeys from (28)4 = 232 to 28 for each equation sys-
tem. Indeed, according to system (1), there are (28)4 = 232 possible quadruplets of

Fig. 2. State-of-the-art differential fault analysis on AES-128

the whole K10:{K10(0),K10(13),K10(10),K10(7)}. Moreover, there are 240 candidates for
{X,K10(0),K10(13),K10(10),K10(7)}, and the 4 equations give a 32-bit constraint, and

consequently, the number of solution is 240

232 = 28. Then, instead of using another pair of
faulty and correct ciphertext as it is done in [27], an exhaustive search can be performed
at the end. In the following sections, we will present our differential fault analysis.

3 Meet-in-the-Middle Fault Analysis on AES-128

In our attack, we realize a fault injection on one byte between MixColumns at the 6th

round and MixColumns at the 7th round on AES-128. The fault is totally diffused at the
whole 10th round as the Figure 3 shows it. This fault analysis requires 10 pairs of correct
and faulty ciphertexts. If the attacker knows exactly which byte is faulted, the complexity
of the attack is around 240 in time and memory. The overall attack consists in expressing
the fault path from the ciphertext to the beginning of the 9th round in the backward
direction, and in the forward direction from the fault injection to the beginning of the 9th

round. Figure 3 illustrates the error propagation. A classical cryptographic attack against
AES, such as the square attack [13], allows to add two rounds after the distinguisher by
guessing 5 key bytes. However, this allows to recover one byte of the state. Here, we need
to know two bytes of the state, which depend each on 5 different key bytes. By using a
clever meet-in-the-middle attack as in the attack of Gilbert and Minier in [16], we are
able to recover the key using only 240 space and time. In the following of this section, we
explain our differential fault system, our method to retrieve all bytes of the last subkey
of AES-128 and its complexity.

Fig. 3. Overall meet-in-the-middle fault attack on AES-128

3.1 From Fault Path to Differential Fault Equations

The left-hand side of the equation (2) describes the fault path from the ciphertext C at
the 10th round toward the state S8 at the beginning of the 9th round. We obtain:

S8 = SB−1
(

SR−1
(

MC−1
(

ARK−1
(

SB−1
(

SR−1
(

ARK−1(C)
))))))

(2)

We consider each equation byte by byte. The notation S8(x) denotes the value of the
byte x at the state 8. We get the following relations (3) and (4) with S8(0) and the similar
one with S̃8(0) as a function of faulty ciphertext C̃, where MC|0 denotes the projection
onto the state into the first byte 0.

S8(0) = SB−1
(

MC−1|0
(

SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13)) ⊕ K9(0, 1, 2, 3)
))

(3)

If we define U9(0) for
(

MC−1|0 (K9(0, 1, 2, 3))
)

. Consequently, the byte S8(0) has the
simple expression that depends on 5 unknown bytes, which come key bytes:

S8(0) = SB−1
(

MC−1|0
(

SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13))
)

⊕ U9(0)
)

(4)

We obtain a differential equation from the difference between the correct and the
faulty state at the end of MixColumns of the 8th round, for example, the first differential
equation system (5).

S8(0) ⊕ S̃8(0) = X

S8(1) ⊕ S̃8(1) = X

S8(2) ⊕ S̃8(2) = 3X

S8(3) ⊕ S̃8(3) = 2X

(5)

where X denotes for example the unknown difference of the first column in state S6 (see
Appendix B). We notice that the difference at the end of MixColumns of the 8th round
is equal to the difference at the end of AddRoundKey of the 8th round for AES-128. As
we mentioned before each equation depends on 5 unknown bytes. We can eliminate the
unknown X by considering the following equation:

S8(0) ⊕ S̃8(0) = S8(1) ⊕ S̃8(1). (6)

In the next subsection, we will explain how we solve this equation that depend on 80 key
bits in time and memory 240 using 10 pairs of faulty and correct ciphertexts.

3.2 Recovery K10

We are interesting in solving 4 difference equations like (5). To simplify the exposition,
we will assume that the fault is injected at a known position. Furthermore, the adversary
has 10 pairs of correct and faulty ciphertexts and all faults are introduced between the
MixColumns at the 6th round and the MixColumns at the 7th round. The constant U9(0)
is invariant for S8(x) or S̃8(x) where x ∈ {0, 1, 2, 3} whatever the plaintext value is.

One idea to solve the system is the following. We consider equation (6) for the ten
pairs. Then, we can compute the left hand side for the 240 possible key bytes and store
the ten bytes S8(0) ⊕ S̃8(0) and the key bytes in a first list. Then, we do the same with
the right hand side and store the ten bytes S8(1) ⊕ S̃8(1) and the key bytes in a second
list. We can merge the two lists, sort them and find collision for the ten bytes. If there
is a collision between the two lists, the values of the key bytes gives a solution for the 80
key bits. This simple technique allows to recover the key bytes in time 245 and memory
241. We can reduce the space complexity by storing and sorting the list and for each value
computed for the second list, we look at if it is also in the first list.

In the following, we present a technique that avoids to increase the time complexity
too much by using a hash table.

1. The differential state S8(0) ⊕ S̃8(0) is calculated for the 5 pairs of faulty and cor-
rect ciphertexts and the results are stored in one hash table according to the values
Si

8(0) ⊕ S̃i
8(0)1≤i≤5in the one hand, and for the 5 others in the other hand for all possi-

ble values of {K10(0),K10(7),K10(10),K10(13), U9(0)}. These two hash tables have for
input index 5 values of S8(0)⊕S̃8(0) and for output {K10(0),K10(7),K10(10),K10(13),
U9(0)}.

2. Then we calculate α(S8(1) ⊕ S̃8(1)) for all 10 couples of correct and faulty cipher-
texts, for all possible hypotheses of K10(3), K10(6), K10(9), K10(12) and U9(13).
Where U9(13) = MC−1|13 (K9(12, 13, 14, 15)) and α is known because fault position
is known, i.e α = 1. Therefore, we have a relation (7) between S8(1) and S8(0) such
as:

S8(0) ⊕ S̃8(0) = α(S8(1) ⊕ S̃8(1)) (7)

For each guess for {K10(3),K10(6),K10(9),K10(12), U9(13)}, due to the 5 first S8(0)⊕
S̃8(0) indexes and the 5 first α(S8(1)⊕ S̃8(1)) calculations, we retrieve a very few po-
tential number of solutions {K10(0),K10(7),K10(10),K10(13), U9(0)} closed to 1 for
the first hash table. For the second table, we obtain similar results too. For each table,
we make and arrange a linked list for the results of {K10(0),K10(7),K10(10),K10(13),
U9(0)}. Due to these two arrangements and only for the right values of {K10(0),K10(7),
K10(10),K10(13), U9(0)}, we have only one intersection between the two linked lists;
that is why we only retrieve 8 bytes of K10 and the value of α is confirmed for each
couple of correct and faulty ciphertexts.

3. We similarly compute β(S8(2) ⊕ S̃8(2)) for the 10 couples of correct and faulty ci-
phertexts, and for all potential subkey bytes of K10(2), K10(5), K10(8), K10(15) and
U9(10), where U9(10) = MC−1|10 (K9(8, 9, 10, 11)). As step 3, β is known for known
fault position, i.e β = 1

3 . We obtain the equation (8):

S8(0) ⊕ S̃8(0) = β(S8(2) ⊕ S̃8(2)) (8)

Due to previous step, we have knowledge of the value S8(0)⊕ S̃8(0) for the 10 pairs of
cipher results. We reuse the previous method of two arranged linked lists. We retrieve
K10(2), K10(5), K10(8), K10(15) and U9(10).

4. As S8(2), we compute S8(3) ⊕ S̃8(3) for the 10 correct and faulty ciphertexts for all
possible subkey bytes of {K10(1),K10(4),K10(11),K10(14), U9(7)}. Where U9(7) =
MC−1|7 (K9(4, 5, 6, 7)) and γ = 1

2 . We have the equation (9):

S8(0) ⊕ S̃8(0) = γ(S8(3) ⊕ S̃8(3)) (9)

We also retrieve K10(1), K10(4), K10(11), K10(14), U9(7) as step 3.

3.3 Cost and Complexity

By the birthday paradox, we have two hash tables with 240 values inside. The complexity
of all the system is also 280. However each equation gives 8-bit constraints, so with ten
equations we obtain 80-bit constraints. Consequently, with ten ciphertexts, there is only
one solution in our system. Our meet-in-the-middle fault attack requires around 240 in
complexity for AES-128: 240 in memory and 3 × 240 in instructions.

Random Byte Fault Model. In equation (7), α takes on the values { 1
3 , 1, 3

2 , 2}
in case of unknown fault position. Several cases could be studied. In the first one, we
know exactly for each faulty ciphertext byte faulty position, we have knowledge of α for
each equation. In the second one, we use the same method to inject fault at the same
time, we suppose that the same byte is faulted. For consequences, it multiplies by four
the computations. In the third case, the worst, we make no assumptions on the location
of the fault for each pair of correct and incorrect ciphertexts. In fact for each couple of
correct and incorrect results, we need to compute 4 intermediate results. This operation
costs 410 values more, it costs too much, i.e 260.

3.4 Reduction of Memory Requirement

We suppose that an adversary has a sixtuplet of the correct message and five faulty
ciphertexts, with all five faults on the same byte. In this case, the tool from [9] allows us

to find a similar attack but it requires much less memory, 224 instead of 240.
The previous attack can be schematized as follows :

– Build the four lists, the index 0 corresponds to the correct ciphertext :

• L0 =
{(

K10 (0) ,K10 (7) ,K10 (10) ,K10 (13) , S0
9 (0)

)}

• L1 =
{(

K10 (3) ,K10 (6) ,K10 (9) ,K10 (12) , S0
9 (1)

)}

• L2 =
{(

K10 (2) ,K10 (5) ,K10 (8) ,K10 (15) , S0
9 (2)

)}

• L3 =
{(

K10 (1) ,K10 (4) ,K10 (11) ,K10 (14) , S0
9 (3)

)}

– Each element of Li allows to deduce unique values for ∆Sj
8 (i) , j = 1, . . . , 5 is the

index of jth faulty ciphertext.

– Look for collisions since the vector
(

∆Sj
8 (0) , . . . ,∆Sj

8 (3)
)

must be collinear with a

column vector of the matrix of the MixColumn operation.

To reduce memory, we note that we can build each list in beginning with guessing ∆S1
8 (0)

and ∆S2
8 (0). This operation allows us to partially build the lists and thus save memory.

Building, for example, the list L0 by assuming that these values are known :

– Build the list L′
0 =

{(

K10 (0) , S0
8 (0)

)}

– Each element of L′
0 allows to deduce unique values for :

• ∆Sj
10 (0) , j = 1, 2

• ∆Sj
11 (0) , j = 1, . . . , 5

– Guess K10 (7) ,K10 (10) ,K10 (13)

• Deduce ∆Sj
11 (1, 2, 3) , j = 1, . . . , 5

• Look in L′
0 corresponding values for K10 (0) and S0

8 (0) using ∆Sj
11 = MC

(

∆Sj
10

)

• Deduce ∆Sj
8 (0) , j = 3, 4, 5

L1, L2 and L3 can be built in the same way.
This improvement makes the attack much more feasible. The implementation providing
by the tool takes a little bit more than 13 days on a Core 2 Duo E8500 and 900MB of
ram to test all possibilities but it can be improved by parallelizing the C code.

4 Impossible Differential Fault Attack on AES-128

In this section, we present a more efficient attack since we do not assume where the fault
is provoked and the time complexity is reduced to 241. However, this fault attack needs
more faulty ciphertexts, less than 1000 or 45 depending on the fault model. Our attack
is based on the fact that it is impossible to have a zero-difference in state S10 in the 9th

round just before MixColumns operation; as Phan and Yen mentioned this fact in [26]
and developed with an example of the fault injected on the subkey K7 in the key schedule.
This fact is illustrated by the Figure 4. In this section, two principles are associated, the
first one impossible differential, which is first published in [21, 22], and the second one
fault analysis, like [2, 26]. Our impossible differential fault analysis corresponds to 5-round
impossible differential cryptanalysis attack, which is described in [3]. We firstly present
the differential inequation systems, then the retrieval algorithm and in the last part the
comparison between the experimental, simulation and theoretical results.

Fig. 4. Overall impossible differential fault attack on AES-128

4.1 From Impossible Differential to Inequation System

Due to a well-known property of the differential through the MixColumn operation, all
differences between bytes are not null at the internal state S10 in (10).

S10(C) ⊕ S10(C̃) 6= 0 (10)

Moreover, we have the following equation (11):

S10(C) = MC−1
(

SB−1
(

SR−1(C ⊕ K10)
)

⊕ K9

)

(11)

We obtain similar equation for S10(C̃). Like the attack below, we have the same
simplification with the subkey K9. The differential equations have the following form (12):

S10(C)⊕S10(C̃) = MC−1
(

SB−1
(

SR−1(C ⊕ K10)
))

⊕MC−1
(

SB−1
(

SR−1(C̃ ⊕ K10)
))

(12)
We execute the same kind of computations as in the previous attack. We analyze

column per column. We guess 4 key bytes of K10. Due to the 4 inequalities, we can filter
bad key byte candidates in a list of possible keys. Using many pairs of correct and faulty
ciphertexts, we can reduce the possible key space. We reuse four times the no difference
computation algorithm for each column of S10. In this attack, the attacker does not use
fault position to retrieve the last subkey bytes. The algorithm allows to recover all bytes
of the subkey K10. In the case of AES-128, it is enough to retrieve the secret key K.

4.2 Recovery Steps

1. For each pair of correct and incorrect results, we take four guesses for {K10(0),K10(13),
K10(10),K10(7)}. Then we eliminate at each level the key quadruplets which do not
satisfy the system (13). We test at each loop all not dismissed quadruplets among 232

possible quadruplets at the beginning.

MC−1|0(SB−1(C(0) ⊕ K10(0))) ⊕ MC−1|0(SB−1(C̃(0) ⊕ K10(0))) 6= 0

MC−1|1(SB−1(C(13) ⊕ K10(13))) ⊕ MC−1|1(SB−1(C̃(13) ⊕ K10(13))) 6= 0

MC−1|2(SB−1(C(10) ⊕ K10(10))) ⊕ MC−1|2(SB−1(C̃(10) ⊕ K10(10))) 6= 0

MC−1|3(SB−1(C(7) ⊕ K10(7))) ⊕ MC−1|3(SB−1(C̃(7) ⊕ K10(7))) 6= 0

(13)
2. We repeat previous steps and we retrieve the right quadruplets of K10 for each fol-

lowing column.
3. This research could be complemented by an exhaustive search, if only less than 210

possible quadruplets for each column are left. Hence, a global complexity is 240 re-
search operations.

4.3 Property of Recombination

An interesting property of reusing incorrect ciphertexts is described here. The same plain-
text is encrypted while fault injection targeted on the same byte. Only MixColumns op-
eration generates collision in one byte, whereas the others do not. Furthermore, if two
different inputs of MixColumns only vary on one byte, the two outputs of MixColumns
do not collide. For instance, if two different random byte faults ǫ1 and ǫ2 are injected on
state S0.

∃!y ∈ [0, 15],∀ǫ1 6= ǫ2, S0(y) = x ⊕ ǫ1 S0(y) = x ⊕ ǫ2 (14)

C̃(1) is the faulty ciphertext obtained where fault ǫ1 is injected, similarly, C̃(2) the faulty
ciphertext links to fault ǫ2. We have the two following facts :

S10(C) ⊕ S10(C̃
(1)) 6= 0 (15)

S10(C) ⊕ S10(C̃
(2)) 6= 0 (16)

Due to equation (14) and the properties of the MixColumns described below, we obtain
the following inequation:

S10(C̃
(1)) ⊕ S10(C̃

(2)) 6= 0 (17)

On our test platform, we collect with one correct ciphertext, 5 or 6 different faulty ci-
phertexts whose faulty bytes are the same.

4.4 Theoretical and Simulation Results

Theoretical Cost and Complexity. The impossible differential algorithm requires 232

guesses as there are 4 unknown key bytes on each column. The probability that all 4
inequations are satisfied equals (255

256)4. With one pair of correct and faulty ciphertexts, we
eliminate around 226 subkeys of K10 amongst 232 possible values of K10 for each column:

E = 232 × (1 − (255
256)4) ≃ 226. Each couple could bring the same information about the

key than another couple. The recombination of faulty results introduces collision too.
Same quadruplets of key bytes are eliminated several times. Two couples of correct and

incorrect ciphertexts create an overlap of E2

232 ≃ (226)2

232 = 252

232 = 220. We define Un as the
number of rejected quadruplets with n pairs of correct and faulty ciphertexts with the
following recursive formula, where U0 = 0:

Un+1 = 226 + Un(1 − 2−6). (18)

In solving recurrence in previous equation 18, we obtain the following equation:

Un = 232 − 232(1 − 2−6)n. (19)

The recovery algorithm of the impossible difference stops where Un ≥ 232 − 210. That is
why, due to equation 19,

n ≥ −22 log(2)/ log(1 − 2−6) ⇔ n ≥ 968. (20)

Simulation Results. We obtain around 226 eliminated quadruplets of bytes for each
pair. We also retrieve the calculated overlap of 220 between two pairs. Considering the
random byte fault model, we need on average around 1000 couples of correct and faulty
ciphertexts with performing an exhaustive search on 240 possible subkeys at the end. In
the case of recombination based on the fixed byte fault model, due to collision results,
our attack only requires about 45 faulty ciphertexts with the same plaintext among the
256 possible ciphertexts:

(

45+1
2

)

= 45×46
2 = 1035 > 1000. It is also possible to combine

classical resolution with several recombinations.

5 Extension to AES-192 and AES-256

Introducing fault between the MixColumns of the 6th round and the MixColumns of
the 7th round on AES-128 amounts to injecting fault between the MixColumns of the 8th

round and MixColumns of the 9th round on AES-192, and between the 10th round and the
11th round on AES-256. Because faults are injected one round before all previous papers,
we have access at the same time at subkeys Kn and Kn−1 with the same differential path.

5.1 Meet-in-the-Middle Fault Analysis on AES-192 and AES-256

We extend the previous concepts for AES-192 and AES-256 without more faulty ci-
phertexts than AES-128. We use the meet-in-the-middle algorithm in order to recover:
{Kn(4),Kn(1),Kn(14),Kn(11), Un−1(7)}, {Kn(8),Kn(5),Kn(2),Kn(15), Un−1(10)},
{Kn(0),Kn(7),Kn(10),Kn(13), Un−1(0)} and {Kn(3),Kn(6),Kn(9),Kn(12), Un−1(13)}.
We obtain 2 tables which contain S8(0) ⊕ S̃8(0) for 5 couples of correct and incorrect
results. We compute S8(1) ⊕ S̃8(1), S8(2) ⊕ S̃8(2) and S8(3) ⊕ S̃8(3). By hypothesis, we
know fault position for each faulty ciphertext, it means that α, β and γ are known for all
equations. Due to these computations, we retrieve all bytes of the subkey Kn. We write
the differential equations S8(5), S8(10) and S8(15) as a function of the same 4 bytes of
Kn−1. Then we also write system of S8(6), S8(11) and S8(12) as a function of the same 4
bytes of Kn−1, S8(7), S8(8) and S8(13) as a function of 4 bytes of Kn−1 and S8(4), S8(9)

and S8(14) as a function of 4 bytes of Kn−1. We inject the 16 computed bytes of Kn in
the previous equations like (5). We recognize the form of Piret and Quisquater equations
in our ones (21), that is why we apply Piret and Quisquater resolution in our recovery
method.

SB−1 (A ⊕ Un−1(4)) ⊕ SB−1(Ã ⊕ Un−1(4)) = Y

SB−1 (B ⊕ Un−1(1)) ⊕ SB−1(B̃ ⊕ Un−1(1)) = 3Y

SB−1 (C ⊕ Un−1(14)) ⊕ SB−1(C̃ ⊕ Un−1(14)) = 2Y

SB−1 (D ⊕ Un−1(11)) ⊕ SB−1(D̃ ⊕ Un−1(11)) = Y

(21)

The values {A,B,C,D} are known values at this stage and only depend on the cor-
rect ciphertext and Kn. The values {Ã, B̃, C̃, D̃} are known values too and only de-
pend on the faulty ciphertext and Kn. Using 3 generalizations of Piret and Quisquater
equation systems allow to recover the subkey Un−1, because we have already retrieved
{Un−1(0), Un−1(13), Un−1(10), Un−1(7)}. Then we resolve 4 systems of 4 equations in
using the Gauss’ method. Each equation describes MixColumns inverse operation with
unknown outputs, in order to recover all bytes of Kn−1. This scenario costs around 240 in
complexity for AES-192 or AES-256 divided in 240 for memory and 3× 240 for operation
code like AES-128, plus 240 for Piret and Quisquater resolution.

5.2 Impossible Differential Fault Analysis on AES-192 and AES-256

In the cases of AES-192 and AES-256, we do not need more fault than AES-128 if no
exhaustive search is realized. However, we have to collect couples until all bytes of the
subkey Kn are retrieved. We reuse the equation systems (5) of the first attack, because
both attacks consider fault injection between the same MixColumns. Now, we obtain as
the previous subsection the systems (21), thanks to which we know all bytes of Kn. In
order to retrieve all bytes of the subkey Kn−1, we use 4 Piret and Quisquater general-
ization. This fault attack is achieved with a complexity around 242, because Piret and
Quisquater generalization has the same cost as Piret and Quisquater attack [27] described
in the second part of this paper.

6 Conclusion

We have presented two different attacks on the n − 3th round of AES as it is shown in
Table 1. The first attack implies random fault byte on known or fixed position for AES-
128, AES-192 or AES-256. The second attack involves random fault byte too with less
complexity for AES-128. The first one costs around 242 and requires 10 pairs of correct
and faulty ciphertexts, its improvement 5 pairs and costs 240 whereas the second one
around 240 deals with 1000 couples. Moreover, we can associate the first analysis to solve
the second subpart of the second analysis. In this case, a differential fault analysis could
be performed on AES-128, AES-192 and AES-256 with a random fault injected between
the n−4th and the n−3th MixColumns. Current state-of-the-art countermeasure consists
on protecting the three first rounds and the three last rounds of AES. All operations inside
round need to be protected and state between rounds too. In order to defeat our fault
analysis, all AES-128 rounds need to be protected against fault attacks. Considering AES-
192 and AES-256, at least the last 5 rounds and the first 5 rounds need to be protected
against fault analysis.

Acknowledgments We would like to thank Nicolas Guillermin and the anonymous
reviewers for their helpful and valuable comments and discussions.

References

1. Ross J. Anderson and Markus G. Kuhn. Low Cost Attacks on Tamper Resistant Devices. In
Security Protocols Workshop, Lecture Notes in Computer Science, pages 125–136. Springer,
1997.

2. Eli Biham, Louis Granboulan, and Phong Q. Nguyen. Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In FSE, pages 359–367, 2005.

3. Eli Biham and Nathan Keller. Cryptanalysis of Reduced Variants of Rijndael. In 3rd AES
Conference, New York, USA, 2000.

4. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In
CRYPTO, Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

5. Alex Biryukov and Dmitry Khovratovich. Two New Techniques of Side-Channel Crypt-
analysis. In Proceedings of the 9th international workshop on Cryptographic Hardware and
Embedded Systems, CHES ’07, pages 195–208. Springer, 2007.

6. Johannes Bloemer and Jean-Pierre Seifert. Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES). In Financial Cryptography, Lecture Notes in Computer Science,
pages 162–181. Springer, 2003.

7. Andrey Bogdanov. Improved Side-Channel Collision Attacks on AES. In Selected Areas in
Cryptography, Lecture Notes in Computer Science, pages 84–95. Springer, 2007.

8. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In EUROCRYPT, Lecture Notes
in Computer Science, pages 37–51. Springer, 1997.

9. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search of Attacks
on Round-Reduced AES and Applications. In Phil Rogaway, editor, Proceedings of Crypto
2011, LNCS, Santa Barbara, CA, August 2011. Springer-Verlag.

10. Chien-Ning Chen and Sung-Ming Yen. Differential Fault Analysis on AES Key Schedule
and Some Countermeasures. In ACISP, Lecture Notes in Computer Science, pages 118–129.
Springer, 2003.

11. Hamid Choukri and Michael Tunstall. Round Reduction Using Faults. In Proceedings of the
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC’ 05, pages 13–24, 2005.

12. Christophe Clavier, Benoit Feix, Georges Gagnerot, and Mylène Roussellet. Passive and
Active Combined Attacks on AES Combining Fault Attacks and Side Channel Analysis. In
FDTC, pages 10–19, 2010.

13. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002.

14. Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential Fault Analysis on A.E.S.
In ACNS, Lecture Notes in Computer Science, pages 293–306. Springer, 2003.

15. FIPS. Advanced Encryption Standard (AES). pub-NIST, nov 2001.
16. Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael. In AES

Candidate Conference, Lecture Notes in Computer Science, pages 230–241. Springer, 2000.
17. Christophe Giraud. DFA on AES. In AES Conference, Lecture Notes in Computer Science,

pages 27–41. Springer, 2004.
18. Hagai Bar-El Hamid, Hamid Choukri, David Naccache Michael Tunstall, and Claire Whelan.

The Sorcerer’s Apprentice Guide to Fault Attacks. In http://eprint.iacr.org/2004/100.pdf,
2004.

19. Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. A Lightweight Concurrent Fault
Detection Scheme for the AES S-Boxes Using Normal Basis. In Oswald and Rohatgi [25],
pages 113–129.

20. Chong Hee Kim. Differential Fault Analysis against AES-192 and AES-256 with Minimal
Faults. Fault Diagnosis and Tolerance in Cryptography, Workshop on, 0:3–9, 2010.

21. Lars R. Knudsen. DEAL - a 128 bit block cipher. In Technical report 151, Departement of
Informatics, University of Bergen, Norway, 1998.

22. Lars R. Knudsen. DEAL - a 128 bit block cipher. In AES Round 1 Technical Evaluation,
NIST, 1998.

23. Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salmasizadeh. A Gener-
alized Method of Differential Fault Attack Against AES Cryptosystem. In CHES, Lecture
Notes in Computer Science, pages 91–100. Springer, 2006.

24. Debdeep Mukhopadhyay. An Improved Fault Based Attack of the Advanced Encryption
Standard. In Proceedings of the 2nd International Conference on Cryptology in Africa:
Progress in Cryptology, AFRICACRYPT ’09, pages 421–434. Springer, 2009.

25. Elisabeth Oswald and Pankaj Rohatgi, editors. Cryptographic Hardware and Embedded Sys-
tems - CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13,
2008. Proceedings, volume 5154 of Lecture Notes in Computer Science. Springer, 2008.

26. Raphael C.-W. Phan and Sung-Ming Yen. Amplifying Side-Channel Attacks with Techniques
from Block Cipher Cryptanalysis. In Josep Domingo-Ferrer, Joachim Posegga, and Daniel
Schreckling, editors, CARDIS, volume 3928 of Lecture Notes in Computer Science, pages
135–150. Springer, 2006.

27. Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and KHAZAD. In CHES, Lecture Notes in
Computer Science, pages 77–88. Springer, 2003.

28. Matthieu Rivain. Differential Fault Analysis on DES Middle Rounds. In Christophe Clavier
and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer Science, pages
457–469. Springer, 2009.

29. Akashi Satoh, Takeshi Sugawara, Naofumi Homma, and Takafumi Aoki. High-Performance
Concurrent Error Detection Scheme for AES Hardware. In Oswald and Rohatgi [25], pages
100–112.

30. Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A Collision-Attack on AES:
Combining Side Channel- and Differential-Attack. In CHES, Lecture Notes in Computer
Science, pages 163–175. Springer, 2004.

31. Junko Takahashi, Toshinori Fukunaga, and Kimihiro Yamakoshi. DFA Mechanism on the
AES Key Schedule. In FDTC ’07: Proceedings of the Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 62–74. IEEE Computer Society, 2007.

32. M. Tunstall and D. Mukhopadhyay. Differential Fault Analysis of the Advanced Encryp-
tion Standard using a Single Fault. Cryptolog ePrint Archive, Report 2009/575, 2009.
http://eprint.iacr.org/.

A Difference Path from the 10th to the 9th Round for AES-128

Due to fault path from the ciphertext to the beginning of the 9th round, we give the
following relations between bytes at different steps for the Meet-in-the-Middle attack. We
obtain the following system of 4 equations, where U9(a, b, c, d) = MC−1 (K9(a, b, c, d)),
for AES-128 from the 10th to the 9th round, for AES-192 from the 12th to the 11th and
for AES-256 from the 14th to the 13th:

S8(0, 5, 10, 15) = SB−1
(

MC−1
(

SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13))
)

⊕ U9(0, 1, 2, 3)
)

(22)

S8(1, 6, 11, 12) = SB−1
(

MC−1
(

SB−1 (C(3, 6, 9, 12) ⊕ K10(3, 6, 9, 12))
)

⊕ U9(12, 13, 14, 15)
)

(23)

S8(2, 7, 8, 13) = SB−1
(

MC−1
(

SB−1 (C(2, 5, 8, 15) ⊕ K10(2, 5, 8, 15))
)

⊕ U9(8, 9, 10, 11)
)

(24)

S8(3, 4, 9, 14) = SB−1
(

MC−1
(

SB−1 (C(1, 4, 11, 14) ⊕ K10(1, 4, 11, 14))
)

⊕ U9(4, 5, 6, 7)
)

(25)

B Difference Path from the 7th towards the 8th Round on

AES-128

Fault on one byte among bytes {0, 5, 10, 15} at the 7th round on AES-128 produces case 1,
fault on one byte among {3, 4, 9, 14} produces case 2, fault on one byte among {2, 7, 8, 13}
produces case 3 and fault on one byte among {1, 6, 11, 12} produces case 4. All different
cases are presented in Figure 5. We obtain same behavior with fault injected at the 9th

round of AES-192 and at the 11th round of AES-256.

Fig. 5. Difference path during the 8th round for the four different AES-128 cases

