XBX:
eXternal Benchmarking eXtension
for the SUPERCOP
crypto benchmarking framework

Christian Wenzel-Benner! and Jens Graf?

! ITK Engineering AG

Software Center 1, 35037 Marburg, Germany

Christian.Wenzel-Benner@itk-engineering.de,
WWW home page: http://www.itk-engineering.de
? LiNetCo GmbH

Hauptstrasse 17a, 35684 Dillenburg, Germany
jgraef@linetco.com,

WWW home page: http://www.linetco.com

Abstract. SUPERCOP [1] is a benchmarking framework for crypto-
graphic algorithms like ciphers and hash functions. It automatically bench-
marks algorithms across several implementations, compilers, compiler
options and input data lengths. Since it is freely available for download
the results are easily reproducible and benchmark results for virtually ev-
ery computer that is capable of running SUPERCOP are available. How-
ever, since SUPERCOP is a collection of scripts for the Bourne Again
Shell and depends on some command line tools from the POSIX stan-
dard in it’s current form it can not run on any hardware that does not
support POSIX. This is a significant limitation since small devices like
mobile phones, PDAs and Smart Cards are important target platforms
for cryptographic algorithms. The work presented in this paper extends
the SUPERCOP concepts to facilitate benchmarking external targets.
A combination of hard- and software allows for cross compilation with
SUPERCOP and execution/timing of the generated code on virtually
any kind of device large enough to hold the object code of the algo-
rithm benchmarked plus some space for communication routines and a
bootloader.

Key words: SUPERCOP, XBX, benchmarking, microcontroller, small
device, 8-bit, hash function

1 Introduction

The design of a cryptographic algorithm is always a trade-off between security
and performance. A ’good’ algorithm either achieves stronger security than a
'bad’ one at the same runtime and memory cost or the same level of security at
lesser cost. Yet telling a ’good’ algorithm from a ’bad’ one is not always trivial.



2 XBX for SUPERCOP

Aside from spotting obvious design flaws, both security and performance are not
easily quantified.

1.1 Judging Security

If a newly proposed algorithm were to be broken by applying a well-known mode
of attack this would be an obvious design flaw. But if it is not vulnerable to any
known attack that does not mean it is flawless. An algorithm that seems secure
for a long time may suddenly be affected by a new type of attack that was not
anticipated. If and when such a new attack is going to be discovered can not
be determined in advance. There is however one universal rule: attacks only get
better, they never get worse. The flip-side of this coin is that algorithms only
get weaker, never stronger.

1.2 Judging Performance

Judging the performance of an algorithm seems trivial by comparison. Yet it is
not uncommon to see different performance numbers claimed by different people
for a well known standard algorithm like SHA-256 in the course of a four day
conference[2]. Obviously, different implementations of the algorithm, different
compilers and different target platforms result in a huge diversity of performance
numbers. Which one is the ’true’ performance number? A sophisticated bench-
marking framework like SUPERCOP can answer this question for a given CPU,
a given implementation and a given compiler. Across all these parameters there
is a fastest combination of CPU, implementation and compiler that is arguably
‘true’ because the SUPERCOP framework is freely available and all parameters
used to obtain the performance number are clearly stated in the result file. A
freely available benchmarking framework that explicitly states all parameters
used to obtain a performance number like SUPERCOP provides a universal rule
for performance evaluation, too: implementations, CPUs and compilers only get
better, they never get worse. Hence a given algorithm’s performance only gets
better over time.

1.3 Additional Criteria

On desktop computers and servers the size of program code and lookup tables
is usually not an issue. When the implementation of a cryptographic algorithm
uses table lookups on such machines it is a concern because of timing attacks[3],
not because of the amount of memory required. Small devices are different, they
impose severe size limitations. There are hard limits, such as a 64k address space
on an 8-bit machine, and somewhat softer restrictions, like the price of a smart
card that is to be manufactured several million times. In both cases, smaller
is better. Implementors compete for the smallest implementation, designers for
the smallest algorithm (at comparable security level). The fact that theoretical
work[4] concerning memory consumption of cryptographic algorithms is being
done indicates that this is an area a growing interest.



XBX for SUPERCOP 3

1.4 Motivation for the eXternal Benchmarking eXtension

Without a sophisticated framework different performance numbers obtained un-
der different (sometimes not clearly stated) circumstances circulate and make it
very hard to judge how well designed a given algorithm really is. The eXternal
Benchmarking eXtension presented here brings the advantages of SUPERCOP
benchmarking to small devices like 8-bit microcontrollers. The results obtained
this way are useful to

— find the fastest algorithm for a given target platform
— find the smallest algorithm for a given target platform

— find the best (cross-)compiler for a given hardware design and algorithm (for
either speed or size)

— find the best compiler settings for a given hardware design and algorithm
(for either speed or size)

— select a microcontroller for a future hardware design

— compare different implementations, e.g. a proprietary and commercial as-
sembler implementation vs. public domain ¢ code

— design new algorithms to run well on targeted hardware platforms

2 Design Goals

The aim of XBX (as the name suggests) is to extend SUPERCOP to a new
domain: benchmarking external devices as opposed to the CPU(s) inside the
computer that runs the SUPERCOP framework. To extend means ’to stretch
out’ and when stretching something it is usually advisable to take care not to
rip it in two. In order to keep what the authors of this work perceived as the
core of SUPERCOP intact the design goals for XBX were defined as follows:

Goal 1 automatic testing of algorithms by a simple script invocation

Goal 2 precise performance numbers for different message lengths that reflect
real world user experience

Goal 3 free source code, for every user to inspect and re-use
Goal 4 cheap, easily available hardware
Goal 5 compatibility to standard SUPERCOP algorithm interface

Goal 6 compatibility to standard SUPERCOP results interface

As in many engineering projects there are also restrictions that are of a more
practical nature but nonetheless must be taken into account if any result is to
be generated. In this case the main restrictions were limited manpower and no
funding at all. The goals derived from those limitations are:



4 XBX for SUPERCOP

Goal 7 development using pre-owned or free development tools
Goal 8 re-use of as many existing components as possible

Goal 9 focus on SUPERCOP subset of current public interest: e BASH 3

3 Hardware

3.1 Overview

XBX hardware consists of two main components: the eXternal Benchmarking
Harness XBH and the eXternal Benchmarking Device XBD. The three hardware
components PC, XBH and XBD are shown in Fig.1, together with their physical
connections. The XBH connects to the PC running the eXternal Benchmarking
Software (XBS), which is based on SUPERCOP, by means of Ethernet. This
provides easy interfacing with any kind of computer that can run the SUPER-
COP framework regardless of operating system. An RS232 port is available for
low level configuration and debug output during development. Communication
between the XBD and the harness is handled by means of a data connection
and discrete digital I/O lines. The data connection is implemented using ei-
ther I2C or UART, depending on the type of device used as XBD. However,
if UART is used for XBH-XBD communication the RS232 port of the XBH is
no longer available for debugging purposes. The digital I/O lines are used for
special purposes where the data connection would not perform adequately. The
first purpose is device reset of the XBD. The XBD'’s reset pin is connected to a
digital output of the XBH (in open collector configuration) and a pull-up resistor
to the XBD’s supply voltage. This allows the XBH to issue a hardware reset on
the XBD, either because of a timeout or due to a command received from the
PC. In the event that the XBD crashes, e.g. due to stack overflow, this mecha-
nism provides a fast and reliable way to recover communication to the XBD in
a situation where the data connection would be utterly useless.

Timing measurement is the second purpose that uses a dedicated digital 1/O
line. A digital output on the XBD is hooked up to an event capture pin on the
XBH. Edges on that pin are triggered when a piece of code to be benchmarked
is called and again when it returns. The event capture pin the XBH captures
and timestamps these events and provides a duration from which a clock cycle
count can be calculated.

3.2 Microcontroller Family

Due to goals 4, 7 and 8 the Atmel AVR 8-bit microcontroller family was selected
to be the project’s workhorse.

3 SUPERCOP can benchmark many types of cryptographic algorithms, eBASH is
the type for hash functions which are currently in focus due to the NIST SHA-3
competition.



XBX for SUPERCOP 5

PC XBH
running eXternal Benchmarking Harness
XBS ETH Microcontroller + ethernet controller,
. running
eXternal Benchmarking communication
Software firmware
-—_ = — — —
- fixed - fixed - Data ) XBD \
‘ eXternal Benchmarking Device
— Microcontroller (device under test) ‘
Digital I/O running algorithm under test |
‘ - replaceable -
- - _—

Fig. 1. High level overview of the XBX hardware setup. The PC on the left can be any
computer that runs XBS, the XBH is a fixed interface component that does not need
any adjustments while the XBD is the device under test and can be replaced at will.

This family has many beneficial features, starting with a low unit price and
good availability in a variety of stores that sell to end customers. The perfor-
mance delivered by the AVR family is high for an 8-bit design and many parts
come in dual-in-line packaging, which is one of the few IC packages easily sol-
dered by hand onto a perfboard?* or similar carrier. On the software side, a port
of the GNU Compiler Collection (GCC) exists for years now and is well tested.
The GCC is supplemented by a standard C library implementation specifically
tailored to the AVR and available for free. These features make the AVR family
very popular with hobbyists around the world, which results in the added benefit
of a huge user community providing ideas and code snippets for most questions
that arise during development of an AVR based application. Also, the fact that
one of the authors had a compatible JTAG adapter and some AVR chips in the
closet accelerated the decision.

3.3 eXternal Benchmarking Harness XBH

The XBH setup comprises an Atmel ATmega644 microcontroller running at 16
MHz, a Microchip ENC28J60 Ethernet controller and a MAX232 TTL/RS232
voltage level shifter. For simplicity it is based on a commercially available module
for home automation|[7] which requires only minor modifications to act as XBH.
An in system programmer connector is available to update the firmware as well
as several signal connectors. The module runs on 9V AC power and can supply
XBDs with up to 100mA of operating current.

4 A perfboard is a prototyping board that component are soldered to, as opposed to
a (solderless) breadboard which works with little wires that are just plugged in to
form connections.



6 XBX for SUPERCOP

3.4 eXternal Benchmarking Device XBD

The XBD is the device on which the actual benchmarking takes place. The XBD
module consists of a microcontroller and whatever clock source and voltage reg-
ulation is necessary for the controller. Due to the design of the XBX setup the
XBD can be easily replaced, requiring only the data connection and a digital
output pin for timing measurements. Connecting the reset pin is highly recom-
mended, although not strictly required. The timing measurement does not use
any timer resources on the XBD, so theoretically even a microcontroller without
any timers could be used. However, in order to be able to calibrate the timing
measurements before a benchmark run it is advisable to have at least one timer
unit available on the XBD.

The reference implementation uses an ATmega644 with an 8 MHz crystal oscil-
lator circuit that runs on the 5V supply of the XBH. The data connection to the
XBH is I2C in this implementation. Running the XBD at half the frequency of
the XBH gives the reference implementation the best possible timing accuracy.
A different XBD implementation uses a Luminary Micro LM3S811 evaluation
board. The LM3S811 is an ARM Cortex-M3 based 32-bit microcontroller and
much more powerful that the AVR. It runs on 3.3V and the data connection
uses a UART.

4 Software

The software is laid out as a chain of components with different tasks. Most
components take the form of either shell or Perl scripts. Keeping several small
components makes testing individual functions easier and reduces the likelihood
of bugs compared to one big monolithic tool. The components are:

Object file creation

Download of binary code and parameters
Execution framework

Timing and result collection

Benchmark control

Post-processing

4.1 XBS: Benchmark Control

In a top-down view of the software architecture, benchmark control is high-
est layer. It talks to the user, it controls all actions. The benchmark control
functionality is derived from SUPERCOP’s control scripts, and called eXternal
Benchmarking Software (XBS). SUPERCOP has a very simple user interface
script called ’do’. Since one computer running XBS can control many different
external targets the XBS scripts have some options that SUPERCOP’s ’do’ does
not require.



XBX for SUPERCOP 7

XBS needs to be told which target platform to use since every platform
potentially has it’s own compilers, linkers and compiler options. The platform is
selected by a line in a config file.

Once a build process for the selected platform is started the XBS copies the
application code that is to be benchmarked into a temporary directory, where it
is combined with supporting code called ’application framework’ (AF). The AF
provides all the communication services that the XBD will provide, except for
bootloader functionality. The application code and AF combined for the binary
of the application that is later downloaded into the XBD.

The binary just created is subjected to static analysis concerning the size of
it’s sections. If it is determined that this binary will not even fit into the memory
of the XBD, download will not be tried.

If the binary passed the static analysis and looks as if it will fit into the
XBD benchmark control calls a helper script that will talk to the XBH, which
will talk to the bootloader on the XBD in order to download the newly created
and checked application binary into the XBD. After successful download, the
helper script is called again to trigger a short benchmark run executed and
the performance of the triple [Algorithm, Compiler, Options] is stored for later
reference, provided the binary produces the correct result for the known answer
test. At this time, stack consumption is measured if the XBD AF for the selected
platform supports this feature®. This process is repeated until all triples have
been built, statically checked and if applicable, downloaded and benchmarked.

From the stored performance numbers for the short benchmark run the
fastest tuple [Compiler, Options] per algorithm is selected and the correspond-
ing binary application is downloaded into the XBD and subjected to a detailed
benchmark at different message lengths.

The results of the short and detailed benchmark runs are written to a text
based output file, with XBS specific information like stack use embedded as com-
ments in SUPERCOPs results format. Thus the result files should be readable
by the same tools that process SUPERCOP results ¢ although without making
use of the additional information like stack usage.

4.2 Algorithms to Benchmark

The major part of the algorithms benchmarked using XBX are taken from the
SUPERCOP suite. The XBS scripts are closely modeled on SUPERCOP in that
regard, using the same directory structure to hold algorithms and their imple-
mentations. Some code that was not submitted to SUPERCOP was adapted by
the authors to fit the same interface and subsequently benchmarked. Most of this
code came from 'Das Labor’[5], a small device working group related to Ruhr
Uni Bochum who wrote a collection of cryptographic primitives implemented
specifically for the Atmel AVR family.

® This is currently available for Atmel AVR targets only.
6 A quick test by Dan Bernstein showed that they are indeed, although no written
documentation of that test exists.



8 XBX for SUPERCOP

4.3 Hardware Abstraction

To separate the benchmarking logic from platform specific code such as commu-
nication, execution of binaries and debugging output a simple hardware abstrac-
tion layer (HAL) was employed. This HAL hides the device dependent aspects
of the XBD like special function registers required to use the UART, the exact
method used to erase and program flash pages in the bootloader and the fact
that some microcontroller families, e.g. the Atmel AVR, are based on Harvard
architecture and do not hide this fact from the programmer. The special treat-
ment of constant data in what per definitionem is program memory on such
devices is also hidden in the HAL. Without this functionality all constant data
would end up in the RAM, rendering most SUPERCOP submitted implementa-
tions useless due to the fact that not even the initial stack would fit into RAM
anymore.

One function in the HAL is especially important for goal 2: precise performance
numbers. Since the actual timing measurement takes place on the XBH but the
reported value is the amount of CPU cycles on the XBD it is important that
the relation between the time bases on XBH and XBD is known as exactly as
possible. To this end, a timing calibration service has been implemented. When
the XBS requests a timing calibration, the XBH triggers the timing calibration
routine on the XBD. This routine busy loops for a device dependent amount of
time, toggles the timing output digital I/O line as it does when benchmarking
algorithms and additionally counts the number of CPU cycles it spent between
the two digital I/O toggles using an internal timer. This number of cycles is
reported to the XBH, which reports it along with it’s own timing measurement
of the same event to the XBS. A correction factor for clock drift between XBH
and XBD and/or a sanity check on the reported values can then be performed on
the PC by the XBS. This timing calibration sequence looks as depicted in Fig.2
. Measuring stack usage is another challenge that can only be solved in a device
dependent manner, yet should be available to the application via a standard
interface. The HAL contains two functions that allow for stack measurement:
paintStack and countStack. PaintStack 'paints’ the free stack area with a known
pattern, called a canary bird. Then the function to be benchmarked is called
and after it returns, countStack counts the number of canary birds that did not
‘survive’. This gives the maximum amount of stack used by the benchmarked
function. Combined with the static RAM requirement obtained from the ap-
plication binary and the known RAM requirement of the AF, the total RAM
consumption of a triple [Algorithm, Compiler, Options] can be measured.

4.4 Application Framework

The application framework provides hardware independent basic management
functions like processing requests, parameter handling and so on. It is combined
with the algorithm to benchmark and the hardware abstraction layer for the
device under test to form the XBX application binary.



XBX for SUPERCOP 9

HW I/O 1/0 ICP HW
CPU Timer Register Pin Pin Timer CPU

I e rra N P

1 Pin := low }tCPU-I/O Reg | t] 0 Rog-Pin

1 n "
o 1 |exgdute Driver = fow Line := low L t\CPdetecllon
Dy delay EVentOCcuredy ----- - -

+ lagp !

1 read

' ’:m\,amps

t (bUFfere(,)

e
Mb}tﬁmencpu
- = m—-—-

Pin = hignh }tcpuruo Reg | 1

Driver = high

t)(BH

- -2

0 Reg-Pin t
g}

Pag; t
Line := high E\‘ ICP detection
vent occgr ---
ed!
tlmesramp

(bufiergg)

Fig. 2. UML sequence diagram for the XBX timing calibration routine. If it holds that
a) reading and writing the timer requires the same time and b) switching the timing
indicator pin high takes as long as switching it low then all delays from measurement
and indication are symmetrical and cancel each other out. Thus if XBD and XBH have
perfectly identical clock sources txgp = txpm holds, otherwise z;‘gg can be used for
sanity checks and is also logged by the XBS so it can later manually be applied as a
correction ratio by the user.

4.5 Bootloader

The bootloader is used to download and execute application binaries. It is formed
by combining the generic boot loader logic code with the hardware abstraction
layer. Before benchmarking a target device, the bootloader must once be manu-
ally uploaded, e.g. via JTAG. After that, application download and execution is
handled over a communication channel established between the bootloader and
the benchmarking harness.

4.6 Benchmarking Harness

The firmware for the XBH receives commands from the XBS on the PC by
means of UDP packets. The commands form a protocol that is simply called
the XBH protocol, which features ASCII based command words with ASCII-
encoded hex digits as parameters. Although the upper 4 bit of every byte are
wasted, this is no major concern. The bandwidth on the Ethernet is orders of
magnitude higher than on the following I2C' or UART link to the XBD. The
ASCII encoding allowed for simple testing using the netcat command in the early
development phases and is easily processed by Perl scripts. Monitoring XBH
protocol in a serial terminal also benefits from this choice. The XBH software
generates requests to the XBD as necessary. The protocol for these requests



10 XBX for SUPERCOP

is called XBD protocol and uses ASCII commands but binary encoding for the
parameters. Answers from the XBD are processed and reported back to the XBS
over Ethernet using XBH protocol. Since the XBS never uses the XBD protocol,
changes in the XBS do not affect existing XBDs and vice versa. Keeping in
line with goal 8: re-use, the XBH firmware consists of an embedded web server
software[6] by Ulrich Radig with the XBH functionality added as another UDP
service and some modifications to the timer handling code in order to facilitate
XBD timing measurements.

5 Benchmarking Results

This sections gives a few examples of benchmarking results obtained using the
XBX.

5.1 Different Implementations of Skein512 on Atmel ATmegal281

The ATmegal281 comes from the same family as the ATmega644 in the refer-
ence implementation of XBX, it has the same CPU core and performance per
MHz. The RAM however is at 8kiB twice as big which helps enormously in run-
ning implementations that are not size optimized. The performance numbers for
Skein512[8] listed in table 1 are certainly not the best the algorithm can do, they
just reflect the best implementations available to the authors at the time this
work was written. The C implementations were compiled with the AVR, port of
GCC, the original SUPERCOP submission by the Skein team had to be mod-
ified to fit into the XBD’s flash memory. Even though the ATmegal281 comes
with 128kiB of flash memory, this implementation was so aggressively loop un-
rolled that the second author of this work has to re-roll the loops manually to
make it fit. This is a typical issue with speed optimized SUPERCOP submissions
intended to run on a PC and by no means specific to the Skein team’s work.
The huge advantage of the assembly implementation in both execution time and

Table 1. Skein512, different implementations on Atmel ATmegal281 in cycles per byte

Property Skein Team C Das Labor C Das Labor ASM
cpb @ 1536 bytes message length 7842.6 8602.1 1571.1
RAM usage(Stack+global/static) 2684 1580 1391

space is evident, yet in this case a size optimized C implementation also gives a
40% advantage in RAM usage at only a small performance loss.



XBX for SUPERCOP 11

5.2 SHA-3 candidates on an ARM Cortex-M3 32-bit CPU using
two compilers

One of the most interesting features of SUPERCOP for many users is the ability
to benchmark the same implementations using different compilers and compiler
options. XBX preserves this property for the target platforms where several
compilers are available. One such platform is the ARM Cortex family. Using a
free trial license of the ARM C compiler (ARMCC) we obtained performance
numbers of SHA-3 candidate implementations using both GCC and ARMCC
on a Cortex-M3 based Luminary Micro LM3S811 microcontroller. ARMCC is
generally considered to be expensive but also the most sophisticated compiler
available for ARM CPUs. Expectation was that it would perform better than
GCC. The fastest SHA-3 candidates on this platform from the subset available
for XBX benchmarking at the time met this expectation, as can be seen in table
2.

Table 2. ARMCC vs. GCC on ARM Cortex-M3 in cycles per byte for a 1536 byte
message, fastest algorithms on platform

Compiler BMW256[9] Shabal512[10] BMW512[9]

ARMCC 24.2 33.6 48.2
GCC 26.2 43.5 70.3

Surprisingly, some algorithms suite the optimization strategies of GCC better,
resulting in an overall better performance. See table 3 for details.

Table 3. ARMCC vs. GCC on ARM Cortex-M3 in cycles per byte for a 1536 byte
message, unexpected behavior

Compiler Blake32[11] Keccak1024c576[12] CubeHash1632[13]

ARMCC 96.2 125.1 835.8
GCC 72.1 109.7 323.2

In general, the Cortex-M3 performs very well when compared to a roughly 50
[14] [15] [16] times larger Intel Pentium 3 desktop processor as benchmarked in
[17]. Table 4 shows a performance gap of barely factor 2 between the two CPUs
with respect to the three SHA-3 candidates.



12 XBX for SUPERCOP

Table 4. Cortex-M3 vs. Pentium 3 (683) in cycles per byte for a 1536 byte message

Compiler BMW256 Shabal512 BMW512

Cortex-M3 24.2 33.6 48.2
Pentium 3 13.82 14.24 30.04

6 Conclusion

In this paper we introduced an extension to the SUPERCOP benchmarking suite
and described the main design decisions and compromises we made in order to
get it running in time for the second round of the SHA-3 competition. We believe
that the overall design is sound and that using SUPERCOP-XBX meaningful
results both for speed and memory requirements of cryptographic hash functions
can be obtained.

Acknowledgments. First of all many thanks to Daniel J. Bernstein and Tanja
Lange for their support and encouragement. Their approval really means a lot
to us. The Cortex-M3 target was provided by ARM, Ltd. and we have Richard
York and Alex Nancekievill to thank for that. Since the XBX project has no
funding their support is most appreciated.

References

1. Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmarking of
Cryptographic Systems. http://bench.cr.yp.to, accessed 5 November 2009.

2. NIST: First SHA-3 Candidate Conference http://csrc.nist.gov/groups/ST/
hash/sha-3/Round1/Feb2009/program.html, accessed 27 February 2010.

3. Daniel J. Bernstein: Cache-timing attacks on AES http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf, accessed 27 February 2010.

4. Kota Ideguchi, Toru Owada, Hirotaka Yoshida: A Study on RAM Requirements
of Various SHA-3 Candidates on Low-cost 8-bit CPUs http://www.sdl.hitachi.
co.jp/crypto/lesamnta/A_Study_on_RAM_Requirements.pdf, accessed 27 Febru-
ary 2010.

5. Daniel Otte et al: AVR Crypto Lib http://www.das-labor.org/wiki/
AVR-Crypto-Lib/en, accessed 27 February 2010.

6. Ulrich Radig: AVR Webserver Software http://www.ulrichradig.de/, accessed 27
February 2010.

7. Pollin: AVR-Net-IO Board http://www.pollin.de/shop/downloads/D810058B.
PDF, accessed 28 February 2010.

8. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, Jesse Walker - The Skein Hash Function Family Sub-
mission to NIST (Round 2), 2009

9. Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy,
Jgrn Amundsen, Stig Frode Mjglsnes - Cryptographic Hash Function BLUE MID-
NIGHT WISH Submission to NIST (Round 2), 2009



XBX for SUPERCOP 13

10. Emmanuel Bresson, Anne Canteaut, Benoit Chevallier-Mames, Christophe Clavier,
Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-Frangois Misarsky, Maria Naya-
Plasencia, Pascal Paillier, Thomas Pornin, Jean-René Reinhard, Céline Thuillet,
Marion Videau - Shabal, a Submission to NISTs Cryptographic Hash Algorithm
Competition Submission to NIST, 2008

11. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, Raphael C.-W. Phan - SHA-3
proposal BLAKE Submission to NIST, 2008

12. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche - Keccak specifications Sub-
mission to NIST (Round 2), 2009

13. Daniel J. Bernstein - CubeHash specification (2.B.1) Submission to NIST (Round
2), 2009

14. ARM: Whitepaper about the Cortex-M3 http://www.arm.com/files/pdf/
IntroToCortex-M3.pdf, accessed 28 February 2010.

15. Intel: Presskit on Moore’s law http://www.intel.com/pressroom/kits/events/
moores_law_40th/, accessed 28 February 2010.

16. Intel: Pentium 3 datasheet http://developer.intel.com/design/pentiumiii/
datashts/245264.htm, accessed 28 February 2010.

17. Daniel J. Bernstein and Tanja Lange (editors): SUPERCOP benchmarking results.
See results for computer 'manneke’. http://bench.cr.yp.to/results-hash.html,
accessed 27 February 2010.



