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Abstract. In this paper we propose a new Delay-PUF architecture that
is expected to solve the current problem of Delay-PUF that it is easy to
predict the relation between delay information and generated informa-
tion. Our architecture exploits glitches that behave non-linearly from
delay variation between gates and the characteristic of pulse propaga-
tion of each gate. We call this architecture Glitch PUF. In this paper, we
present a concrete structure of Glitch PUF. We then show the evaluation
results on the randomness and statistical properties of Glitch PUF. In
addition, we present a simple scheme to evaluate Delay-PUFs by sim-
ulation at the design stage. We show the consistency of the evaluation
results for real chips and those by simulation for Glitch PUF.

1 Introduction

1.1 Background

High-level security needs such as in financial transactions and Digital Rights
Management (DRM) have widened the use of security chips as represented by
smart cards and Trusted Platform Modules (TPMs). Security chips provide not
only a variety of cryptographic functions but tampering countermeasures, which
are mechanisms to protect sensitive information stored within the chips from
physical attacks. Examples of tampering countermeasures include mounting sen-
sors or mesh shielding within a chip.

Physical Unclonable Function (PUF) [1] is a technique in relation to tamper-
ing countermeasures which has been attracting wider attention in recent years.
PUFs are designed to return responses to given challenges according to physical
characteristics that are innately possessed by each artificial object such as an
LSI. It is arguably difficult to clone an artificial object from the fact that its
characteristics originate from manufacturing variation.

With the help of Fuzzy Extractor [2], which is a technique to extract stable
secret information from noisy characteristics, it is even possible to generate de-
vice unique keys that are difficult to copy. The key information is resistant to
analysis that directly reads data inside a chip by breaking it open, because the
information does not need storing in nonvolatile memory to be reproducible.
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PUFs are also advantageous in that they are feasible on general-purpose LSI
such as FPGA and ASIC. There are many active research works on methods of
PUF realization and generation of device unique keys [4–12].

SRAM-PUF is recognized as one of the most feasible and secure PUFs thus
far because there have already been implementations of error correcting codes
and universal hash functions optimized for it, which are needed for Fuzzy Extrac-
tor. It is, however, difficult to evaluate the information entropy and error rate of
SRAM-PUF on ASIC chips before production because it, as well as Butterfly-
PUF [8], exploits the metastable state of memory cells on power activation,
where only a behavior model is available for the characteristics of the cells. The
error rate is particularly changeable according to the process. In fact, Ref. [13]
reports a much higher rate of error than that reported by the proposers [5], which
implies the possibility that the error rate of SRAM-PUF changes on different
target devices. On the other hand, the evaluation is possible on devices that are
available before production such as FPGA.

As for Delay-PUF, security issues have been reported. It is shown that a ma-
chine learning attack can predict challenge-response pairs after a decent number
of pairs are collected by self-evaluation [6]. Furthermore, although there have
been proposed countermeasures such as Feed-Forward Arbiter PUF, which in-
stalls non-linear operations, and XOR-PUF, which is comprised of multiple Ar-
biter PUFs, it is shown that machine learning attacks are still applicable to
those [14]. These issues originate from the simplicity of the circuit structure of
Delay-PUF.

At the same time, however, Delay-PUF is advantageous in that delay infor-
mation utilized by it has affinity with logic simulation, which is performed at the
design stage. That enables to evaluate the amount of information of the PUF at
an earlier stage of design process. At least, chip vendors must possess informa-
tion about the delay variation since they need to embed the delay information
in a cell library when they develop it.

On the other hand, Statistical Static Timing Analysis (SSTA), which is
a design method for variation, has been intensely studied [15] now that in-
creasing manufacturing variation prevents performance improvement as the pro-
cess miniaturizes. SSTA is adopted by standard Electronic Design Automation
(EDA) tools as PrimeTime. It is anticipated from these facts that logic circuit
designers will be able to access information about delay variation in a near fu-
ture.

1.2 Our Contributions

We propose a new Delay-PUF architecture, which is expected to solve the eas-
iness of predicting the relation between delay information and generated infor-
mation. The proposed architecture exploits glitch waveforms that behave non-
linearly from delay variation between gates. We thus call this architecture Glitch
PUF.
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In this paper, we show a concrete structure of Glitch PUF. We also present
the results of the evaluation on randomness and statistical properties of Glitch
PUF performed on FPGA.

As the second contribution, we present a simple scheme to evaluate the char-
acteristics of Glitch PUF with simulation at the design stage. We show the
consistency between the results using the scheme, and those for real devices.

2 Simulating Behavior of Delay-PUFs

In this section, we discuss a concrete methodology to evaluate randomness and
statistical properties of Delay-PUFs by simulation. The goal of this simulation
is to evaluate the randomness and error rate of a Delay-PUF at its design stage.
The reason that Delay-PUF circuits of the same design behave differently on
each individual chip is that transistors hold characteristic variation (variation
of threshold voltages Vth, to be concrete). The occurrence of errors even on the
same chip results from the change of operating environment (static/dynamic IR-
drop, change of temperature, etc.). By attributing these factors to the variation
of gate delays, we attempt to realize the evaluation of the randomness and error
rate.

The evaluation flow, shown in Fig. 1, is basically the same as an ordinary
circuit design and timing evaluation. It is different in that delay variation is
reflected before simulation.
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Fig. 1. PUF evaluation flow by simulation

A Standard Delay Format (SDF) [16] in Fig. 1 is a file that defines represen-
tative delays for a target device, and used for delay analysis for a circuit. It is
thus possible to evaluate the operating delays of the device under corner condi-
tions using the delay values that corresponds to several operating conditions of
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the circuit. However, it is not possible to evaluate PUFs with SDFs as they are
because the delay values are fixed while PUFs assume delay variation.

In order to reflect individual difference and environmental change, we perform
simulation with a large number of SDFs varied from the original SDF according
to the previously-extracted characteristics and distributions of process, supply
voltage and temperature (PVT) of a device.

Process variation is generally classified into systematic variation and random
variation [17]. Systematic variation is correlated with location in a wafer or a
chip. It is represented by the performance difference between chips such as the
speed grade of FPGA. Random variation is not related with spatial location of
transistors. It is known to result from the fluctuation of the concentration of
impurities. Environmental change is parameterized representatively by voltage
and temperature. These parameters are evaluated for TEG chips on a startup
of LSI fabrication.

On the contrary, the information about PVT variation on FPGA is not dis-
closed. We hence try to extract the parameters by observing the delays in a chain
of inverters under various layouts and environments as in [18] on 16 FPGAs. The
parameters are as follows.

· Systematic delay variation between chips: σ2
sys

· Random delay variation within chips: σ2
rand

· Environmental random delay variation such as from dynamic IR-drop: σ2
noise

· Average fraction of designed delays under 0 ◦C: τ0

· Delay temperature coefficient: µT

The following assumptions are made to calculate each parameter from measured
delays.

(1) Systematic delay variation within chips can be ignored.
(2) The distributions are normal (with variances σ2

sys, σ2
rand, and σ2

noise).
(3) σ2

rand, σ2
noise, and µT are constant for all chips.

Note here that all the parameters are represented as fractions of designed delay
values in a SDF. It is then possible to simulate individual difference and en-
vironmental change based on the delays that EDA tools output reflecting gate
depths, numbers of fanouts and layout difference.

Designed delay values d1, · · · , dMAXNodeNum for each node defined in a SDF
are changed by the following formula (Algorithm 1), where sampling r from a
distribution N(0, σ2) is denoted as r ← N(0, σ2).

3 Glitch PUFs

In this section, we explain the architecture of the proposed PUF, which exploits
glitch waveforms. It is thus called Glitch PUF.
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Algorithm 1 Regeneration of SDFs with Individual and Environmental Differ-
ence
Setting: · MAXNodeNum nodes are included in the original SDF file.

· MAXChipNum chips are simulated.
· The response data for each chip is regenerated MAXRepNum times to evaluate

the error rate.
· T ◦C is the operating temperature.

Input: T, (d1, · · · , dMAXNodeNum)
Output: SDF(i,j), 0 ≤ i ≤ MAXChipNum, 0 ≤ j ≤ MAXRepNum.
1: for i = 1 to MAXChipNum do
2: rsys ← N(0, σ2

sys)
3: for j = 1 to MAXRecNum do
4: for k = 1 to MAXNodeNum do
5: rrand ← N(0, σ2

rand)
6: rnoise ← N(0, σ2

noise)
7: d′

k := ((1+µT · T )(τ0 + rsys + rrand) + rnoise) · dk

8: end for
9: WriteSDF(i,j)(d

′
1, · · · , d′

MAXNodeNum
)

10: end for
11: end for

3.1 Basic Idea

We consider to simulate the behavior of a device at early design stages according
to the characteristics of the device. The goal of this simulation is to estimate
the amount of information of a PUF, especially its lower limit, without need to
evaluate a large volume of real LSIs. As stated earlier, it is delay information
that is most compatible with simulation at earlier stages of all characteristics.
Then it is probable to be able to evaluate the amount of information of a PUF
within the current scheme of logic circuit design, if the delay variation among
devices is closely connected to the change of reponse of the PUF.

We consider possible behavioral difference of the same logic circuits with
different delays. Examples of such behaviors are shown in Fig. 2. Fig. 2-(a)
shows a basic one that there is a time difference between output changes from
an input change. The time from an input change to an output change is, however,
difficult to be exploited as a device unique key because it depends not only on
the variation of gate delays inherent from manufacturing but also largely on the
operating temperature and voltage. On reflection, Arbiter PUF by Lin et al.
exploits the time difference between two signals to ensure stability against such
environmental changes as shown in Fig. 2-(b). But it is known about Arbiter PUF
that it is possible to predict challenge-response pairs (CRPs) by machine learning
if a sufficient number of CRPs have been collected. Feed-Forward Arbiter PUF,
which introduces non-linear operations as a countermeasure, is also possible to
be attacked by machine learning [14].

The examples thus far describes behaviors from a delay difference for very
simple logic circuits. From here, we discuss more general circuits such as Fig. 2-
(c) that perform AND and XOR to multiple inputs. In this kind of circuit there
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occurs a transient state of an output signal called a glitch from the delay differ-
ence between input signals, unless a particular condition holds. In the example
in Fig. 2-(c), in case that input signals x1, x2, x3 all change from 0 to 1, there is a
convex glitch at the XOR output from the difference of transition time between
x1 and x2. The glitch propagates to the AND output only if the transition of
the input signal x3 reaches the AND gate faster than the glitch. If not on the
contrary, the glitch does not propagate to the output, in which case the output
remains unchanged. Furthermore, even if x3 is faster, the PATHPULSE [16] of
the AND gate might prevent a narrow glitch from propagating. Notice here that
for sufficiently wide glitches, their shapes are determined by the relation of de-
lays, not by the absolute values of the delays. It is then anticipated that shapes
of glitches are kept unchanged if the operating environment changes, like Arbiter
PUF.

Now our attention is focused on glitches, which can take various shapes ac-
cording to the order relation of delays between the inputs of each gate that
consists in a logic circuit. We discuss a means of applying them to construct a
PUF from here.

3.2 Overall Sequence

First of all, we describe a whole sequence of Glitch PUF. Glitch PUF consists
largely of the three steps below.

STEP 1 Data input to a random logic
STEP 2 Acquisition of glitch waveforms at the output
STEP 3 Conversion of the waveforms into response bits

In the example of Fig. 2-(c), STEP 1 means causing changes to the inputs
x1, x2, x3. The accompanying glitch waveform at the output y is acquired as
an n-bit data. The data is then transformed into a one-bit data r according to
its shape. Changing the input in STEP 1 and iterating the steps, a bit sequence
R is acquired as a response data R.
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Each subsection below describes the details of necessary techniques to realize
the operations from STEP 1 to STEP 3.

3.3 Acquisition of Glitch Waveforms

As described in Section 2.1, we attempt to construct a PUF using glitches, which
can take various shapes according to delay variation. The issue here is how to
accurately acquire the shape of a pulse signal that happens only for a tiny period
of time. At the same time, the acquisition process must be realized as a digital
circuit for the goal of this paper.

The phase-shift method is one of the general solutions to the issue, where
multiple clocks with different phases are prepared to sample a tiny pulse. The
sampling accuracy is heightend as the number of different phased clocks is in-
creased. The method is, however, not practical since it needs too many clock
lines. Particularly in FPGA, there is a limited number of global clock lines with
little jitter, from several to several dozen. Although the number of clock lines
can be reduced by introducing time-division, the speed of acquisition decreases
then. We hence adopt a method where the target data is shifted by a tiny period
of time, and sampled by the same clock. Fig. 3 shows a sampling circuit of this
method. We call this operation glitch acquisition hereafter. Note here that since
the sampling period must be short for acquisition accuracy, it is required to re-
duce the delay deference between signals loaded into flip-flops (FFs) as much as
possible by decreasing the buffer depths between signals, or using other elements
with shorter delays in Fig. 3. As the delay difference decreases, though, clock
jitter between FFs and wire or gate delay cannot be ignored. In this case, the
orders of sampling positions of FFs, and their actual delays do not match as
in Fig. 4, thereby permuting the time order of the sampled data. It probably
becomes impossible to recover the glitch shape accurately. This problem also
occurs for the aforementioned phase-shifting of clock.
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We thus introduce a preprocessing shown below before performing glitch
acquisition in order to determine the time order of the sampling result. A signal
wire is added to generate a simple rising edge, called a ping signal hereafter.
First, a ping signal is input to the sampling circuit in Fig. 3 and sampled. Then,
each FF latches 1 or 0 if the ping signal reaches it before or after the clock,
respectively. On the other hand, there is a variable delay circuit in the clock line,
with which the above process is performed multiple times with different clock
delays. The number of latching 1 is thereby counted for each FF. Lastly, the time
order of the samplings is determined according to the order of the numbers. An
example time order is shown in Fig. 5. The glitch shape is recovered after sorting
the sampled data according to this order.

From here, the above-mentioned preprocessing is called jitter correction and
the sorting according to the result of the jitter correction is called sorting. The
results of glitch acquisition with and without jitter correction are shown in Fig. 6
and Fig. 7 respectively.

3.4 Conversion to Response

One-bit value is converted from the glitch waveforms acquired as digital data by
the above sampling method. We describe a means to convert the parity of the
number of rising edges in a glitch waveform. The parity can be detected with
differential and addition processing implemented in hardware or software. This
detection is called shape judgment.

It is still difficult to acquire the time order of FFs completely even though
the aforementioned preprocessing is performed. When the sorted time order is
different from the actual order of the circuit, a glitch waveform like Fig. 4 is
acquired, where there are narrow pulses near the edges. This kind of phenomenon
is an unstable behavior occurring when the clock delays between FFs are close. As
a result, the shape judgment can be different for each trial of glitch acquisition.
In addition, an extremely narrow pulse can cause the same phenomenon due to
the PATHPULSE mentioned previously.
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Fig. 9. Whole structure of Glitch PUF

We decide to perform a processing as shown in Fig. 8 to ignore pulses with
widths less than a threshold w. This processing is called filtering hereafter.

3.5 Reliability Enhancement

In order to improve the error rate of the shape judgment, we utilize the feature
that the same processing can be performed multiple times. That is, the final
output is determined by majority after multiple trials of shape judgment are
performed for the same input transition. In particular, when the initial key is
generated such as by Generate (Gen) in Fuzzy Extractor [2], only such inputs
as acquire the same outputs for M iterations are used. In this case, performing
shape judgment M times for each of N input changes generates an N -bit mask
as well as an N -bit response. Value 1 of a mask bit means that the bit position
is used for key generation, and vice versa. The mask is output as part of Helper
Data.

In methods such as suggested in Ref. [12], a probability distribution of errors
is output as Helper Data when performing Gen and soft-decision is performed
in the process of Reproduce (Rep) [2]. The amount of information is preserved
although the error distribution is made public. On the contrary, the amount of
information is reduced by the masking process. In Glitch PUF, bit positions with
high error rates are determined for each chip and the number of them is small.
We therefore choose to mask them and reduce the size of the necessary error
correcting circuit.

3.6 The Architecture

Fig. 9 illustrates the circuit architecture of Glitch PUF. Glitch PUF consists
mainly of control registers, data registers, a glitch generator, a sampling circuit,
and two kinds of delay circuit. The control registers in Fig. 9 store the control
parameters listed below.

· SELgc: Selection signal to glitch generator (log u bits)
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· sels: Input selection signal to sampling circuit (1 bit)
· h: Ping signal (1 bit)
· D: Delay specifier signal to variable delay circuit (q + q′ bits)
· p: Trigger signal (1 bit)

The data registers store the data X (u-bit) input into the glitch generator. The
glitch generator is comprised of a combinational circuit and a v-1 selector, where
the circuit performs Y = f(X) defined for X in Fig. 10 and the selector selects
one bit out of v bits of Y according to a selection signal SELgc. The delay
circuit for the ping signal consists of a buffer chain, thereby outputting hd, a
delayed signal of h. The depth of the chain is determined at the design stage
by simulation evaluating the occurrence timing of the glitch signals generated in
the glitch generator. We describe the details in the next section. The sampling
circuit, as discussed in Section 3.3, is constructed of a buffer chain and FFs
shown in Fig. 3. It is noteworthy that when implementing a Glitch PUF on
FPGA, the sampling resolution can be heightened by utilizing carry paths of
addition circuits as a buffer chain rather than implementing the chain in Look-
up tables (LUTs). The variable delay circuit is also implemented with carry
paths to minimize the step size of delay by which the delay can be varied. At the
same time, however, the range of the variable delay must be wider than that for
sampling. Hence, the circuit requires large area if it is all constructed of carry
paths. The issue can be avoided by combining delay circuits on carry paths and
LUTs as in Fig. 11, thereby keeping a wide variable range and high resolution
at the same time.

In this paper, the process until the sampling is implemented on hardware
and the rest is on firmware in order to observe the behavior of the generated
glitches.
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3.7 Adjustment of the Design Parameter

In order to realize efficient glitch acquisition, parameters need to be adjusted for
each circuit in Fig. 9 at the design stage. The parameters are as the following.

· n: The number of FFs in the sampling circuit
· delays: The delay value of the buffers inserted between the signals of the sam-

pling circuit
· ranges: The sampling range of the sampling circuit
· rangeg: The range of glitch occurrence in the glitch generator
· rangeCLK: The variation range of the variable delay circuit
· tg: The time of the central value in the range of glitch occurrence
· th: The time of rising of the delayed ping signal hd

Fig. 12 illustrates the relationship between each parameter. n and delays

are related to the sampling range and resolution. ranges is about n · delays. To
acquire glitch shapes, it must hold that rangeg < ranges < rangeCLK. We discuss
a design procedure to realize the relation in what follows.

At first, the time range rangeg where glitches can occur at the input of the
sampling circuit, and the occurrence timing tg are estimated by logic simulation
with delay information. That is performed when the logic of the glitch generator
is fixed. Second, n and delays are determined such that the equation rangeg <
ranges holds. Here, the sampling resolution can be heightend by selecting a cell
from the target platform as a buffer such that delays is as small as possible. As a
result, it is n that actually needs determining. The implementation in this paper
sets ranges to be more than twice rangeg as a design margin. Also, the buffer
depth in the variable delay circuit is configured such that rangeCLK is around
twice ranges.

Next, the buffer depth in the delay circuit for the ping signal is configured
such that tg ≃ th for the previously determined tg. The configuration is not only
used to calculate the time order of the sampling results. It is also to determine
the delay specifier signal Dg in the variable delay circuit, which is for acquiring
glitch shapes. The details are as follows. Sampling the ping signal is performed
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with D being incremented from its minimum to maximum values. Dg is set to be
the D when a certain FF around the center of the sampling results latches 1 for
the first time. Glitch waveforms can thereby be sampled around the center of the
sampling range since the glitch occurrence range is configured to be in the same
range as the ping delay. However, ranges and rangeCLK must have margins,
like twice/half something as stated earlier, because it is generally difficult to
accurately configure the delay between signals.

4 Experimental Results

This section presents the results of evaluating the randomness and statisti-
cal properties for an experimental implementation of Glitch PUF on FPGA.
The experiment is performed for Spartan-3A evaluation boards by AVNET that
mount one XC3S400A-4FT256, a Xilinx FPGA. 16 boards are used. We build
a System-on-a-Chip (SoC), mounting on an FPGA a soft-macro CPU (MicroB-
laze), UARTs, and memory controllers as well as a PUF circuit. Table 1 shows
the specification of the implementation environment. The process after the shape
acquisition mentioned above is performed by firmware on a MicroBlaze mounted
on the same FPGA as the circuits are implemented on. AES SubBytes is used
as the glitch generator since its logic is complex and circuit structure is well
studied by designers of cryptographic hardware. The sampling circuit is imple-
mented with 256 FFs. The variable delay circuit consists of a 256-bit addition
circuit, and an LUT-based buffer chain whose depth of LUT can be 4, 8, 12, and
16 with a 4-1 selector.

We perform a basic experiment on delay characteristics described in Section 2
in order to extract the parameters for the same FPGA boards needed for the
simulation of PUF. The parameters are shown in Table 2. The parameters are
calculated as fractions of corresponding worst-case delays defined in SDF gen-
erated by an EDA tool after the layout. Using Table 2, we regenerate a number
of SDFs according to Algorithm 1, and evaluate the randomness and statistical
properties by simulation. The results are also shown in this section.

4.1 Inter-Chip Variation

Fig. 13 is a histogram of Hamming distances between PUF outputs of two dif-
ferent FPGAs out of 16 (i.e. 120 combinations). This evaluation is a general
way to show how different responses of chips are. The result shows that about
850 bits out of 2048 bits are different between chips. Fig. 14 shows the result of
the same evaluation by simulation. Comparing Figs. 13 and 14, it is seen that
the simulation is able to evaluate the randomness of responses generated by real
chips.

Table 3 shows the min-entropy of the probability distribution of the response
acquired through the experiment, and of the distribution of the masked response
described in Section 3.5. Masking reduces the min-entropy of the original dis-
tribution since it discards the response bits that are judged to be unstable at
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Table 1. Specification of experimental environment

Implementation environment

Logic synthesis, P&R Xilinx Platform Studio 10.1.03i
Simulator NC-Verilog
Target FPGA Xilinx XC3S400A-4FTG256C (16 boards)
MAXChipNum 1000
MAXRepNum 1000
Number of bits of generated responses N 2048

Specification of Glitch PUF

Glitch generator AES SubByte (composite field)
Design parameter (n, u, v, q, q′) (256, 8, 8, 8, 2)
Filtering parameter w 2
Reliability Enhancement parameter M 10
SLICEs used 891/3584 (Whole SoC 3186/3584)
Operating frequency 50 MHz

Table 2. Delay characteristics

Systematic delay variation σ2
sys(%

2) 2.5037
Random delay variation σ2

rand(%2) 5.3091
Environmental random delay variation σ2

noise(%
2) 0.0310

Average fraction of designed delays τ0 (%) 56.9727
Delay temperature coefficient µT (%/◦C) 0.1401

Gen. However, the reduction rate is only around 30% for the experimental Glitch
PUF, indicating that the amount of information is still sufficient if the unstable
bits for each chip are discarded. Table 3 also proves that the min-entropy loss
from masking can be evaluated at the design stage by simulation.

It is also noteworthy in Table 3 that there is an interesting relationship
between H∞(R), σ2

sys, and σ2
rand. H∞(R) changes sensitively to the change of

σ2
rand while it does not to the change of σ2

sys. In other words, Glitch PUF ensures
the amount of information of the response data from the random delay variation
within chips rather than from the systematic delay variation between chips. The
result implies that Glitch PUF can guarantee the randomness for chips on the
same wafer as well as for chips on different wafers, or from different lots. In
addition, it is arguably possible that the randomness of Glitch PUF further
improves for latest devices because random delay variation tends to enlarge as
the process miniaturizes.

4.2 Intra-Chip Variation

It is desirable for a PUF to stably generate the same response for the same
FPGA. Fig. 15 plots the Hamming distances between the initial response and 100
responses measured thereafter, all of which are masked. The measurements are
at normal temperature and voltage (24◦C,1.20V ), and averaged for 16 FPGAs.
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Fig. 13. Hamming distances of response
data between FPGAs (actual chips)
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Fig. 14. Hamming distances of response
data between FPGAs (simulation)

Table 3. Change of information amount against change of variations

Simulation results (24◦C)

Variation H∞(R) H∞(R|Mask)

(σ2
sys, σ

2
rand) 1,043 702

((2 · σsys)
2, σ2

rand) 1,068 721
(( 1

2
· σsys)

2, σ2
rand) 1,046 703

(σ2
sys, (2 · σrand)2) 1,167 811

(σ2
sys, (

1
2
· σrand)2) 828 546

FPGAs 1,156 649

The mean error rate is around 1.3%. Next, as Fig. 17 shows, the maximum error
rate in the rated temperature range is about 6.6 % at 80◦C, which is less than the
half of 15% assumed in Ref. [11]. In addition it is shown by Figs. 16 and 17 that
the change of the error rate with respect to the temperature can be evaluated
by simulation with high accuracy.

Next, we discuss the effect of masking. Fig. 18 is a histogram of error rates
for each bit of the 2048-bit response data at normal temperature and voltage. It
is clear that there are many bits with error rates higher than 0.1 when masking
is not performed. At the same time, most of these bits are removed by masking,
which correctly treats the response data. Masking is effective for Glitch PUF
since it greatly lowers the error rate, although the min-entropy decreases by
about 30 % as stated earlier.

4.3 Secrecy Rate

In Ref. [19], the secrecy rate is defined to be I(R, R′), the mutual information of
the response data at Gen R, and at Rep R′. The average secrecy rate of Glitch
PUF is calculated to be 0.26 per bit from the aforementioned experimental
results. This is about 1/3 that of SRAM-PUF. At the moment, Glitch PUF
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Fig. 15. Hamming distances between re-
sponse data for the same FPGA (actual
chips)
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Fig. 16. Hamming distances between re-
sponse data for the same FPGA (simula-
tion)

is thus inferior to SRAM-PUF in the efficiency to generate secret information.
However, delay-PUFs including Glitch PUF have the advantage of being able to
evaluate the secrecy rate by logic simulation, the same way as explained in the
previous sections. On the contrary SRAM-PUF requires analog simulation like
SPICE to evaluate the same thing.

5 Conclusions

In this paper, we propose Glitch PUF, which is a new Delay-PUF for the purpose
of remedying a problem about the previous Delay-PUFs, that is, the easiness to
predict the relationship between delay information and generated information.
Glitch waveforms occurring at the output of a random logic behave non-linearly
from delay variation between gates and the characteristic of pulse propagation
of each gate. We present a method to accurately acquire the waveforms and to
convert them into response bits. In addition, we prove the feasibility of Glitch
PUF by evaluation of the randomness and statistical properties for an FPGA.
Furthermore, we show a simple scheme to evaluate the characteristics of Glitch
PUF. Using the scheme, we confirm the consistency of the evaluation results for
real chips and those by simulation.

Lastly, we list open problems below.

· Construct a glitch generator that brings high amount of information and low
error rate .
· Model machine learning attacks to Glitch PUF.
· Construct an error correcting code and universal hash function suitable for

Glitch PUF.
· Model logic simulation for voltage change and aging degradation through ac-

celeration test, and evaluate them on real chips
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