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Abstract. In this paper we propose a multiplicative blinding scheme for
protecting implementations of a scalar multiplication over elliptic curves.
Specifically, this blinding method applies to elliptic curves in the short
Weierstraß form over large prime fields. The described countermeasure
is shown to be a generalization of the use of random curve isomorphisms
to prevent side-channel analysis, and our best configuration of this coun-
termeasure is shown to be equivalent to the use of random curve isomor-
phisms. Furthermore, we describe how this countermeasure, and there-
fore random curve isomorphisms, can be efficiently implemented using
Montgomery multiplication.
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1 Introduction

Side-channel analysis can be used to try and derive unknown information used
in cryptographic algorithms, such as cryptographic keys. The first side-channel
described in the literature was based on the total time taken to compute a
cryptographic algorithm [18]. Preventing this attack is well understood, as one
just requires a regular algorithm to prevent any side-channel leakage.

Another side-channel that has been described in the literature is based on
the observation that the power consumption of a microprocessor is dependent
on the instruction being executed and on any data being manipulated [6, 19].
An attacker can, therefore, observe where functions, and sequences of functions,
occur in a power consumption trace. This allows information on cryptographic
keys to be determined if the sequence of instructions is affected by the value of
the key. An attacker can also determine if a value being manipulated by a micro-
processor can be correctly predicted by computing the correlation between a set
of predictions and the instantaneous power consumption. This allows informa-
tion on cryptographic keys to be determined since one can verify a hypothetical
set of values that occur after being combined with a key.



It was later observed that the electromagnetic field around a microprocessor
also has this property [12, 23]. Preventing an attacker from being able to use
this information is more complex, as all the intermediate states of an algorithm
need to be masked with some random value [11, 19]. When implementing a block
cipher this can be implemented by modifying the algorithm such that it operates
in this manner by modifying each function [3].

When a public-key cryptographic algorithm, such as RSA [24], is imple-
mented countermeasures are typically based on the structure of the entire func-
tion. For example, when generating a signature σ from a message m using RSA,
one computes σ = µ(m)d mod N , where d is the private key and µ is an appropri-
ate padding function. That is, a standard exponentiation algorithm in (Z/NZ)∗.
This can be changed such that the intermediate states of the calculation can-
not be predicted by computing σ = [(µ(m) + r1 N)r2 φ(N)+d mod r3 N ] mod N ,
where φ is Euler’s totient function and ri, for i ∈ {1, 2, 3}, are (small) random
values. However, one would not want to directly apply this countermeasure to
implementations of elliptic curve cryptosystems using prime fields. Increasing
the size of the modulus used in RSA has a relatively small impact on the over-
all execution time. The impact on elliptic curves will be larger since the prime
values used in the field arithmetic are much smaller.

Many different countermeasures for preventing side-channel analysis of el-
liptic curve cryptographic algorithms have been proposed in the literature. In
this paper we describe a multiplicative blinding method for elliptic curve cryp-
tographic algorithms over prime fields that is a generalization of previously pro-
posed methods, and describe how it can be efficiently implemented.

The rest of this paper is organized as follows. In the next section, we introduce
some background on elliptic curves and review some countermeasures against
side-channel analysis. Section 3 is the core of our paper. We define a new addition
using blinded coordinates. Detailed formulæ are provided for homogeneous and
Jacobian representations. In Section 4 we describe how one could implement
the proposed countermeasure. In Section 5 we discuss some further security
considerations that one would need to take into account when implementing the
proposed countermeasure. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Elliptic Curves

Let Fq be a finite field. An elliptic curve E over Fq consists of points (x, y), with
x, y in Fq, that satisfy the full Weierstraß equation

E : y2 + a1 x y + a3 y = x3 + a2 x2 + a4 x + a6

with ai ∈ Fq (1 ≤ i ≤ 6), and the point at infinity denoted OOO. The set E(Fq) is
defined as

E(Fq) = {(x, y) ∈ E |x, y ∈ Fq} ∪ {OOO} ,



where E(Fq) forms an Abelian group under the chord-and-tangent rule and OOO is
the identity element.

The addition of two points PPP = (x1, y1) and QQQ = (x2, y2) with PPP 6= −QQQ is
given by PPP + QQQ = (x3, y3) where

x3 = λ2 + a1 λ− a2 − x1 − x2, y3 = (x1 − x3)λ− y1 − a1 x3 − a3 (1)

with λ =





y1 − y2

x1 − x2
if PPP 6= QQQ [addition]

3x1
2 + 2a2 x1 + a4 − a1 y1

2y1 + a1 x1 + a3
if PPP = QQQ [doubling operation]

.

Provided that the characteristic of field Fq is different from 2, 3, we can take
a1 = a2 = a3 = 0. In the sequel we will also assume that q = p is prime. We
define the short Weierstraß form over prime field Fp by the equation

y2 = x3 + a x + b . (2)

Note that the slope λ in the doubling then becomes λ = (3x1
2 +a)/(2y1), which

can be rewritten as 3(x1 − 1)(x1 + 1)/(2y1) when a = −3.
The scalar multiplication of a given point is a fundamental operation in

cryptographic algorithms that use elliptic curve arithmetic, i.e. [k]PPP for some
integer k < |E|. This operation uses the above addition law in conjunction with
algorithms analogous to standard exponentiation algorithms in (Z/NZ)∗.

In this paper we concentrate on the short Weierstraß form since this is typi-
cally the form one will find in standards, and is, therefore, the most commonly
used. For example, one can find standardized elliptic curves in the short Weier-
straß form in FIPS 186-3 [22], WTLS [32] and ANSI X9.62 [33].

2.2 Side-Channel Resistant Scalar Multiplication

When implementing a scalar multiplication using elliptic curve arithmetic on a
device that could potentially be attacked using side-channel analysis, there are a
variety of considerations that need to be taken into account. The simplest type of
side-channel analysis consists of timing or simple power analysis [18, 19], where
an attacker attempts to derive information from the time taken for an algorithm
to execute or to identify operations from a few traces. Given that an attacker
would expect to be able to distinguish an addition from a doubling operation,
this requires an implementation to include one of the following countermeasures.

Regular Multiplication Algorithms. A variety of algorithms have been pro-
posed that will always compute a regular sequence of additions and doubling
operations (these methods are surveyed in [16]).

Unified Addition Formulae. The addition and doubling operations can be
implemented such that the same operations are performed for both an ad-
dition and a doubling operation (e.g. [5, 7]).



Dummy Operations. An alternative to unified addition formulae was pro-
posed in [11, 8], where the two operations are rendered indistinguishable
using dummy operations. However, this approach can introduce the possi-
bility of a safe-error fault attack [34], although a discussion of fault analysis
is beyond the scope of this paper.

Furthermore, implementations need to be able to prevent an attacker from using
the observation that the power consumption (and electromagnetic field) is related
to the Hamming weight of the data being manipulated by a microprocessor at any
given point in time [12, 19, 23], referred to as differential side-channel analysis.
This requires an implementation to include further countermeasures to blind the
computation. The scalar itself can be protected using:

Multiplier Blinding. The scalar k can be modified by adding a random mul-
tiple of the order of the group E to the scalar k. This modifies the bits of k
without changing the output of a scalar multiplication [11].

There are numerous options for blinding the points being operated on. A sum-
mary of existing countermeasures is given below.

Point Blinding. If, for a given point RRR, where SSS = [k]RRR is known, then QQQ =
[k]PPP can be computed by calculating QQQ = [k] (PPP + RRR)−SSS. Points RRR and SSS
can be stored in a device along with k and updated after each execution by
computing RRR ← [r]RRR and SSS ← [r]SSS for some small random value r [11, 18].

Multiplier Splitting. A scalar can be divided into two values whose bitwise
representations are random. This allows a scalar multiplication to be con-
ducted with two values whose combined effect is equivalent to that of the
desired scalar [9]. There are three methods of multiplier splitting:
– Additive Splitting. If we define the scalar k = r + (k − r) for some

integer r that has a similar bit-length to k, then QQQ = [k]PPP can be
computed by calculating QQQ = [r]PPP + [k − r]PPP .

– Multiplicative Splitting. For some elliptic curve E over Fq we define
k′ = k r−1 mod |E| for some integer r. Then QQQ = [k]PPP can be computed
by calculating QQQ = [k′] ([r]PPP ).

– Euclidean Splitting. If we define the scalar k′ = bk/rc for some integer
r, then QQQ = [k]PPP can be computed by calculating QQQ = [k′] ([r]PPP ) +
[k mod r]PPP .

Randomized Projective Points. An affine point PPP = (x, y) can, for example,
be represented as a homogeneous projective point (θ x, θ y, θ) for all θ ∈
Fp\{0} (this is covered in more detail in Section 3). When computing a scalar
multiplication using projective coordinates a randomly generated θ ∈ Fp\{0}
can be determined at the beginning of the computation so that an attacker
cannot guess what values are being manipulated [11].

Random Curve Isomorphisms. A given PPP on elliptic curve E can be ran-
domized by computing PPP ∗ ← ψ(PPP ) on E∗ ← ψ(E) for a random curve
isomorphism ψ. Then QQQ = [k]PPP can be computed by calculating QQQ =
ψ−1([k]PPP ∗) [17].



Of these countermeasures, the first two are not practical as they highly impact
the execution time of a scalar multiplication or require dedicated operations not
always readily available. Using randomized projective coordinates is much more
efficient but does not allow θ to be set to one. It is for this reason that it is
observed in [25] that using random curve isomorphisms is the most efficient of
these countermeasures. However, when using random curve isomorphisms the
parameters of E∗ cannot be chosen and one cannot take advantage of algorithms
that require curve parameters to be set to specific values.

3 Implementing Elliptic Curve Arithmetic

For elliptic curve arithmetic over Fp the use of projective coordinates is preferred
as no inversion is required for an addition or a doubling operation [31]. A point on
an elliptic curve can be represented with projective coordinates (X,Y, Z) that
are not unique for a given affine point. For example, homogeneous projective
coordinates (θ x, θ y, θ) represent the affine point (x, y) for all θ ∈ Fp \ {0},
and the point at infinity OOO is represented by (0, γ, 0) for some γ ∈ Fp \ {0}.
The simplest countermeasure that can be applied to these coordinate systems is
to choose some random θ ∈ Fp \ {0} and use the point (θ x, θ y, θ) as a random
representation of the affine point (x, y) [11] (referred to as randomized projective
points in the previous section). However, when using this representation, the
Z-coordinate cannot be chosen to be one. In the following sections we define
addition rules for randomized projective coordinates where the Z-coordinate
can be chosen to be one.

3.1 Homogeneous Projective Coordinates

As described above, homogeneous projective coordinates (θ x, θ y, θ) represent
the affine point (x, y) for all θ ∈ Fp\{0}, and the point at infinity OOO is represented
by (0, γ, 0) for some γ ∈ Fp \ {0}. We define the map Φ as mapping a point
PPP = (X, Y, Z) ∈ E to the point P ′P ′P ′ where Φ(PPP ) = (X ′, Y ′, Z) = (fµX, fνY, Z)
for an arbitrary f ∈ Fp \ {0} and some small integers µ and ν. Note that P ′P ′P ′

is not necessarily on E . The inverse of Φ can be computed without inverting f
since PPP = Φ−1(P ′P ′P ′) = (fνX ′, fµY ′, fµ+νZ).

Consider the addition of two homogeneous projective points RRR = PPP + QQQ. In
order to blind the computation, we redefine the addition algorithm such that
Φ(RRR) = R′R′R′ = P ′P ′P ′ + Q′Q′Q′ = Φ(PPP ) + Φ(QQQ). We define the point R′R′R′ = (X ′

3, Y
′
3 , Z3),

P ′P ′P ′ = (X ′
1, Y

′
1 , Z1) and Q′Q′Q′ = (X ′

2, Y
′
2 , Z2). If PPP = QQQ, then R′R′R′ can be computed

from P ′P ′P ′ and Q′Q′Q′ by calculating

X ′
3 = λ10λ4

Y ′
3 = f2ν−3µλ3(λ9 − λ10)− 2λ8

Z3 = λ6

,

where λ1 = X ′
1
2, λ2 = Z1

2, λ3 = a f2µ λ2 + 3λ1, λ4 = 2Y ′
1Z1, λ5 = λ4

2,
λ6 = λ4λ5, λ7 = Y ′

1λ4, λ8 = λ7
2, λ9 = (X ′

1 + λ7)2 − λ1 − λ8 and λ10 =



f2ν−3µλ3
2 − 2λ9 [5]. This requires an extra three multiplications with a power

of f .
If a = −3 a faster doubling algorithm can be used and R′R′R′ can be computed

by calculating
X ′

3 = λ8λ2

Y ′
3 = f2ν−3µλ1(λ7 − λ8)− 2λ6

Z3 = λ4

,

where λ0 = fµZ1, λ1 = 3(X ′
1−λ0)(X ′

1 +λ0), λ2 = 2Y ′
1Z1, λ3 = λ2

2, λ4 = λ2λ3,
λ5 = Y ′

1λ2, λ6 = λ5
2, λ7 = 2X ′

1λ5 and λ8 = f2ν−3µλ1
2 − 2λ7 [5]. This also

requires an extra three multiplications with a power of f .
If PPP 6= QQQ, then R′R′R′ is computed by calculating

X ′
3 = λ6λ10

Y ′
3 = λ4(λ9 − λ10)− λ8λ1

Z3 = λ8λ3

,

where λ1 = Y ′
1Z2, λ2 = X ′

1Z2, λ3 = Z1Z2, λ4 = Y ′
2Z1 − λ1, λ5 = λ4

2, λ6 =
X ′

2Z1−λ2, λ7 = λ6
2, λ8 = λ6λ7, λ9 = λ7λ2 and λ10 = f3µ−2νλ5λ3−λ8−2λ9 [10].

This requires a single extra multiplications with a power of f .

3.2 Jacobian Projective Coordinates

Jacobian projective coordinates (θ2 x, θ3 y, θ) represent the affine point (x, y) for
any θ ∈ Fp \ {0}, and the point at infinity OOO is represented by (γ2, γ3, 0) for
some γ ∈ Fp \ {0}. We define the map Φ as mapping a point PPP = (X,Y, Z) ∈ E
to the point P ′P ′P ′ where Φ(PPP ) = (X ′, Y ′, Z) = (fµX, fνY, Z) for an arbitrary
f ∈ Fp \ {0} and some small integers µ and ν. Note that P ′P ′P ′ is not necessarily in
E . The inverse of Φ can be computed without inverting f since PPP = Φ−1(P ′P ′P ′) =
(fµ+2νX ′, f3µ+2νY ′, fµ+νZ).

Consider the addition of two Jacobian projective points RRR = PPP + QQQ. In
order to blind the computation, we redefine the addition algorithm such that
Φ(RRR) = R′R′R′ = P ′P ′P ′ + Q′Q′Q′ = Φ(PPP ) + Φ(QQQ). We define the point R′R′R′ = (X ′

3, Y
′
3 , Z3),

P ′P ′P ′ = (X ′
1, Y

′
1 , Z1) and Q′Q′Q′ = (X ′

2, Y
′
2 , Z2). If PPP = QQQ, then R′R′R′ can be computed

from P ′P ′P ′ and Q′Q′Q′ by calculating

X ′
3 = λ7

Y ′
3 = f2ν−3µλ6(λ5 − λ7)− 8λ3

Z3 = (Y ′
1 + Z1)2 − λ2 − λ4

,

where λ1 = X ′
1
2, λ2 = Y ′

1
2, λ3 = λ2

2, λ4 = Z1
2, λ5 = 2((X ′

1 + λ2)2 − λ1 − λ3),
λ6 = 3λ1 + af2µ λ4

2, λ7 = f2ν−3µλ6
2 − 2λ5 [5]. This requires an extra three

multiplications with a power of f .



If a = −3 a faster doubling algorithm can be used and R′R′R′ can be computed
by calculating

X ′
3 = f2ν−3µλ5

2 − 8λ3

Y ′
3 = f2ν−3µλ5(4λ3 −X ′

3)− 8λ2
2

Z3 = (Y ′
1 + Z1)2 − λ2 − λ1

,

where λ1 = Z1
2, λ2 = Y ′

1
2, λ3 = X ′

1λ2, λ4 = fµλ1, λ5 = 3(X ′
1−λ4)(X ′

1 +λ4) [4].
Again, this requires an extra three multiplications with a power of f .

If PPP 6= QQQ, then R′R′R′ is computed by calculating

X ′
3 = f3µ−2νλ10

2 − λ9 − 2λ11

Y ′
3 = λ10(λ11 −X ′

3)− 2λ5λ9

Z3 = ((Z1 + Z2)2 − λ1 − λ2)λ7

,

where λ1 = Z1
2, λ2 = Z2

2, λ3 = X ′
1λ2, λ4 = X ′

2λ1, λ5 = Y ′
1Z2λ2, λ6 = Y ′

2Z1λ1,
λ7 = λ4 − λ3, λ8 = (2λ7)2, λ9 = λ7λ8, λ10 = 2(λ6 − λ5), λ11 = λ3λ8 [5]. This
requires a single extra multiplications with a power of f .

3.3 Choosing µ and ν

The above algorithms were defined to minimize the number of multiplications
with f , or some power of f . However, one would wish to avoid a situation where
the inverse of f is required. This means that, for the above algorithms, choices
for µ and ν need to satisfy 2 ν ≥ 3 µ and 3µ ≥ 2 ν; that is, 2 ν = 3 µ.

For both homogeneous and Jacobian projective coordinates the choice of
2 ν = 3µ would allow for any multiplication with a power of f to be removed
from the algorithm for computing the addition of two distinct points. That is, the
countermeasure would have no impact on the performance of a point addition.
Define a′ = a f2µ. In the case of a 6= −3, if the cost of a multiplication by a′ is the
same to that of a multiplication by a, choosing 2 ν = 3 µ incurs no performance
loss for the doubling operation in both homogeneous and Jacobian coordinates.
If a = −3 the choice of 2 ν = 3 µ leads to only an extra multiplication by fµ (in
the evaluation of λ0 for homogeneous coordinates and in the evaluation of λ4 for
Jacobian coordinates, respectively).

Case of µ = 2 and ν = 3. As a reminder, the elliptic curves E : y2 = x3 +a x+ b
and E∗ : y2 = x3 + a∗x + b∗ over Fp are isomorphic if and only if there exists
some f ∈ Fp \ {0} such that a∗ = f4 a and b∗ = f6 b. The isomorphism is given
by ψ : E ∼→ E∗ : PPP = (x, y) 7→ P ∗P ∗P ∗ = (f2 x, f3 y) and OOO 7→ OOO. It appears that
the specific choice of µ = 2 and ν = 3 corresponds to the technique of using
randomized curve isomorphisms [17].



4 Implementation Considerations

4.1 Using Montgomery multiplication

When implementing an elliptic curve cryptographic algorithm over Fp, it would
be natural to use Montgomery multiplication [21], since the modular reduction
is interleaved with the multiplication. As shown in Algorithm 1, the result of
a Montgomery multiplication is not the product of x and y modulo p. The
algorithm actually returns x y R−1 mod p, where R−1 mod p is introduced by
the algorithm (R = bn, where the modulus consists of n words of size b). In
order to use Montgomery multiplication x and y need to be converted to their
Montgomery representation, i.e. x̃ ← x R mod p and ỹ ← y R mod p. Then, when
x̃ and ỹ are multiplied together using Montgomery multiplication, the result is
x y R mod p.

Algorithm 1: Montgomery multiplication
Input: p = (pn−1, . . . , p1, p0)b, x = (xn−1, . . . , x1, x0)b, y = (yn−1, . . . , y1, y0)b

with 0 ≤ x, y < p, R = bn, gcd(p, b) = 1 and p′ = −p−1 mod b.
Output: A = x y R−1 mod p.

A ← 0 ;
for i = 0 to n− 1 do

ui = (a0 + xi y0)p
′ mod b ;

A = (A + xi y + ui p)/b ;
end

if A ≥ p then A ← A− p ;

return A

When implementing Montgomery multiplication for use in a group expo-
nentiation one has to be aware that an attacker can use the final conditional
subtraction to try and derive information on the exponent used. An attacker
can potentially use the difference in time caused by the total number of subtrac-
tions [30] or by identifying individual subtractions in a power consumption trace
(or other suitable side-channel) [28, 29]. The final subtraction can be removed
by increasing the number of iterations of the main loop [14, 27]. However, these
attacks and countermeasures are beyond the scope of this paper, since the ar-
guments concerning the efficiency of the countermeasure described in Section 3
will remain unchanged.

Where a multiplication with a small value is required, such as the multi-
plication with the constant a in the short Weierstraß form, this value needs to
be converted into its Montgomery representation. This means that the cost of
such a multiplication will require the same number of single-precision multipli-
cations as any other multiplication or squaring operations over Fp, i.e. n(2n+2)
single-precision multiplications.



4.2 Generating f

A random value is typically generated for blinding purposes in a given instance
of a side-channel resistant implementation of an algorithm. These values do are
typically chosen to be relatively small, since the bit-length of the random value
only needs to be large enough that an attacker cannot guess its value for multiple
executions of the algorithm. That is, an attacker is required to guess this value
for each acquisition in order to conduct a differential side-channel analysis [20].
For example, we can define f to be in {1, . . . , b − 1} but multiplying with f
has the same problem as multiplying by a since f is not in its Montgomery
representation. However, we can define the value that is used when multiplying
with the mask to be f ′ ≡ b f (mod p) with f ′ ∈ {1, . . . , b− 1} and f ∈ Fp \ {0}.
This means that Algorithm 2, which is one iteration of the main loop of the
Montgomery multiplication algorithm, can be used without having to correct
the factor of b−1 mod p that is introduced.

This allows a multiplication with the mask f using 2 n + 2 single-precision
multiplications, and can be repeated for powers of f as required, i.e. multiplying
with fµ requires µ(2n+2) single-precision multiplications. In practice this means
a random value in {1, . . . , b− 1} can be generated and used in Algorithm 2.

We can note that a scalar multiplication using the algorithms described in
Section 3 can be implemented using an arbitrarily chosen f ′ without knowing
f . That is, all required multiplications with f can be conducted using f ′ and
Algorithm 2. This includes converting a blinded point to a valid projective point
by multiplying the coordinates by the required power of f . The further advantage
of only using f ′ is that it is not necessary to store the montgomery representation
of any powers of f in memory.

Algorithm 2: Montgomery multiplication with f

Input: p = (pn−1, . . . , p1, p0)b, f ∈ {0, . . . , b− 1}, y = (yn−1, . . . , y1, y0)b with
0 ≤ y < p, R = bn, gcd(p, b) = 1 and p′ = −p−1 mod b.

Output: A = f y b−1 mod p.

u = f y0 p′ mod b ;
A = (f y + u p)/b ;

if A ≥ p then A ← A− p ;

return A

4.3 Performance

If the above optimization is applied to the algorithms described in Sections 3.1
and 3.2 the number of single-precision multiplications required can be reduced.

It is observed in Section 3.3 that the smallest penalty for using the proposed
blinding method is incurred when µ = 2 and ν = 3, and no extra cost is observed



for many of the operations. Where a = −3, the cost of using the proposed
blinding method will incur an extra multiplication with fµ can be computed
with (4 n + 4) single-precision multiplications, rather than n(2n + 2) for a full
Montgomery multiplication.

If we consider randomize curve isomorphisms, the case where a∗ = −3f4

(i.e. an isomorphic curve that would allow one to use the algorithm defined
for a = −3) the necessary extra multiplication can be computed in the same
way, and the same gain in performance would be observed. Using the above
observation would also, therefore, allow the time required to compute operations
on an isomorphic curve to be reduced.

5 Further Security Considerations

The algorithms defined in Section 3 can readily be used to implement a side-
channel resistant scalar multiplication. These building blocks are, themselves,
resistant to side-channel analysis (within certain bounds we will discuss in this
section) and merely require a suitable multiplication algorithm to be chosen. We
refer the reader to [16] for a discussion of this topic.

However, in [13] it is observed that elliptic curve arithmetic that uses multi-
plicative blinding will not necessarily prevent a scalar multiplication from being
derived. If a point corresponding to the affine points (0, y) or (x, 0) exists, for
some x, y ∈ Fp, then an attacker could attempt to have this point produced as
an intermediate state of a scalar multiplication, which could then be used to
verify hypotheses concerning the scalar. This would be possible as multiplicative
blinding will have no effect on a coordinate set to zero.

An extension to this attack was proposed in [1] that relied on the same
observation, that the value zero cannot be blinded multiplicatively. They noted
that the same attack could be conducted if any of the intermediate states could
be equal to zero. That is, if there exists some combination of points where the
point arithmetic will generate a zero as an intermediate state.

The simplest countermeasure to this attack would be simply use curves that
do not have these points. However, it is noted in [13] that in many standard-
ized curves a point exists where the x-coordinate is zero, but not where the
y-coordinate is zero.

Countermeasures, therefore, need to be included when implementing a cryp-
tosystem that uses an elliptic curve that can be attacked in this manner. Two
such countermeasures are:

Linear Blinding. One countermeasure to this type of attack is described in [15],
where the authors propose that the coordinates of a projective coordinate
are modified by adding an extra coordinate. For example, to protect the
x-coordinate one could define a projective point, for example, where an affine
point PPP = (x, y) can be represented as a projective point (θ (x−β), θ y, θ, β)
for all θ, β ∈ Fp \ {0}. This involves redefining the algorithms for addition
and doubling operations and considerably increases the number of operations
required.



Isogenies. It is pointed out in [26] that an isogenous curve can be selected. That
is, an isogeny between elliptic curves E1 and E2 over the same field exists if a
surjective morphism κ can be defined that preserves the identity element (i.e.
the point at infinity OOO). When implementing a scalar multiplication using an
elliptic curve where zero-coordinates are possible, one can select an isogenous
curve that does not have any points with zero-coordinates. Then QQQ = [k]PPP
can be computed by calculating QQQ = κ−1([k] κ(PPP )). Further constraints on
what isogenies can be used were defined in [2] to avoid intermediate states
being attacked.

Of these two countermeasures, the use of isogenies is more efficient as the same
algorithms can be used for point arithmetic with the addition of two transfor-
mations. Moreover, these transformations can be defined when a cryptosystem
is implemented to minimize the impact on the time taken to compute a scalar
multiplication. The principle problem with using linear blinding is that it has a
large impact on the point addition algorithms.

6 Conclusion

In this paper we propose an multiplicative blinding method for protecting a
scalar multiplication that is a generalization of the use of randomized curve
isomorphisms. We also discuss how one could efficiently implement this counter-
measure using Montgomery multiplication, and show that this would allow for
a faster implementation than a näıve use of randomized curve isomorphisms.

The specific choice of µ = 2 and ν = 3 incurs only a small increase in
the execution time of a scalar multiplication. However, as noted above, this
corresponds to using an isomorphic curve, and that the optimizations presented
in Section 4 also apply. That is, if we apply the same criteria in choosing f , i.e.
such that f ′ ≡ f b mod p is ∈ {1, . . . , b− 1}, the performance will be identical.

We note that Algorithm 2 could also be used to efficiently implement ran-
domized projective coordinates [11]. The aim of this randomization is to make
the intermediate values unpredictable by an attacker and it is not necessary to
choose a random value with the same bit-length as the x and y-coordinates.
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