
Public Key Perturbation of Randomized RSA
Implementations

Alexandre Berzati1,2, Cécile Canovas-Dumas1, Louis Goubin2

1 CEA-LETI/MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France,
{alexandre.berzati,cecile.canovas}@cea.fr

2 Versailles Saint-Quentin-en-Yvelines University,
45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

Louis.Goubin@prism.uvsq.fr

Abstract. Among all countermeasures that have been proposed to thw-
art side-channel attacks against RSA implementations, the exponent ran-
domization method – also known as exponent blinding – has been very
early suggested by P. Kocher in 1996, and formalized by J.-S. Coron at
CHES 1999. Although it has been used for a long time, some authors
pointed out the fact that it does not intrinsically remove all sources of
leakage. At CHES 2003, P.-A. Fouque and F. Valette devised the so-
called “Doubling Attack” that can recover the blinded secret exponent
from an SPA analysis. In this paper, we consider the case of fault injec-
tions. Although it was conjectured by A. Berzati et al. at CT-RSA 2009
that exponent randomization avoids fault attacks, we describe here how
to recover the RSA private key under a practical fault model. Our attack
belongs to the family of public key perturbations and is the first fault
attack against RSA implementations with the exponent randomization
countermeasure. In practice, for a 1024-bit RSA signature algorithms,
the attack succeeds from about 1000 faulty signatures.
Keywords: RSA, fault attacks, exponent randomization/blinding, pub-
lic modulus.

1 Introduction

The exponent randomization method – also referred as exponent blinding – has
been first suggested by P. Kocher [11]. This method inspired J.-S. Coron [7]
that later formalizes it to defeat side channel attacks, such as DPA, that gain
the information leaked during the exponentiation. This method is widely used
because it is easy to implement and the induced overhead is reasonable. However
any implementation may still be a potential source of leakage.

The first attack published against this countermeasure is due to P.-A. Fouque
and F. Valette [10]. The so-called “Doubling Attack“ allows an attacker to re-
cover a blinded secret exponent from an SPA analysis. This attack only works for
“Left-To-Right“ -based implementations of the modular exponentiation. More-
over, the attacker is assumed to be able to send many times the same known
message and that no message randomization is performed before the modular

exponentiation. At CHES 2006 [8], P.-A. Fouque et al. show that if Coron’s coun-
termeasure is used with some windowing exponentiation algorithms and a small
public key, then a simple SPA combined with a tricky analysis makes it possible
to recover both secret key and factorize the public modulus. It is worthwhile to
notice that this attack exploits the non-uniformity of the exponent randomiza-
tion countermeasure (see Sect. 3.1). Instead of exploiting the physical leakage
due to the execution of a modular exponentiation, like in previous attacks, P.-A.
Fouque et al. proposed at CHES 2008 [9] to focus on the leakage induced by
the computation of the random exponent itself. Since the secret exponent and
the blinding part are cut into words, spying on the carries of the adder may
reveal information that is used to guess the most significant bits of each word of
the secret key. When the number of missing bits is small enough, the attacker
can use classical methods, such as Shanks’ Baby-Step Giant-Step algorithm, to
obtain the whole secret key.

The exponent randomization may also be used to protect implementations
against some fault attacks. Namely, this countermeasure is useful to defeat at-
tacks that require multiple faulty signatures to recover the private exponent
since each signature is computed with a different exponent. Although the device
embedding this countermeasure still remains vulnerable to perturbation, it does
not exist, as far as we know, any method for exploiting such faulty outputs. This
paper bridges the gap by providing a new fault attack that defeats the exponent
randomization. This attack belongs in the recent family of public key perturba-
tions.

Exploiting the perturbation of public elements has been first addressed by
I. Biehl et al. with several applications to elliptic curves [3]. But it took a half
decade before seeing a successful application to RSA [12]. The first exploitation
of the RSA public modulus perturbation leading to a full secret key recovery is
due to E. Brier et al. [5] (see also [6] for further optimizations). In the case of the
last attack, the use of the blinded exponent is an efficient countermeasure. A new
fault attack based on the public modulus corruption has been proposed lately by
A. Berzati et al. against both “Right-To-Left“ and “Left-To-Right“ implementa-
tions of the core RSA modular exponentiation [2,1]. Unlike previous works, the
attack takes advantage of a perturbation of the modulus that occurs while the
device is performing a signature. Such a fault injection splits the signature into
a correct and a faulty part and so, isolates a part of the secret exponent. Then,
from a correct/faulty signature pair, the attacker can guess-and-determine both
faulty modulus and the part of secret exponent. The whole exponent is obtained
by cascading the attack on signatures corrupted at different moments of the ex-
ecution. At CT-RSA’09, authors claimed that the exponent randomization may
be used to defeat their fault attack [1].

In this article, we show that even if this countermeasure is used, it is possi-
ble to recover the private exponent under a practical fault model. To the best
of our knowledge, this is the first fault attack that aims to threaten RSA im-
plementations with the exponent randomization countermeasure. The analysis
takes advantage of the non-uniformity of the exponent randomization. As a con-

sequence, this work completes the state-of-the-art of the side channel analysis of
the exponent randomization.

The remainder of this paper is organized as follows: Section 2 describes clas-
sical implementations of RSA and the random exponent countermeasure. Our
fault analysis is detailed in Sect. 3 and summarized as an algorithm in Sect. 4.
Finally, we conclude in Sect. 5 about the vulnerability of random exponent coun-
termeasure implementations in the context of fault attacks.

2 Background

2.1 Notations

Let N , the public modulus, be the product of two large prime numbers p and
q. The length of N is denoted by n. Let e be the public exponent, coprime to
ϕ(N) = (p−1)·(q−1), where ϕ(·) denotes Euler’s totient function. The public key
exponent e is linked to the private exponent d by the equation e·d ≡ 1 mod ϕ(N).
The private exponent d is used to perform the operations below.

RSA Decryption: Decrypting a ciphertext C boils down to compute m̃ ≡
Cd mod N . If no error occurs during computation, transmission or decryp-
tion of C, then m̃ equals m.

RSA Signature: The signature of a message m is given by S ≡ ṁd mod N
where ṁ = µ(m) for some hash and/or deterministic padding function µ.
The signature S is validated by checking that Se ≡ ṁ mod N .

2.2 Modular exponentiation algorithms

Algorithm 1: “Right-To-Left“ modular
exponentiation

Algorithm 2: “Left-To-Right“ modular
exponentiation

INPUT: m, d, N INPUT: m, d, N

OUTPUT: A ≡ md mod N OUTPUT: A ≡ md mod N
1 : A:=1; 1 : A:=1;
2 : B:=m; 2 : for i from (n− 1) downto 0
3 : for i from 0 upto (n− 1) 3 : A := A2 mod N ;
4 : if (di == 1) 4 : if (di == 1)
5 : A := (A ·B) mod N ; 5 : A := (A ·m) mod N ;
6 : end if 6 : end if
7 : B := B2 mod N ; 7 : end for
8 : end for 8 : return A;
9 : return A;

Binary exponentiation algorithms are often used to compute the RSA mod-
ular exponentiation ṁd mod N where the exponent d is expressed in a binary

form as d =
∑n−1

i=0 2i · di, where di stands for the i-th bit of d. Their polynomial
complexity with respect to the input length make them very interesting to per-
form the core RSA operation. Algorithm 1 describes a way to compute modular
exponentiations by scanning bits of d from least significant bits (LSB) to most
significant bits (MSB). That is why it is usually referred to as the “Right-To-
Left“ modular exponentiation algorithm.

The dual algorithm that implements the binary modular exponentiation is
the “Left-To-Right“ exponentiation described in Algorithm 2. This algorithm
scans bits of the exponent from MSB to LSB and is lighter than “Right-To-Left“
one in terms of memory consumption.

It exists multiple implementations derived from these dual algorithms, such
as OpenSSL fixed/sliding window implementations or the Square-and-Multiply-
always variant [7]. For the sake of clarity, we will only focus our presentation
on the binary version of the “Right-To-Left“ method. But the principle of our
analysis can be easily adapted to attack its variants.

2.3 Exponent Randomization

The exponent randomization method has been proposed by P. Kocher [11] to
defeat side channel attacks, such as DPA, that gain information leaked during
the exponentiation. The principle of this countermeasure is based on Fermat’s
theorem. Indeed, for all m ∈ (Z/NZ)∗ and λ ∈ Z, mλ·ϕ(N) ≡ 1 mod N . The
exponent randomization algorithm derived from this result is detailed below.
The complexity of the modular exponentiation algorithm is polynomial with

Algorithm 3: RSA exponent randomization algorithm

INPUT: ṁ, N , ϕ(N), d and l

OUTPUT: S = ṁd mod N

1: //Randomize the private exponent

2: Pick a random λ ∈ [[0; 2l − 1]];
3: d̄ = d + λϕ(N);
4: //Perform the exponentiation
5: S = PowMod(ṁ, d̄, N);
6: return S;

respect to the exponent length. Thus, to guarantee a reasonable overhead, the
l value as to be small compared to the RSA length n. Typically, for a 1024-bit
RSA, l = 20 or l = 32.

3 Description of our attack

3.1 Bit analysis of a randomized exponent

In this section, we aim to analyze the influence of the different variables that
are involved in the computation of a randomized exponent. By definition, the

blinded exponent d̄ is built by adding a random multiple of ϕ(N) to the secret
exponent d. Using a different expression of ϕ(N), the expression of d̄ can also
be written as:

d̄ = d + λϕ(N) (1)
= d + λ (p− 1) (q − 1)
= d + λN − λ (p + q − 1)

From the previous expression, one can notice that the randomized exponent d̄
is built by adding 3 terms of different sizes. As a consequence, the bits of d are
not homogeneously masked by this method. Figure 1 illustrates this statement
for a n-bit RSA and a l-bit random value λ. This figure highlights that despite

λN

− λ (p + q − 1)

+ d

d̄ λN d + λN d + λϕ(N)

n + l − 1 n
n
2

+ l 0

Fig. 1. Bit analysis of a random exponent

being properly masked by a multiple of ϕ(N), the most significant bits of d are
masked by a random multiple of N . But the blinding method seems to be more
efficient for the least significant bits. In the next section, we will explain how
to use the heterogeneity of the exponent randomization method for exploiting
faults.

3.2 Fault Model

Description. The model we have chosen to perform the attack is derived from
the ones previously used by A. Berzati et al. to successfully attack both “Right-
To-Left“ [2] and “Left-To-Right“ [1] implementations of standard RSA. We sup-
pose that the attacker is able to inject a transient fault that modifies the public
modulus N during the execution of a signature with a randomized exponent d̄
for a known input message m (see Sect 2.3). The injected fault affects a byte of
the modulus by modifying it in a random way, namely:

N̂ = N ⊕ ε (2)

where ε = R8 · 28i, i ∈ [[0; n
8 − 1]] and R8 is a non-zero random byte value. In our

assumption, the value of the faulty modulus N̂ is not known, a priori, by the

attacker. In this article, we consider that the exponentiation is implemented with
the “Right-To-Left“ method or a variant. The fault is injected during a square,
at the t-th step of the exponentiation and such that the end of the execution is
performed with the faulty modulus N̂ . It is also assumed that the time location
of the injection is controlled by the attacker, and so, the parameter t may be set
(or known) by the attacker depending on the exponent part he aims to recover.

Discussion. This fault model has been chosen because of its practicability in the
smartcard context. Although the effect of a fault injection is highly dependent
of the component attacked, it seems that a random modification of the value of
a memory word can be easily produced by a laser. This model has been already
used in the literature leading to successful applications [13,4,1]. Furthermore,
the timing control of the fault injection is not a restrictive assumption since the
attacker can trigger the laser shots using a Simple Power Analysis.

3.3 Result of a Faulty Computation

Let d̄ =
∑n+l−1

i=0 2i · d̄i be the binary representation of a randomized exponent d̄.
According to the fault model described above, the fault occurs during a square at
the t-th step of the execution. Hence, if Bt−1 denotes the internal register value
that contains the result of the consecutive squares before the fault injection:

B̂t ≡ Bt−1
2 mod N̂

≡
(
ṁ2t−1

mod N
)2

mod N̂ (3)

The subsequent operations of the exponentiation are also performed with the
faulty modulus. If we denote by At ≡ ṁ

Pt
i=0 2i·d̄i the internal state value before

the fault injection. The result of the faulty RSA signature Ŝt can be written as:

Ŝt ≡ At · B̂d̄t
t · . . . · B̂2(n+l−1)−t·d̄n+l−1

t mod N̂ (4)

≡ At · B̂t

d̄[t]
2t mod N̂ (5)

where d̄[t] =
∑n+l−1

i=t 2i · d̄i. The previous equation highlights that the fault has
isolated the most significant part of the blinded exponent d̄. In other words the
perturbation gives the opportunity for the attacker to focus on the recovery of a
part of the exponent. The next section reminds the general methodology used to
exploit faults on the public modulus during the execution of the exponentiation
(see also [2,1] for further details).

3.4 Analysis

In the following sections we will detail the effects of faults that have been injected
according to the model described above. Then we will propose different ways for
exploiting perturbations, depending on their timing location t.

General Methodology. The general principle of the analysis consists in mak-
ing use of the isolation of a part of exponent by the fault injection. Indeed, if the
isolated part of exponent is small enough, it is possible to guess-and-determine it
from a faulty/correct signature pair (Ŝt, St). Therefore, since the faulty modulus
is also unknown by the attacker, he chooses a candidate value N̂ ′ and another
candidate value d̄′[t] for the most significant part of the randomized exponent he
has to determine. Then he computes from the correct signature:

A′
t ≡ St · ṁ−d̄′[t] mod N (6)

This computation aims to retrieve the value of the internal register At when the
fault occurred. The next step consists in using the candidate values to simulate
a faulty end of exponentiation. To do so, the attacker computes:

S′
(d̄′[t],N̂

′) ≡ A′
t ·

(
ṁ2t−1

mod N
)2·

d̄′[t]
2t

mod N̂ ′ (7)

Finally, he checks if the following equation is satisfied:

S′
(d̄′[t],N̂

′) ≡ Ŝt mod N̂ ′ (8)

In the case of satisfaction, it means that the chosen candidate pair is the correct
one with high probability. Otherwise, the attacker has to choose another candi-
date pair and perform this test again. One can notice that a similar analysis can
be performed when the first operation infected by the fault is a multiplication
The details of this variant are provided in [2].

Contrary to the attack presented in [2], the subsequent bits of exponent can
not be obtained by repeating the analysis on a signature faulted earlier. Indeed,
the exponent randomization countermeasure implies that a fresh exponent is
used for each execution of the signature. Hence, it is not possible to repeat the
attack by using the knowledge of already found bits of blinded exponent d̄[t] as
in [2]. As a consequence we have to adapt this general methodology to extract real
bits of the private exponent d from bits of d̄ recovered by the analysis detailed
above. We show in the following parts how to make use of the non-homogeneity
of the exponent randomization to do so.

Case of unexploitable faults. This case corresponds to fault that have been
injected at final steps of the exponentiation, namely for n ≤ t ≤ (n + l − 1).
The few amount of information about the secret key that belongs in this range
of data is due to the carry propagation of the addition of d and a random
multiple of ϕ(N) (see Fig. 1). So, the analysis of signatures faulted in this timing
range is not relevant for extracting information about the secret key d since.
As a consequence, it is worthwhile focusing on faults injected earlier in the
computation.

Faults on MSB. This section aims to provide a method for analyzing RSA
signatures that have been faulted while the t-th bit of the blinded exponent is
treated, namely if

(
n
2 + l

)
≤ t < n. As we said in the previous section, our goal is

to extract some bits of the real exponent from the recovered part of randomized
exponent. In fact, performing the attack by this way seems to be difficult. First,
d̄ depends on d but also on a random multiple of ϕ(N) and all these values are
unknown by the attacker. This difficulty can be overcome thanks to the non-
homogeneity of the exponent randomization (see Fig. 1). Indeed, in the bound(

n
2 + l

)
≤ t < n, we have:

d̄ ≈ d + λN (9)

As a consequence, the most significant part of d̄ only depends on d and λ. Instead
of searching d̄[t] and extracting bits of d from it, we have decided to directly guess
both d and λ by building “good“ candidate values for d̄[t]:

d̄[t] =
n+l−1∑

i=t

2i · d̄i (10)

≈
n+l−1∑

i=t

2i · (d + λN)i (11)

≈
n−1∑
i=t

2i · di +
n+l−1∑

i=t

2i · (λN)i + carryt (d, λN) · 2t (12)

where carryt (a, b) denotes the carry bit resulting from the bit-wise addition of
the t first bits of a and b. Equation (12) shows that guessing d̄[t] boils down to
simultaneously guess the random value λ and the (n − t) most significant bits
of d. In the general case, this part of d splits into a known (already recovered)
part dMSB and w missing bits denoted by dw. The carry bit is considered as an
uncertainty on the parity of dw. As a consequence, if an attacker builds candidate
values for d̄[t] that satisfy (8), then he can directly deduce w − 1 new bits of d.
Thus, the known part dMSB grows up of w − 1 bits, and it can be used again
to analyze signatures faulted earlier in the execution and cascade the resolution
of almost half of the secret key. That way, even if the isolated part of random
exponent grows up, the part of exponent to be determined dw remains constant.
Hence, instead of guessing a pair of candidate values to satisfy (8) as described
in the general methodology, we guess the triplet of values (dw, λ, N̂) and thus
deduce a part of the secret key.

By carefully studying our improvement, one can wonder if using the sole
relation (8) is enough for determining with high probability a triplet of values.
This remark is all the more relevant since our implementation of the attack
showed us that multiple candidate triplets may satisfy (8). The authors of [2,1]
previously proved that the order false-acceptance probability is about 1

N . Thus,
it is highly negligible for common RSA length. But, we also noticed that for all
false-accepted triplets, the candidate values accepted for λ are always smaller
than the correct one. Hence, the triplet that contains the biggest candidate value

for λ is always the correct one. This heuristic was successfully adopted to improve
our attack algorithm by reducing the number of candidate triplets that satisfy
(8) to the correct one only. We also formalized this heuristic in the following
theorem. The proof of the theorem is given in Appendix A.

Theorem 1. Let Ŝt be a faulty signature performed under an exponent ran-
domized by λ, and S the corresponding correct signature. For all candidate pairs
(d′w, λ′) ∈ [[0; 2w]]× [[0; 2l]], if λ′ > λ, then (8) can not be satisfied.

As a consequence, by combining the approximation of the randomization
(see Eq. (12)) for building candidate values for d̄[t], and the theorem above, an
attacker will be able to recover a part of the real private exponent d with high
probability from only one correct/faulty signature pair. Moreover, our method
enables the attacker to use the already found bits of d and cascade the analysis
for signatures faulted earlier in their execution. By this way, it is possible to
recover almost all the most significant bits of d.

Faults on LSB. We will focus here in the recovery of the least significant bits
of d. From Fig. 1, if 0 ≤ t <

(
n
2 + l

)
, then ϕ(N) is, this time, fully involved in the

randomization of the secret exponent d. Since this value is private, contrary to
the modulus N , the attacker can not run the analysis described for the recovery
of the most significant part of d. But, we will describe in this section how we
have used the previous analysis on multiple faulty signatures to overcome this
difficulty.

As we previously said, we can not approximate the least significant bits of
the blinded exponent d̄ as the sum of the real exponent d and a random multiple
of the public modulus (see Fig. 1). But, let us rewrite the expression of a part
of randomized exponent isolated by the fault injection:

d̄[t] =
n+l−1∑

i=t

2i · (d + λϕ(N))i (13)

=
n+l−1∑

i=t

2i · (d + λN − λ(p + q − 1))i (14)

≈
n−1∑
i=t

2i · δi +
n+l−1∑

i=t

2i · (λN)i (15)

where δi = (d− λ(p + q − 1))i. As for the MSB case, for any iteration of the
analysis, we assume that the attacker has already determined both most signifi-
cant parts of d and (p+q−1) respectively denoted by dMSB and (p+q−1)MSB .
Here the value δ =

∑n−1
i=t 2i · δi splits into w missing bits denoted by δw and

a part δMSB that depends on λ, dMSB and (p + q − 1)MSB . This last part is
also unknown, but it becomes computable whenever λ is guessed. Equation (15)
shows that the attacker can apply the same guess-and-determine method to re-
cover the part of randomized exponent d̄[t] that satisfies (8) by building it from

the triplet of candidate values for (δw, λ, N̂). Hence, such an analysis applied on
a correct/faulty signature pair only returns the searched triplet with high prob-
ability. But, one can notice that contrary to the MSB case, the analysis does not
directly returns a part of d, but a more intricate value δw. So, the attacker has
to perform a complementary analysis on the variable δw he has just recovered
to extract both expected parts of d and λ(p + q − 1). According to Fig. 1, it is
relevant to notice that δw depends on:

– w unknown bits of the exponent d,
– w unknown bits of the sum of RSA primes (p + q − 1),
– the random value λ that has been just recovered,
– some carry bits.

Thus, from this value, the attacker obtains one equation that involves two un-
known variables. In order to recover simultaneously w bits of the exponent and
w bits of the sum of RSA primes, it is necessary to get additional equations (at
least one more). This can be achieved by repeating this analysis on a signature
faulted at the same step of its execution to recover another δw value for a dif-
ferent λ.

For the sake of clarity, we have voluntary withdrawn the influence of the carry
bits in the system. In practice, as for the MSB case, these carry bits add some
uncertainty on the low order bits of dw. In other words, instead of recovering a
unique value for dw, in practice two or three solutions are returned in the worst
case. But, the wrong values obtained for dw will be discarded when subsequent
analysis will be performed. Thus, the number of false-accepted candidates does
not grow up exponentially in cascading the resolution, but stay bounded. When
the part of d recovered by repeating the described analysis is large enough, the
attacker may complete the attack by using classical methods such as Shank’s
Baby-Step Giant-Step or lattice techniques.

4 Attack Algorithm

4.1 Summary of our attack

In this section, we detail the implementation of our Differential Fault Analysis
described above. This part completes our previous theoretical approach by pro-
viding a more pragmatic description of our attack methodology. This algorithm
has been successfully implemented on a standard PC using the GMP Library 3

leading.

Gather faulty signatures. The attacker first chooses a window length w for
the recovery of the secret key d. Then he has to gather multiple signatures
faulted at different steps of the execution. If we denote by t the time location
of the fault injection, the attacker has to gather:

3 The GNU Multiple Precision Library. Available at http://gmplib.org/

– One faulty signature and the corresponding correct one
if

(
n
2 + l

)
≤ t < n

– Two (or more) faulty signatures and the corresponding correct one
if 0 ≤ t <

(
n
2 + l

)
where t is decremented by w each time. The collected signatures are sorted
in descending fault locations.

Analysis of the MSB. For each correct/faulty signature pairs the attacker
guesses-and-determines the triplet of values (dw, λ, N̂). The part of exponent
dw is composed by the bits obtained from previous analysis and the w bits to
guess. Hence, with our method, the analysis of one correct/faulty signature
pair reveals each time w bits of d. So, this analysis has to be repeated on all
signature pairs (Ŝt, St) such that

(
n
2 + l

)
≤ t < n to recover almost all the

most significant bits of d.
Analysis of the LSB. For all the gathered signatures, the attacker has to per-

form an analysis split into two parts:
– First, he has to guess-and-determine two or more triplets of values

(δw, λ, N̂) from different pairs of faulty/correct signatures
– Then, he extracts both w bits of d and (p+q−1) by solving the obtained

system of equations.
As a result, the analysis of the signatures faulted at the same step t of their
respective execution allows an attacker to recover both a w-bit part of d and
(p + q − 1). As for the MSB case, this step has to be repeated (completed
by Baby-Step Giant-Step or lattice techniques if necessary) to recover the
missing bits of d.

4.2 Performance

Fault Number. Since our attack is based on fault injection, it seems relevant to
evaluate the number of faulty signatures an attacker has to collect to recover the
secret key. According to the description of our analysis (see Sect. 3.4), the number
of faults depends on the part of d the attacker aims to recover. In the case of
the MSB, the attacker will be able to recover w bits of d from one correct/faulty
signature pair. For the LSB, the attacker has to collect at least two signatures
faulted at the same step, since he has to solve a system of equations to extract
w bits of d. As a result, the number of faulty signatures to collect F is:

F = O
(n

w

)
(16)

In practice, for a 1024-bit RSA and a resolution window length w = 2, our
attack succeeded from about 1000 faulty signatures which is a little more than
expected. This extra cost is due to the LSB analysis that required an average of
3 faulty signatures to correctly recover both parts of d and (p + q− 1). But this
number of fault is still reasonable and highlights the practicability of our fault
attack.

Complexity. The general principle of our attack is based on extracting a w part
of d from each correct/faulty signature pair collected according to the model.
This can be achieved by guessing and determining simultaneously the w bits
of d isolated by the fault, the l-bit random value λ and the faulty modulus
N̂ . Therefore, according to the fault model and the described algorithm, the
computational complexity C of our attack is:

C = O
(

2(w+l) · n2

w

)
exponentiations (17)

The extra analysis required for the LSB case does not appear in this expression
since it is dominated by the search of a triplet that satisfy (8). Moreover one
can notice that the complexity exponentially depends on the random length l.
So lengthening λ exponentially hardens our analysis. But, some computational
optimizations can be done to bypass this problem.

Computational Optimizations. In this part, we propose to speed up the ex-
ecution of our fault attack by using some optimizations inspired from particular
feature of the attack. First, instead of computing candidate values the faulty
modulus “on the fly“, the attacker can precompute a dictionary of possible val-
ues for the faulty modulus according to the fault model chosen. Moreover, by
using the Theorem 1, the attacker may advantageously compute the guess-and-
determine step by decrementing the candidate values for λ and stopping when
a triplet satisfies (8). This optimization is all the more interesting if the expo-
nent is blinded with a λ close to 2l. The last optimization also concerns the
guess-and-determine step. Indeed, one can notice that for a given faulty signa-
ture, all candidate values can be tested independently. As a consequence, this
step can be easily computed in parallel. So, if an attacker can get a cluster of k
machines, then he can distribute the guess-and-determine step and reduce the

global complexity of the attack C to
C
k

.

5 Conclusion

This paper presents the first fault attack against implementations of an RSA
signature scheme that embedding the exponent randomization countermeasure.
Through their “Doubling Attack“, P.-A. Fouque and F. Valette first alerted the
community that using this countermeasure may introduce a physical leakage if it
is combined with a “Left-To-Right“ -based modular exponentiation. We complete
this work by showing in this paper that implementations of RSA based on the
dual exponentiation may be vulnerable to fault. Indeed, we demonstrate that the
exploitation of a reasonable number of faulty signatures may lead to a full secret
key recovery. Moreover the GMP implementation of our method as well as the use
of a practicable fault model provide evidences that the perturbation of public
elements represents a real threat for RSA implementation, even randomized.
Thus, it might be worthwhile to check the effective robustness of the exponent
blinding against other fault attacks.

References

1. A. Berzati, C. Canovas, J-G. Dumas, and L. Goubin. Fault Attacks on RSA
Public Keys: Left-To-Right Implementations are also Vulnerable. In M. Fischlin,
editor, RSA Cryptographer’s Track (CT-RSA 2009), volume 5473 of Lecture Notes
in Computer Science, pages 414–428, San Francisco (USA), 2009. Springer.

2. A. Berzati, C. Canovas, and L. Goubin. Perturbating RSA Public Keys: an Im-
proved Attack. In Cryptographic Hardware and Embedded Systems (CHES 2008),
Lecture Notes in Computer Science, Washington DC (USA), 2008. Springer-Verlag.

3. I. Biehl, B. Meyer, and V. Müller. Differential Fault Attacks on Ellitic Curve Cryp-
tosystems. In M. Bellare, editor, Advances in Cryptology (CRYPTO 2000), volume
1880 of Lecture Notes in Computer Science, pages 131–146. Springer-Verlag, 2000.

4. J. Blömer and M. Otto. Wagner’s Attack on a secure CRT-RSA Algorithm Recon-
sidered. In L. Breveglieri, I. Koren, D. Naccache, and J-P. Seifert, editors, Fault
Diagnosis and Tolerance in Cryptography (FDTC 2006), volume 4236 of Lecture
Notes in Computer Science, pages 13–23. Springer-Verlag, 2006.

5. E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier. Why One Should Also
Secure RSA Public Key Elements. In L. Goubin and M. Matsui, editors, Cryp-
tographic Hardware and Embedded Systems (CHES 2006), volume 4249 of Lecture
Notes in Computer Science, pages 324–338. Springer-Verlag, 2006.

6. C. Clavier. De la sécurité physique des crypto-systèmes embarqués. PhD thesis,
Université de Versailles Saint-Quentin, 2007.

7. J-S. Coron. Resistance Against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems (CHES 1999), volume 1717 of Lecture Notes in Computer Sci-
ence, pages 292–302. Springer, 1999.

8. P-A. Fouque, S. Kunz-Jacques, G. Martinet, F. Muller, and F. Valette. Power
Attack on Small RSA Public Exponent. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems (CHES 2006), volume 4249 of
Lecture Notes in Computer Science, pages 339–353. Springer, 2006.

9. P-A. Fouque, D. Réal, F. Valette, and M. Drissi. The Carry Leakage on the
Randomized Exponent Countermeasure. In E. Oswald and P. P. Rohatgi, editors,
Cryptographic Hardware and Embedded Systems (CHES 2008), volume 5154 of
Lecture notes in Computer Science, pages 198–213. Springer, 2008.

10. P-A. Fouque and F. Valette. The Doubling Attack – why Upwards Is Better than
Downwards. In C.D. Walter, Ç. K. Koç, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems (CHES 2003), volume 2779, pages 269–280. Springer,
2003.

11. P. Kocher. Timing attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. Koblitz, editor, Advances in Cryptology (CRYPTO 1996),
volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

12. J-P. Seifert. On Authenticated Computing and RSA-Based Authentication. In
ACM Conference on Computer and Communications Security (CCS 2005), pages
122–127. ACM Press, 2005.

13. D. Wagner. Cryptanalysis of a provably secure CRT-RSA algorithm. In Proceedings
of the 11th ACM Conference on Computer Security (CCS 2004), pages 92–97.
ACM, 2004.

A Proof of the Theorem 1

Let us consider a candidate value λ′ for the random value λ used in a faulty
RSA signature Ŝt such that λ′ > λ. Then we can also write λ′ ≥ λ + 1. Now, let
us use this relationship to build a candidate value for d[t]:

λ′ ·N ≥ (λ + 1) N (18)
⇔ λ′ ·N ≥ λN + N (19)

But, since the secret key d is computed as the invert of e modulo ϕ(N), we also
know that:

N > ϕ(N) > d (20)

As a consequence, we can deduce from the previous relations that:

λ′N > λN + d (21)

⇒ bλ
′N

2t
c > bλN + d

2t
c (22)

Now let us rewrite the previous equation using the binary representation of the
operands:

n+l−1∑
i=t

2i−t · (λ′N)i >

n+l−1∑
i=t

2i−t · (λN + d)i (23)

⇔
n+l−1∑

i=t

2i · (λ′N)i >

n+l−1∑
i=t

2i · (λN + d)i (24)

⇔
n+l−1∑

i=t

2i · (λ′N)i > d̄[t] (25)

From this inequality, we can conclude that any candidate value computed with
λ′ will be strictly greater than the searched d̄[t]. So, (8) can not be satisfied for
such a λ′ �

