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Abstract. Implementations of cryptographic algorithms are vulnerable
to Side Channel Analysis (SCA). To counteract it, masking schemes are
usually involved which randomize key-dependent data by the addition of
one or several random value(s) (the masks). When dth-order masking is
involved (i.e. when d masks are used per key-dependent variable), the
complexity of performing an SCA grows exponentially with the order
d. The design of generic dth-order masking schemes taking the order
d as security parameter is therefore of great interest for the physical
security of cryptographic implementations. This paper presents the first
generic dth-order masking scheme for AES with a provable security and
a reasonable software implementation overhead. Our scheme is based
on the hardware-oriented masking scheme published by Ishai et al. at
Crypto 2003. Compared to this scheme, our solution can be efficiently
implemented in software on any general-purpose processor. This result
is of importance considering the lack of solution for d > 3.

1 Introduction

Side Channel Analysis exploits information that leaks from physical implemen-
tations of cryptographic algorithms. This leakage (e.g. the power consumption
or the electro-magnetic emanations) may indeed reveal information on the data
manipulated by the implementation. Some of these data are sensitive in the sense
that they are related to the secret key, and the leaking information about them
enables efficient key-recovery attacks [7, 18].

Due to the very large variety of side channel attacks reported against cryp-
tosystems and devices, important efforts have been done to design counter-
measures with provable security. They all start from the assumption that a
cryptographic device can keep at least some secrets and that only computation
leaks [24]. Based on these assumptions, two main approaches have been followed.
The first one consists in designing new cryptographic primitives inherently re-
sistant to side channel attacks. In [24], a very powerful side channel adversary is
considered who has access to the whole internal state of the ongoing computation.
In such a model, the authors show that if a physical one-way permutation exists
which does not leak any information, then it can be used in the pseudo-random
number generator (PRNG) construction proposed in [4] to give a PRNG prov-
ably secure against the aforementioned side channel adversary. Unfortunately,



no such leakage-resilient one-way permutation is known at this day. Besides, the
obtained construction is quite inefficient since each computation of the one-way
permutation produces one single random bit. To get more practical construc-
tions, further works focused on designing primitives secure against a limited side
channel adversary [13]. The definition of such a limited adversary is inspired by
the bounded retrieval model [10,21] which assumes that the device leaks a limited
amount of information about its internal state for each elementary computation.
In such a setting, the block cipher based PRNG construction proposed in [29]
is provably secure assuming that the underlying cipher is ideal. Other construc-
tions were proposed in [13, 30] which do not require such a strong assumption
but are less efficient [39]. The main limitations of these constructions is that
they do not enable the choice of an initialization vector (otherwise the security
proofs do not hold anymore) which prevents their use for encryption with syn-
chronization constraints or for challenge-response protocols [39]. Moreover, as
they consist in new constructions, these solutions do not allow for the protection
of the implementation of standard algorithms such as DES or AES [14,15].

The second approach to design countermeasures provably secure against
side channel attacks consists in applying secret sharing schemes [2, 38]. In such
schemes, the sensitive data is randomly split into several shares in such a way
that a chosen number (called the threshold) of these shares is required to retrieve
any information about the data. When the SCA threat appeared, secret sharing
was quickly identified as a pertinent protection strategy [6, 16] and numerous
schemes (often called masking schemes) were published that were based on this
principle (see for instance [1, 3, 17, 22, 25, 28, 33, 37]). Actually, this approach
is very close to the problem of defining Multi Party Communication (MPC)
schemes (see for instance [9, 12]) but the resources and constraints differ in the
two contexts (e.g. MPC schemes are often based on a trusted dealer who does
not exist in the SCA context). A first advantage of this approach is that it can be
used to secure standard algorithms such as DES and AES. A second advantage
is that dth-order masking schemes, for which sensitive data are split into d + 1
shares (the threshold being d+1), are sound countermeasures to SCA in realistic
leakage model. This fact has been formally demonstrated by Chari et al. [6] who
showed that the complexity of recovering information by SCA on a bit shared
into several pieces grows exponentially with the number of shares. As a direct
consequence of this work, the number of shares (or equivalently of masks) in
which sensitive data are split is a sound security parameter of the resistance of
a countermeasures against SCA.

The present paper deals with the problem of defining an efficient masking
scheme to protect the implementation of the AES block cipher [11]. Until now,
most of works published on this subject have focussed on first-order masking
schemes where sensitive variables are masked with a single random value (see
for instance [1,3,22,25,28]). However, this kind of masking have been shown to be
efficiently breakable in practice by second-order SCA [23, 26, 41]. To counteract
those attacks, higher-order masking schemes must be used but a very few have
been proposed. A first method has been introduced by Ishai et al. [17] which



enables to protect an implementation at any chosen order. Unfortunately, it is
not suited for software implementations and it induces a prohibitive overhead for
hardware implementations. A scheme devoted to secure the software implemen-
tation of AES at any chosen order has been proposed by Schramm and Paar [37]
but it was subsequently shown to be secure only in the second-order case [8].
Alternative second-order masking schemes with provable security were further
proposed in [33], but no straightforward extension of them exist to get efficient
and secure masking scheme at any order. Actually, at this day, no method exists
in the literature that enables to mask an AES implementation at any chosen
order d > 3 with a practical overhead; the present paper fills this gap.

2 Preliminaries on Higher-Order Masking

2.1 Basic Principle

When higher-order masking is involved to secure the physical implementation
of a cryptographic algorithm, every sensitive variable x occurring during the
computation is randomly split into d + 1 shares x0, . . . , xd in such a way that
the following relation is satisfied for a group operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the exclusive-or (XOR)
operation denoted by ⊕. Usually, the d shares x1, . . . , xd (called the masks)
are randomly picked up and the last one x0 (called the masked variable) is pro-
cessed such that it satisfies (1). When d random masks are involved per sensitive
variable the masking is said to be of order d.

Assuming that the masks are uniformly distributed, masking renders every
intermediate variable of the computation statistically independent of any sen-
sitive variable. As a result, classical side channel attacks exploiting the leakage
related to a single intermediate variable are not possible anymore. However,
a dth-order masking is always theoretically vulnerable to (d + 1)th-order SCA
which exploits the leakages related to d + 1 intermediate variables at the same
time [23, 36, 37]. Indeed, the leakages resulting from the d + 1 shares (i.e. the
masked variable and the d masks) are jointly dependent on the sensitive vari-
able. Nevertheless, such attacks become impractical as d increases, which makes
higher-order masking a sound countermeasure.

2.2 Soundness of Higher-Order Masking

The soundness of higher-order masking was formally demonstrated by Chari et
al. in [6]. They assume a simplified but still realistic leakage model where a
bit b is masked using d random bits x1, . . . , xd such that the masked bit is
defined as x0 = b ⊕ x1 ⊕ · · · ⊕ xd. The adversary is assumed to be provided
with observations of d + 1 leakage variables Li, each one corresponding to a
share xi. For every i, the leakage is modelled as Li = xi + Ni where the noises



Ni’s are assumed to have Gaussian distributions N
(
µ, σ2

)
and to be mutually

independent. Under this leakage model, they show that the number of samples
q required by the adversary to distinguish the distribution (L0, . . . , Ld|b = 0)
from the distribution (L0, . . . , Ld|b = 1) with a probability at least α satisfies:

q > σd+δ (2)

where δ = 4 logα/ log σ. This result encompasses all the possible side-channel
distinguishers and hence formally states the resistance against every kind of side
channel attack. Although the model is simplified, it could probably be extended
to more common leakage models such as the Hamming weight/distance model.
The point is that if an attacker observes noisy side channel information about
d + 1 shares corresponding to a variable masked with d random masks, the
number of samples required to retrieve information about the unmasked variable
is lower bounded by an exponential function of the masking order whose base is
related to the noise standard deviation. This formally demonstrates that higher-
order masking is a sound countermeasure especially when combined with noise.
Many works also made this observation in practice for particular side channel
distinguishers (see for instance [36,37,40]).

2.3 Higher-Order Masking Schemes

When dth-order masking is involved in protecting a block cipher implementation,
a so-called dth-order masking scheme (or simply a masking scheme if there is no
ambiguity on d) must be designed to enable computation on masked data. In
order to be complete and secure, the scheme must satisfy the two following
properties:

– completeness: at the end of the computation, the sum of the d shares must
yield the expected ciphertext (and more generally each masked transforma-
tion must result in a set of shares whose sum equal the correct intermediate
result),

– dth-order SCA security: every tuple of d or less intermediate variables must
be independent of any sensitive variable.

If the dth-order security property is satisfied, then no attack of order lower than
d+ 1 is possible and we benefit from the security bound (2).

Most block cipher structures (e.g. AES or DES) alternate several rounds
composed of a key addition, one or several linear transformation(s), and a non-
linear transformation. The main difficulty in designing masking schemes for such
block ciphers lies in masking the nonlinear transformations. Many solutions have
been proposed to deal with this issue but the design of a dth-order secure scheme
for d > 1 has quickly been recognized as a difficult problem by the community.
As mentioned above, only three methods exist in the literature that have been
respectively proposed by Ishai, Sahai and Wagner [17], by Schramm and Paar [37]
(secure only for d 6 2) and by Rivain, Dottax and Prouff [33] (dedicated to d =
2). Among them, only [17] can be applied to secure a non-linear transformation
at any order d. This scheme is recalled in the next section.



2.4 The Ishai-Sahai-Wagner Scheme

In [17], Ishai et al. propose a higher-order masking scheme (referred to as ISW in
this paper) enabling to secure the hardware implementation of any circuit at any
chosen order d. They describe a way to transform the circuit to protect into a
new circuit (dealing with masked values) such that no subset of d of its wires re-
veals information about the unmasked values3. For such a purpose, they assume
without loss of generality that the circuit to protect is exclusively composed of
NOT and AND gates. Securing a NOT for any order d is straightforward since
x =

⊕
i xi implies NOT(x) = NOT(x0) ⊕ x1 · · · ⊕ xd. The main difficulty is

therefore to secure the AND gates. To answer this issue, Ishai et al. suggest the
following elegant solution.

Secure logical AND. Let a an b be two bits and let c denote AND(a, b) = ab.
Let us assume that a and b have been respectively split into d+1 shares (ai)06i6d
and (bi)06i6d such that

⊕
i ai = a and

⊕
i bi = b. To securely compute a (d+1)-

tuple (ci)06i6d s.t.
⊕

i ci = c, Ishai et al. perform the following steps:

1. For every 0 6 i < j 6 d, pick up a random bit ri,j .
2. For every 0 6 i < j 6 d, compute rj,i = (ri,j ⊕ aibj)⊕ ajbi.
3. For every 0 6 i 6 d, compute ci = aibi ⊕

⊕
j 6=i ri,j .

Remark 1. The use of brackets indicates the order in which the operations are
performed, which is mandatory for security of the scheme.

The completeness of the solution follows from:⊕
i

ci =
⊕
i

(
aibi ⊕

⊕
j 6=i

ri,j
)

=
⊕
i

(
aibi ⊕

⊕
j>i

ri,j ⊕
⊕
j<i

(rj,i ⊕ aibj ⊕ ajbi)
)

=
⊕
i

(
aibi ⊕

⊕
j<i

(aibj ⊕ ajbi)
)

=
(⊕

i

ai
)(⊕

i

bi
)
.

In [17] it is shown that the AND computation above is secure against any attack
of order lower than or equal to d/2. As stated in Section 4 (and proven the full
version of the paper [35]) this scheme is actually dth-order secure.

Practical issues. Although the ISW scheme is an important theoretical re-
sult, its practical application suffers few issues. Firstly, it induces an important
overhead in silicon area for the masked circuit. Indeed, every single AND gate
is encoded using (d+ 1)2 AND gates plus 2d(d+ 1) XOR gates, and it requires
the generation of d(d+ 1)/2 random bits at every clock cycle. As an illustration,
masking the compact circuit for the AES S-box described in [5] would multiply
its size (in terms of number of gates) by 7 for d = 2, by 14 for d = 3 and by 22
for d = 4 (without taking the random bits generation into account). Secondly,

3 Considering wires as intermediate variables, this is equivalent to the security prop-
erty given in Section 2.3.



masking at the hardware level is sensitive to glitches, which induces first-order
flaws although in theory every internal wire carries values that are independent
of the sensitive variables [19, 20]. Preventing glitches in masked circuits imply
the addition of synchronizing elements (e.g. registers or latches) which still sig-
nificantly increases the circuit size (see for instance [31]).

Since software implementations of masking schemes do not suffer area over-
head and are not impacted by the presence of glitches at the hardware level,
a straightforward approach to deal with the practical issues discussed above
could be to implement the ISW scheme in software. Namely, we could repre-
sent each non-linear transformation S to protect by a tuple of Boolean functions
(fi)i usually called coordinate functions of S, and evaluate the fi’s with the ISW
scheme by processing the AND and XOR operations with CPU instructions.
However, this approach is not practical since the timing overhead would clearly
be prohibitive. The present paper follows a different approach: we generalize
the ISW scheme to secure any finite field multiplication rather than a simple
multiplication over F2 (i.e. a logical AND). We apply this idea to design a se-
cure higher-order masking scheme for the AES and we show that its software
implementation induces a reasonable overhead.

3 Higher-Order Masking of AES

The AES block cipher iterates a round transformation composed of a key addi-
tion, a linear layer and a nonlinear layer which applies the same substitution-box
(S-box) to every byte of the internal state. As previously explained, the main
difficulty while designing a masking scheme for such a cipher is the masking of
the nonlinear transformation, which in that case lies in the masking of the S-box.
Our method for masking the AES S-box is presented in the next section.

In what follows, we shall consider that a random generator is available which
on an invocation rand(n) returns n unbiased random bits.

3.1 Higher-Order Masking of the AES S-box

The AES S-box S is defined as the right-composition of an affine transformation
Af over F8

2 with the power function x 7→ x254 over the field F28 ≡ F2[x]/(x8 +
x4 + x3 + x+ 1). Since the affine transformation is straightforward to mask, our
scheme mainly consists in a method for masking the power function at any order
d. Our solution consists in a secure computation of the exponentiation to the
power 254 over F28 . Such an approach has already been described by Blömer et
al. for d = 1 [3]. The core idea is to apply an exponentiation algorithm (e.g. the
square-and-multiply algorithm) on the first-order masked input while ensuring
the mask correction step by step. Compared to Blömer et al. ’s solution, our
exponentiation algorithm is able to operate on dth-order masked inputs and it
achieves dth-order SCA security for any value of d. To perform such a secure
exponentiation, we define hereafter some methods to securely compute a squaring
and a multiplication over F28 at the dth order.



Masking the field squaring. Since we operate on a field of characteristic
2, the squaring is a linear operation and we have x20 ⊕ x21 ⊕ · · · ⊕ x2d = x2.
Securely computing a squaring can hence be carried out by squaring every share
separately. More generally, for every natural integer j, raising x to the power 2j

can be done securely by raising each xi to the 2j separately.

Masking the field multiplication. For the usual field multiplication we use
the ISW scheme recalled in Section 2.4. Even if it has been described to securely
compute a logical AND (that is a multiplication over F2), it can actually be
transposed to secure a multiplication over any field of characteristic 2: variables
over F2 are replaced by variables over F2n , binary multiplications (i.e. ANDs)
are replaced by multiplications over F2n and binary additions (i.e. XORs) are
replaced by addition over F2n (that are n-bit XORs). This keep unchanged the
completeness of the scheme recalled in Section 2.4. The whole secure multiplica-
tion over F2n is depicted in the following algorithm.

Algorithm 1 SecMult - dth-order secure multiplication over F2n

Input: shares ai satisfying
⊕

i ai = a, shares bi satisfying
⊕

i bi = b
Output: shares ci satisfying

⊕
i ci = ab

1. for i = 0 to d do

2. for j = i + 1 to d do

3. ri,j ← rand(n)

4. rj,i ← (ri,j ⊕ aibj)⊕ ajbi

5. for i = 0 to d do

6. ci ← aibi

7. for j = 0 to d, j 6= i do ci ← ci ⊕ ri,j

Masking the power function. Now we have a secure squaring and a secure
multiplication over F28 it remains to specify an exponentiation algorithm. It is
clear from Algorithm 1 that the running time of a secure multiplication is huge
compared to that of a secure squaring. A secure squaring indeed requires d+ 1
squarings while a secure multiplication requires (d + 1)2 field multiplications,
2d(d+ 1) XORs and the generation of d(d+ 1)/2 random 8-bit values. Our goal
is therefore to design an exponentiation algorithm using the least possible mul-
tiplications which are not squares. It can be checked that an exponentiation to
the power 254 requires at least 4 such multiplications. The exponentiation algo-
rithm presented hereafter achieves this lower bound and requires few additional
squares. It involves three intermediate variables denoted y, z and w (note that
x and y may be associated to the same memory address).



Algorithm 2 Exponentiation to the 254
Input: x
Output: y = x254

1. z ← x2 [z = x2]

2. y ← zx [y = x2x = x3]

3. w ← y4 [w = (x3)4 = x12]

4. y ← yw [y = x3x12 = x15]

5. y ← y16 [y = (x15)16 = x240]

6. y ← yw [y = x240x12 = x252]

7. y ← yz [y = x252x2 = x254]

As argued in the full version of this paper [35], for the dth-order secu-
rity to hold, it is important that the masks (ai)i>1 and (bi)i>1 in input of
the SecMult algorithm are mutually independent. That is why we shall refresh
the masks at some points during the secure exponentiation by calling a proce-
dure RefreshMasks4. The whole exponentiation to the power 254 over F28 secure
against dth-order SCA is depicted in the following algorithm.

Algorithm 3 SecExp254 - dth-order secure exponentiation to the 254 over F28

Input: shares xi satisfying
⊕

i xi = x
Output: shares yi satisfying

⊕
i yi = x254

1. for i = 0 to d do zi ← x2
i [

⊕
i zi = x2]

2. RefreshMasks(z0, z1, . . . , zd)

3. (y0, y1, . . . , yd)← SecMult
(
(z0, z1, . . . , zd), (x0, x1, . . . , xd)

)
[
⊕

i yi = x3]

4. for i = 0 to d do wi ← y4
i [

⊕
i wi = x12]

5. RefreshMasks(w0, w1, . . . , wd)

6. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x15]

7. for i = 0 to d do yi ← y16
i [

⊕
i yi = x240]

8. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x252]

9. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (z0, z1, . . . , zd)

)
[
⊕

i yi = x254]

For completeness, we describe the RefreshMasks algorithm hereafter.

Algorithm 4 RefreshMasks
Input: shares xi satisfying

⊕
i xi = x

Output: shares xi satisfying
⊕

i xi = x

1. for i = 1 to d do

2. tmp← rand(8)

3. x0 ← x0 ⊕ tmp

4. xi ← xi ⊕ tmp

4 Note that the masks resulting from the SecMult algorithm are independent of the
input masks.



Table 1. Complexity of SecExp254.

order nb. XORs nb. mult. nb. ˆ2j nb. rand. bytes memory (bytes)

1 20 16 6 6 7
2 56 36 9 16 12
3 108 64 12 20 18
4 176 100 15 48 25
5 260 144 18 70 33
d 8d2 + 12d 4d2 + 8d + 4 3d + 3 2d2 + 4d 1

2
d2 + 7

2
d + 3

Algorithm 3 involves of 8d(d+ 1) + 4d XORs, 4(d+ 1)2 multiplications (over
F28), d+1 squares, d+1 raising to the 4 and d+1 raising to the 16. It uses 3(d+
1) +d(d+ 1)/2 bytes of memory5 and it requires the generation of 2d(d+ 1) + 2d
random bytes (see illustrative values in Table 1). In comparison, the 2nd-order
countermeasures previously published [33, 37] require at least 512 look-ups and
512 XORs and have a memory consumption of at least 256 bytes (see [32,34] for
a detailed comparison).

Masking the full S-box. The affine transformation is straightforward to mask.
After recalling that the additive part of Af equals 0x63, it can be checked that
we have:

Af(x0)⊕Af(x1)⊕ · · · ⊕Af(xd) =

{
Af(x) if d is even,
Af(x)⊕ 0x63 if d is odd.

Masking the affine transformation hence simply consists in applying it to every
input share separately and, in case of an even d, in adding 0x63 to one of the
share afterward. The full S-box computation secure against dth-order SCA is
summarized in the following algorithm.

Algorithm 5 SecSbox
Input: shares xi satisfying

⊕
i xi = x

Output: shares yi satisfying
⊕

i yi = S(x)

1. (y0, . . . , yd)← SecExp254(x0, . . . , xd)

2. for i = 0 to d do yi ← Af(yi)

3. if (d mod 2 = 1) then y0 ← y0 ⊕ 0x63

Implementation aspects. Multiplications over F28 are typically implemented
in software using log/alog tables (see for instance [11]). Note that for security
reasons, such an implementation must avoid conditional branches in order to

5 3(d+ 1) bytes for the shares yi’s, zi’s and wi’s (Algorithm 3), and d(d+ 1)/2 for the
intermediate variables ri,j ’s (Algorithm 1).



ensure a constant operation flow. The squaring and raisings to the 4 and 16
may be looked-up. Different time-memory tradeoffs are possible. If not much
ROM is available, the squaring can be implemented using logical shifts and
XORs (see for instance [11]), and the raising to the 2j , j ∈ {2, 4}, can then
be simply processed by j sequential squarings. Otherwise, depending on the
amount of ROM available, one can either use one, two or three look-up table(s)
to implement the raisings to 2j , j ∈ {1, 2, 4}.

Remark 2. For the implementations presented in Section 5, we chose to imple-
ment the squaring by a look-up table, getting the raising to the 4 (resp. 16) by
accessing this table sequentially 2 (resp. 4) times.

Our scheme may also be implemented in hardware. The sensitive part is
the implementation of the SecMult algorithm (see Algorithm 1) which may be
subject to glitches and which should incorporate synchronizing elements. In par-
ticular, the evaluation of the ci shares should not start before the evaluation of
all the ri,j ’s has been fully completed. Another approach would be to enhance
the software implementation of the scheme with special purpose hardware in-
structions. For instance, the multiplication, squaring and raisings to powers 4
and 16 over F28 could be added to the instructions set of the processor.

3.2 Higher-Order Masking of the Whole Cipher

In the previous section, we have shown how the AES S-box can be masked at
any chosen order d. Since the S-box is actually the most difficult part of AES to
mask, and due to length constraints, we do not detail the masking of the whole
AES cipher here. This description is given in the full version of this paper [35].

4 Security Analysis

In this section, we give a sketch of the security proof of our scheme. We first
formally define the notion of dth-order SCA security and we introduce afterward
our main security result (Theorem 1). The complete security proof is given in
the full version of the paper [35].

We consider a randomized encryption algorithm E taking a plaintext p and
a (randomly shared) secret key k as inputs6 and performing a deterministic en-
cryption of p under the secret key k while randomizing its internal computations
by means of an external random number generator (RNG). The RNG outputs
are assumed to be perfectly random (uniformly distributed, mutually indepen-
dent and independent of the plaintext and of the secret key). Any variable that
can be expressed as a deterministic function of the plaintext and the secret key,
which is not constant with respect to the secret key, is called a sensitive variable
with the exception of the ciphertext Ek(p) or any deterministic function of it.

6 The secret key k is assumed to be split into d + 1 shares k0, k1, . . . , kd such that⊕
i ki = k and every d-tuple of ki’s is uniformly distributed and independent of k.



Note that every intermediate variable computed during an execution of E (except
the plaintext and the ciphertext) can be expressed as a deterministic function
of a sensitive variable and of the RNG outputs.

We shall consider the plaintext, the secret key and the intermediate variables
of E as random variables. The distributions of the intermediate variables are
induced by the algorithm inputs (p and k) distributions and by the uniformity
of the RNG outputs. The joint distribution of all the intermediate variables
of E thus depends on (p, k). On the other hand, some subsets of intermediate
variables may be jointly independent of (p, k). This leads us to the following
formal definition of dth-order SCA security.

Definition 1. A randomized encryption algorithm is said to achieve dth-order
SCA security if every d-tuple of its intermediate variables is independent of any
sensitive variable.

Equivalently, an encryption algorithm achieves dth-order SCA security if any
d-tuple of its intermediate variables, except the plaintext and the ciphertext (or
any function of one of them), is independent of the algorithm inputs (p, k).

The most sensitive part of our scheme is the masked multiplication algorithm
based on the generalized ISW scheme (Algorithm 1). The theorem hereafter
states that it achieves dth-order SCA security.

Theorem 1. Let a and b be two sensitive variables. Let (ai)06i6d and (bi)06i6d
be two families of intermediate variables in input of Algorithm 1 satisfying a =⊕

06i6d ai and b =
⊕

06i6d bi with (ai)i>1 and (bi)i>1 being RNG outputs. Then,
the distribution of every tuple of d or less intermediate variables in Algorithm 1
is independent of (a, b).

Theorem 1 states that the generalized ISW scheme achieves dth-order SCA
security whereas in [17] it is only proven that the ISW scheme achieves (d/2)th-
order SCA security. This improvement is of practical interest since it enables to
double the security order for any chosen complexity (in terms of timing and/or
silicon area).

The proof of Theorem 1 as well as the security proof of our whole dth-order
masking scheme for AES are given in the full version of the paper [35].

5 Implementation Results

To compare the efficiency of our proposal with that of other methods proposed
in the literature, we applied them to protect an implementation of the AES-128
algorithm in encryption mode. We have implemented our new countermeasure
for d ∈ {1, 2, 3}, namely to counteract either first-order SCA (d = 1) or second-
order SCA (d = 2) or third-order SCA (d = 3). Among the numerous methods
proposed in the literature to thwart first-order SCA we chose to implement only
that having the best timing performance (the table re-computation method [22])
and that offering the best memory performance (the tower field method [27]). In
the second-order case, we implemented the only two existing methods: the one



proposed in [37]7 and the one proposed [33]. Eventually, since no countermeasure
against 3rd-order SCA was existing before that introduced in this paper, it is
the single one in its category.

We wrote the codes in assembly language for an 8051-based 8-bit architec-
ture. The implementations only differ in their approaches to protect the S-box
computations. In Table 2, we list the timing/memory performances of the dif-
ferent implementations.

Table 2. Comparison of secure AES implementations

Method Reference cycles RAM (bytes) ROM (bytes)

Unprotected Implementation

No Masking Na. 2× 103 32 1150

First Order Masking

Re-computation [22] 10× 103 256 + 35 1553

Tower Field in F4 [27, 28] 77× 103 42 3195

Our scheme for d = 1 This paper 129× 103 73 3153

Second Order Masking

Double Re-computations [37] 594× 103 512 + 90 2336

Single Re-computation [33] 672× 103 256 + 86 2215

Our scheme for d = 2 This paper 271× 103 79 3845

Third Order Masking

Our scheme for d = 3 This paper 470× 103 103 4648

As expected, in the first-order case the countermeasures introduced in [22]
and [27, 28] are much more efficient than ours. This is a consequence of the
generic character of our method which is not optimized for one choice of d but
aims to work for any d.

In the second-order case, our proposal becomes much more efficient than
the existing solutions. It is 2.2 times faster than the countermeasure proposed
in [37] with a RAM memory requirement divided by around 10. It is also 2.5
times faster than the countermeasure in [33] and requires 5.3 times less RAM.
Memory allocation differences are merely due to the fact that the methods [37]
and [33] generalize the table re-computation method and thus require the storage
of one (for [33]) or two (for [37]) randomized representation(s) of the AES S-
box. The differences in timing performances come from the fact that the methods
in [37] and [34] process one loop over all the 256 elements of the S-box look-up
table (each loop iteration processing itself a few elementary operations), which
is more costly than the 36 field multiplications and 56 bitwise additions involved
in our method (see Table 1).

7 Initially, the method of [37] was devoted to thwart dth-order SCA for any chosen
order d but it has been shown insecure for d > 3 [8].



Eventually, in the third-order case our method has acceptable timing/memory
performances. For comparison, it stays faster than the second-order countermea-
sures proposed in [37] and [33] and it still requires much less RAM memory. For
a chip running at 31MHz (which is today quite usual) an AES encryption of one
block requiring 470× 103 cycles, takes 91ms. For some use cases where the size
of the message to encrypt/decrypt is not too long such a timing performance is
acceptable (e.g. challenge-response protocols, Message Authentication Codes for
one-block messages as in banking transactions).

6 Conclusion

In this paper, we have presented the first masking scheme dedicated to AES
which is provably secure at any chosen order and which can be implemented in
software at the cost of a reasonable overhead. We provided implementation
results showing the practical interest of our scheme as well as its efficiency com-
pared to the existing second-order masking schemes. In the full version of this
paper [35], we further give a formal security proof of our scheme including an
improved security proof for the scheme published by Ishai et al. at Crypto 2003.
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