
Performance Analysis of the SHA-3 Candidates
on Exotic Multi-Core Architectures

Joppe W. Bos1 and Deian Stefan2

1 Laboratory for Cryptologic Algorithms, EPFL, CH-1015 Lausanne, Switzerland
2 Dept. of Electrical Engineering, The Cooper Union, NY 10003, New York, USA

Abstract. The NIST hash function competition to design a new crypto-
graphic hash standard ‘SHA-3’ is currently one of the hot topics in cryp-
tologic research, its outcome heavily depends on the public evaluation
of the remaining 14 candidates. There have been several cryptanalytic
efforts to evaluate the security of these hash functions. Concurrently,
invaluable benchmarking efforts have been made to measure the per-
formance of the candidates on multiple architectures. In this paper we
contribute to the latter; we evaluate the performance of all second-round
SHA-3 candidates on two exotic platforms: the Cell Broadband Engine
(Cell) and the NVIDIA Graphics Processing Units (GPUs). Firstly, we
give performance estimates for each candidate based on the number of
arithmetic instructions, which can be used as a starting point for eval-
uating the performance of the SHA-3 candidates on various platforms.
Secondly, we use these generic estimates and Cell-/GPU-specific opti-
mization techniques to give more precise figures for our target platforms,
and finally, we present implementation results of all 10 non-AES based
SHA-3 candidates.

Key words: Cell Broadband Engine, Graphics Processing Unit, Hash
function, SHA-3

1 Introduction

The design and analysis of cryptographic hash functions have come under re-
newed interest with the public competition3 commenced by the US National In-
stitute of Standards and Technology (NIST) to develop a new cryptographic hash
algorithm intended to replace the current standard Secure Hash Algorithm-2
(SHA-2) [28]. The new hash algorithm will be called ‘SHA-3’ and will be sub-
ject to a Federal Information Processing Standard (FIPS), similar to the Ad-
vanced Encryption Standard (AES) [27]. The competition is NIST’s response
to recent advances in the cryptanalysis of hash functions, particularly those af-
fecting widely deployed algorithms, including MD5 and SHA-1. Although these
breakthroughs have no direct consequence on the current cryptographic hash
standard SHA-2, a successful attack on SHA-2 would have catastrophic effects
on the security of applications relying on hash functions (e.g., digital signatures).
3 See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html



Such attacks are believed to be quite probable due to the structural similarities
between SHA-2 and its broken ancestors.
Competition History. The NIST competition officially started in late Octo-
ber 2008 with various contributions from academia, industry and government
institutions. A total of 64 proposals were submitted worldwide, of which 51 met
the minimum submission requirements and were announced as the first-round
candidates. Compared to the AES competition, which had 15 candidates, this
number was quite large. In late July 2009, NIST narrowed the number of candi-
dates for the second round to a more manageable size of 14. The total number of
candidates is expected to be reduced to about 5 (finalists) by the third quarter
of 2010. The new hash function standard(s) will be announced in 2012.
Motivation. The candidates are reviewed based on three main evaluation cri-
teria: security, cost, and algorithmic and implementation characteristics [29].
Through the second round, nearly all of the eliminated algorithms were found
to suffer from either efficiency or security flaws. Furthermore, despite suffering
from minor security issues, some of the high-performing candidates survived the
elimination process [35]; this clearly highlights the importance of efficiency in
the evaluation procedure.

One of the motivations behind this work is NIST’s predisposition for algo-
rithms with greater flexibility [29]; specifically, NIST states that is it preferable
if “the algorithm can be implemented securely and efficiently on a wide vari-
ety of platforms.” We endeavor to evaluate the performance of the remaining
candidates on two exotic platforms: the high-end Cell Broadband Engine ar-
chitecture (Cell) and the NVIDIA Graphics Processing Units (GPUs). For these
platforms, which allow the use of vectorization optimization techniques, multiple
input streams of equal length are processed at once using SIMD (single instruc-
tion, multiple data) and SIMT (single instruction, multiple threads) techniques
for the Cell and GPUs, respectively. Due to the low prices, wide availability,
and shift in architecture design towards many-core processors [34], it is of valu-
able interest to evaluate the performance of the Cell and GPUs as cryptologic
accelerators.

There are numerous cryptographic applications in which the computation of
a message digest of a fixed-length message is necessary. For instance, the work of
Bellare and Rogaway [3], standardized in [36,21,1], proposes a mask generation
function used in optimal asymmetric encryption that is based on a hash func-
tion which takes a fixed-length input. Further, protocols which use hash-based
message authentication codes (HMAC) require the computation of a message di-
gest of fixed-length blocks. Specifically, given hash function H, message m, and
key k, HMAC is defined as: H((k ⊕ opad)||H((k ⊕ ipad)||m)). In this case, || de-
notes concatenation, and opad and ipad are fixed-length constants such that the
outermost hash is of a fixed-length block (cf. [22] for more details). Thus, com-
puting the message digest of a batch of such fixed-length input messages, e.g.,
in high-end servers, can be efficiently accomplished with the implementations
proposed in this work. Additionally, in a cryptanalytic setting such implemen-
tations may be used to speed up brute-force password cracking, allow for hash



function cube attack/tester analysis using high-dimensional cubes, among many
other applications.
Our Contribution. We present a new software performance analysis of all
second-round SHA-3 candidates on the Cell and GPU. Our results are three-
fold:

1. We present an in-depth performance analysis of all SHA-3 candidates by
investigating their internal operations. It is worth noting that the aim of this
work is not to claim that our techniques are optimal (hence, the provided
estimates are indeed subject to change). Rather, our intended goal is to make
a fair, reliable, and accurate comparison between all second-round SHA-3
candidates, which might serve as a reference before the final candidates are
announced. Due to the significant number of candidates, all using different
techniques, this is not a straightforward task. To facilitate the analysis, we
separate the AES-inspired candidates from the others. For the former case,
we make extensive use of the work by Osvik et al. [33], which introduced
the fastest results of AES on our target architectures. For the latter case,
however, a more careful analysis, starting from scratch, is required.

2. We propose specific optimization techniques for each of our target platforms;
in combination with our estimation framework, more precise estimates per
architecture are given for all second-round SHA-3 candidates.

3. We complement this framework by providing real implementations of all non-
AES based candidates on the target platforms. We show that our techniques
are indeed applicable, and that the base estimates are usually realistic.

Related Work. The PlayStation 3 (PS3) video game console, which contains
the Cell architecture, has been previously used to find chosen-prefix collisions for
the cryptographic hash function MD5 [37]. Fast multi-stream implementations
of MD5, SHA-1 and SHA-256 for the Cell are presented in [10]; from this work,
we use the performance numbers for SHA-256 as a comparison to the perfor-
mance of the SHA-3 candidates, as they outperform the single stream results
from [13] by an order of magnitude. Graphics cards have similarly been used
for MD5 collision searches [8], password cracking [26], and accelerating crypto-
graphic applications [38,25]. To the best of our knowledge, there is no previous
work implementing second-round SHA-3 candidates on the Cell architecture or
NVIDIA GT200 GPUs.
Organization. We start with a brief introduction to our target platforms in
Section 2. Several optimization techniques are described in Section 3, directly
addressing our main target architectures. Then, in Section 4 and 5 we introduce
our performance analysis and implementation results on AES-inspired and other
second round candidates, respectively. We conclude in Section 6.

2 Target Platforms

Cell Broadband Engine Architecture. The Cell architecture [20], jointly
developed by Sony, Toshiba, and IBM, is equipped with one dual-threaded, 64-
bit in-order Power Processing Element (PPE) based on the Power 5 architecture



and 8 Synergistic Processing Elements (SPEs). Our interest is in the SPEs [39],
the main computational cores of the Cell. Each SPE consists of a Synergistic
Processing Unit (SPU), 256 KB of private memory called Local Store (LS), and
a Memory Flow Controller (MFC). To avoid the complexity of sending explicit
direct memory access requests to the MFC, all code and data must fit within
the LS.

The SPU is equipped with a large register file containing 128 registers of
128 bits each. Most SPU instructions work on 128-bit operands denoted as
quadwords. The instruction set is partitioned into two sets: one set consists of
(mainly) 4- and 8-way SIMD arithmetic instructions, while the other consists
of instructions operating on the whole quadword (including the load and store
instructions) in a single instruction, single data (SISD) manner. The SPU is an
asymmetric processor; each set of instructions is executed in a separate pipeline,
denoted by the even and odd pipeline for the SIMD and SISD instructions, re-
spectively. For instance, the {4, 8}-way SIMD left-rotate instruction is an even
instruction, while the instruction left-rotating the full quadword is dispatched
into the odd pipeline. When dependencies are avoided, a single pair of even and
odd instructions can be dispatched every clock cycle.

One of the first applications of the Cell processor was to serve as the heart of
Sony’s PS3 game console. Although the Cell contains 8 SPEs, in the PS3, one is
disabled and a second is reserved by Sony. Thus, with the first generation PS3s
the programmer has access to six SPEs, this has been disabled in the current
version of the game console. In subsequent applications, serving the supercom-
puting community, the Cell has been placed in blade servers, with newer vari-
ants containing the PowerXCell 8i, a derivative of the Cell that offers enhanced
double-precision floating-point capabilities. The SPEs are particularly useful as
(cryptographic) accelerators. For this purpose, PCIe cards are available (either
equipped with a complete Cell processor or a stripped-down version containing
4 SPEs) so that workstations can benefit from the computational power of the
SPEs.

NVIDIA Graphics Processing Units. Unlike the Cell, there are many dif-
ferent GPU architectures, though, most share the primary goal of accelerating
3-dimensional graphics (rendering) applications, such as games. In this work, we
focus on programming NVIDIA GPUs using the Compute Unified Device Archi-
tecture (CUDA) extension of the C language. With the latest GPUs implement-
ing the Fermi architecture [32], availability and interest in the older G80 series
GPUs, which have also been used for cryptologic applications (cf. [25,33,19]),
is rapidly decreasing. We therefore restrict our focus to the more-recent GT200
series GPUs.

Each GPU is equipped with several Simultaneous Multiprocessors (SMs),
varying from 24 in the GTX 260 to 30 in each of the GPUs of the GTX 295
graphics card. Each SM consists of a large register file (16384 32-bit registers),
fast 16-way banked on-chip 16KB shared memory, 8 Scalar Processors (SPs),
2 special function units (used for transcendentals), an instruction scheduler,
and (6-8KB) texture and (8KB) constant memory caches. The SPs are capable



of executing many instructions, including 32-bit integer arithmetic and bitwise
operations, which can be used to implement most cryptologic algorithms.

Although explicit SIMD access of the SM compute units (the SPs) is desirable
for many applications, the programmer is limited to writing parallel code at the
thread level [31]. Specifically, using CUDA, the programmer writes code for a
kernel which is executed by many threads (all executing the same instructions
of the kernel, though operating on different data) on the SPs. In the SIMT
programming model, threads are grouped into a thread block, which is executed
on a single SM and, consequently, these threads may synchronize execution and
use the shared memory to communicate. When launching a kernel, it is common
(and highly recommended) to execute multiple thread blocks, grouped in a grid,
which the hardware then assigns to the available SMs; to hide various latencies,
it is recommended that at least 2 blocks be available for scheduling on each
SM [31]. Note that although each SM has many resources, the shared memory
is divided among the ‘co-located’ thread blocks, and similarly the registers are
divided among the individual threads—careful consideration of an application’s
use of these resources is critical when trying to achieve high performance. Despite
these design ‘restrictions’, GPUs are very commonly being used as accelerators
for workstations, given their wide availability as moderately-priced PCIe cards.

3 Porting the SHA-3 Candidates to the Cell and GPU

Cell Broadband Engine Architecture. On the SPE architecture, all distinct
binary operations f : {0, 1}2 → {0, 1} are available, making it a suitable platform
to implement hash functions. Operations frequently used by the hash candidates,
such as rotations, shifts, and additions, are available as 4-way SIMD instructions
operating on the 4 32-bit words of a quadword, in parallel. When possible, we
use the 32-bit optimized reference code of the SHA-3 candidates as a base and
further optimize this code for the SPE architecture.

To make the code more suitable for execution on the Cell, the use of branches
is eliminated or reduced to a minimum, since all four input strings need to
be processed in an identical way. Most of the instructions used in the various
compression functions are arithmetic instructions, which go in the even pipeline.
When naively porting the code to the SPE architecture, this results in a highly
unbalanced implementation where the odd pipeline is underutilized. In order to
improve performance, some even operations, when feasible, are implemented by
a sequence of odd instructions (following a similar approach to that described
in [33]). This increases the latency of this operation, but if these instructions
can be dispatched for free with the surrounding even instructions, the overall
number of cycles decreases (while the number of overall instructions increases).

One obvious way to do this is to make use of the shuffle instruction that is
dispatched in the odd pipeline. The shuffle instruction can pick any 16 bytes
of the 32-byte (two 128-bit registers) input or select one of the byte-constants
{0x00, 0xFF, 0x80} and place them in any of the 16-byte positions of the 128-
bit output register. For example, when a 4-way SIMD shift or rotate by x (to the



left or right) is required this is typically implemented using the even shift or
rotate instruction. When x ≡ 0 mod 8, this is simply a reordering of bytes, and
can be done for 4 32-bit integer values in parallel using the shuffle instruction.

Converting a 4-way SIMD left rotation of a quadword V by x 6≡ 0 mod 8 bits
to odd instructions can be done using two odd shuffle and two odd quadword
shift instructions. When using an odd quadword rotate operation, the bits
rotated out from each 32-bit boundary are dislocated. To address this, create a
quadword W which contains, on byte positions 4i and 4i + 1, the values from
the byte location 3 + 4i and 4i from V respectively, where 0 ≤ i ≤ 3 and the
most (least) significant byte position is labeled as 0 (15). The other bytes in W ,
at byte positions 4i + 2 and 4i + 3, are set to zero. Next, V and W are shifted
left by x mod 8 using the odd quadword shift instruction. Finally, shuffle the
three bytes from V and single byte from W per word to the correct positions to
complete the 4-way SIMD rotation. This technique allows one to trade 1 even
rotate instruction for 4 odd instructions. Note that the latency of the operation
has increased from 4 cycles for the even rotate to 4×4 = 16 for the odd variant.

One of the NIST submission requirements is to provide an implementation
of the SHA-3 candidate suitable to run on a 32- and 64-bit platform [29]. How-
ever, some of the candidates, e.g., Skein, provide a 32-bit implementation which
requires the use of a 64-bit data type in the compression function. This requires
to implement fast 64-bit additions and rotations built from 32-bit instructions,
since these operations, on the SPE, are only available in 32-bit flavors. A 2-way
SIMD addition can be implemented as follows. First, a 4-way SIMD carry gener-
ation (even) instruction is used to provide the carries going from the least to the
most significant 32-bit word. An odd shuffle instruction is then used to put the
two carries in the correct position, while the other two carries corresponding to
the most significant 32-bit word of each 64-bit integer are ignored. Finally, the
4-way SIMD extended addition, an addition with carry, is used to add the two
quadwords consisting of four 32-bit values considering the carries. Thus, a 64-bit
addition can be implemented using a single odd and two even instructions.

To implement an efficient 2-way SIMD rotate, the select instruction, which
is dispatched in the even pipeline, is used when a rotation by x 6≡ 0 mod 8
is required. The select instruction acts as a 2-way multiplexer: depending on
the input pattern, the corresponding bit from either the first or the second
input quadword is selected as output. The approach is to first perform a full
quadword rotation to the left by x bit-positions and store this in a quadword
V1. Then, put the incorrectly-positioned rotated bits in the correct positions of
a separate quadword V2 by swapping the 64-bit double-words. Use the select
instruction to get the correct bits from the two quadwords, using a pattern,
defined by concatenating twice the 64-bit unsigned integer value 2x−1, selecting
the corresponding bit position from V1 or V2 if the bit position in the pattern
is set to zero or one respectively. Since the SPE architecture has a quadword
rotation instruction up to 7 bits and another instruction rotating by bytes, the
2-way SIMD rotation costs 3 odd rotations and one even selection for rotating
by x > 8. When x < 8, the cost is reduced by one odd rotation.



NVIDIA Graphics Processing Units. Compared to the SPE instruction set
architecture (ISA), the GPU parallel thread execution (PTX4) ISA [30] is con-
siderably less rich. With respect to integer arithmetic operations, programmers
have access to 32-bit bitwise operations (and, or, xor, etc.), left/right shifts, 32-
bit additions (with carry-in and carry-out), and 32-bit multiplication (sometimes
implemented using several 24-bit multiplication instructions).

Given the simplicity of PTX, to gain the most speedup from the raw com-
putational power, it is imperative that the kernels be very compact (especially
with respect to register utilization and shared memory allocation). Compact and
non-divergent kernels allow for the execution of more simultaneous threads, and
can thus increase the performance of the target hash function. Thus, when imple-
menting common hash function building blocks, a simple approach is also usually
the most optimal. For example, a rotation of a 32-bit word is implemented using
two shifts (shl and shr), and an or instruction. Furthermore, for many hash
functions we can store the full internal state, and sometimes even the input mes-
sage block, in registers. Although this limits the number of simultaneous threads
per SM, it also lowers the copies to and from (shared) memory and thereby
contributes to a faster implementation, overall. Additionally, when possible, we
manually unroll the compression functions since branching on the SMs can lead
to a degradation in performance when threads of a common thread block take
divergent paths and execution is serialized. Moreover, conditional statements
consisting of a small number of operations in each basic block are implemented
using predicate instructions, instead of branches—PTX allows for the predica-
tion of almost all instructions. Nevertheless, when branching is necessary (e.g.,
the compression function of Skein-512), the thread execution is synchronized (at
a barrier near the branch) and the branch instruction is executed uniformly by
all the threads.

For algorithms with small-to-medium sized chain values (e.g., 256- or 512-
bits), we buffer the chain values in registers. To avoid multiple kernel launches,
each thread processes multiple message blocks. This, in conjunction with the
caching of the chaining values, not only simplifies the multi-block hashing, but
also results in a faster implementation (than, for example, executing multiple
kernels and having to read/write chain values from/to global memory). For al-
gorithms with larger-sized chain values or internal states, we cache the chain
values in shared memory. In implementing algorithms that use shared memory,
we require that the thread block size always be a multiple of 16 threads (usually
at least 64 threads) and further (implicitly) assert that the n-th thread (counting
from 0) loads/stores any shared memory cached values from/to bank n mod 16,
as to avoid bank conflicts.

When considering algorithms using 64-bit operations, the number of registers
and instructions usually doubles. For example, a 64-bit addition is performed
using two additions with carry (add.cc). Similarly, rotations by x 6≡ 0 mod 32 is
implemented using 4 shift and 2 or 32-bit instructions. For these algorithms,

4 We note that the PTX is an intermediate description and not the actual GPU ISA.
The latter is not publicly available.



Table 1. The number of AES-like operations per b bytes for all AES-inspired candi-
dates and the performance estimation on the SPE and single GTX 295 GPU. (R): One
AES encryption round, SB: Substitution operation, MCX: Mix-Column operation over
X bytes (i.e., X=4 is identical to the one used in AES). Note that Shift-Row oper-
ations are ignored because it can be dispatched through the Mix-Column operation.
C/B: Cycles per byte, Gb/sec: 109 bits per seconds. The SPE estimates do not use the
T -table approach.

Hash function b (R) SB MC4 MC8 MC16
xor SPE GPU

(byte) C/B Gb/sec C/B Gb/sec

SHA-256 [10] - - - - - - - 8.2 3.1 - -
AES-128 [33] 16 10 - - - - 16 11.3 2.3 0.32 30.9
ECHO-256 192 256 - 512 - - 448 29.6 0.9 0.85 11.7
Fugue-256 4 - 32 - - 2 60 15.1 1.7 0.62 16.1
Grøstl-256 64 - 1280 - 160 - 1472 41.4 0.6 1.23 8.1
SHAvite-3-256 64 52 - - - - 1280 16.5 1.6 0.42 23.7

rather than using expensive registers to cache chain values or message blocks, we
resort to using shared memory for caching. We, again, stress that the restriction
on shared memory bank access applies to all our algorithms, and thus a 64-bit
cache value requires 2 (non-conflicting) memory accesses per 64-bit word.

4 AES-Inspired SHA-3 Candidates

A popular design choice of the SHA-3 hash function designers was to use AES-
like byte oriented operations (and, in some cases the AES round function itself)
as building blocks in the compression function of their hash function. The second-
round SHA-3 candidates following this paradigm include ECHO [4], Fugue [18],
Grøstl [16], and SHAvite-3 [9]. The motivation for using AES-like operations is
mainly because AES has successfully withstood much cryptanalytic effort and,
moreover, one can exploit the high capabilities of AES-like functions on a wide
variety of architectures. Moreover, many of the design teams have pointed out the
new Intel AES instruction set and claimed several performance figures outper-
forming the other candidates (for a more detailed analysis, cf. [5]). Considering
the possible widespread use of these processors in the future, these designs will
likely have a clear advantage.

Although several optimization methods for these hash functions are possible
on particular processors, such as using the Intel AES instruction set, we analyze
the performance of AES-inspired candidates in a more generic setting. More
precisely, we simply count the number of ‘AES-like’ operations required for the
compression function of each candidate, as this gives an intuition of how these
designs behave in architectures without native AES-instructions, such as the
PowerPC, SPARC, and most low-power microcontrollers. Table 1 provides these
rough estimates. Note that since the operations may differ per candidate, we
clearly differentiate all possibilities, particularly the variants of the ‘Mix-Column’
(MC) operation used in AES.



Table 2. Straight-forward estimates for the different mix-column operations without
(left) and with (right) the use of T -tables. Note that the xor and rotate instruction
counts for the T -table approach in MCX operate on (8 ·X)-bit values.

XTIME xor size of table(s) xor rotate

(byte) in bytes

MC4 (AES) 4 16
1,024 3 3
4,096 3 0

MC8 (Grøstl) 16 104
2,048 7 7

16,384 7 0

MC16 (Fugue) 32 148
4,096 15 15

65,536 15 0

The estimates given in Table 1 provide a good indication on the performance
of the AES-inspired candidates, especially for hashing extremely long messages,
where we simply focus on the compression functions. It should, however, be noted
that the techniques used to implement the MC operations used by these candi-
dates account for the largest performance loss/gain. Typically, the MC operation
is implemented using a number of xor operations and the XTIME function. The
latter treats a byte-value as a polynomial in the finite field F28 and performs
modular multiplication by a fixed modulus and multiplier. In practice, XTIME
can be implemented using a shift and a conditional xor. An upper bound on
the required MC-operations, working on single byte-values, is given in Table 2.
First, the double and quadruple of the X elements are computed in MCX for
X ∈ {8, 16}; the octuple for MC16 is not needed since all the constants in Fugue
are below 8. We note that these require 2 · X XTIME operations, and that the
number of required xor operations depend on the constants. Counting the lat-
ter, for MC4 in AES and MC8 in Grøstl, there are at most 4× 5 − 4 = 16 and
14 × 8 − 8 = 104 xor instructions, since the rows are simply rotations of each
other. Similarly, in Fugue there are 4×(10+8+14+9−4) = 148 xor instructions,
corresponding to its constants. We stress that these (naive) estimates should be
treated as an upper bound; as illustrated by the implementation of MC4 in [33],
the number of times XTIME and xor are required is lower: 3 and 15, respectively.

Following the “T -table” approach [14], the MC and substitution steps can
be performed by using lookup tables on 32-bit (and larger) processors. The use
of T -tables can greatly reduce the number of required operations; estimates of
the cost of the different MC steps using a varying number of T -tables (as the
different tables are simply rotations of each other) are also stated in Table 2. The
MCX T -table variants require X − 1 xor, and 0 or X − 1 rotate instructions
(depending on the number of tables used) operating on X-byte values. The use
of T -tables is, however, not always favorable where, for example, in memory
constraint environments, the tables might be too big. This is also the case for
certain SIMD environments, such as the SPE, where as indicated in [33], fetching
data for multiple streams in parallel is not trivial and may be more expensive
than actually computing the MC operation.



Among the four AES-inspired second-round SHA-3 candidates, ECHO and
SHAvite-3 make use of the AES round itself and can highly benefit from Intel
AES instruction set. Therefore, it is relatively easy to infer the speed estimates
for these two hash functions once we have those for AES. We use the recent
work by Osvik et al. [33] on AES to obtain estimates for our target platforms.
Based on their results, the corresponding workload required to implement the
compression function of the AES-inspired candidates is given in Table 1. As an
example of how SHAvite-3 performs under this result (given the estimates of
Table 1), one requires 52 AES round function evaluations plus 1280 8-bit xors
to perform one compression function invocation of SHAvite-3, compressing a 64
byte message block. From [33] we learn that one AES round can be implemented
in 300 and 78600 cycles on the SPE and GPU when hashing 16 simultaneous
streams and 600 blocks of 256 streams, respectively. Hence, SHAvite-3 is esti-
mated to achieve performance of 52·300+1280

64·16 = 16.5 cycles/byte on a single SPE,
and 52·78600+1280

64·256·600 = 0.42 cycles/byte on a single GTX 295 GPU.
We note that the performance estimates given in Table 1 for Grøstl and Fugue

are conservative. This is because the naive estimates for MC8 and MC16 use the
estimate from Table 2, leaving room for significant optimizations. These numbers
can be further improved on platforms where a T -table approach is faster than
computing the Mix-Column operation. For example, on the GPU, placing the
smaller (2KB) table in shared memory, Grøstl would require two 32-bit lookups
in addition to the 7 xor and 7 rotate (64-bit) instructions.

5 Other SHA-3 Candidates

The non-AES based SHA-3 candidates use a variety of techniques and ideas in
their hash function designs. From a performance perspective, it is interesting to
have an indication of the number of required instructions per byte. An approx-
imation of this is given in Table 3. We note that operations ending with a ‘c’
indicate that one of the input parameters is complemented before use, eqv de-
notes bitwise equivalence (i.e., xorc) and csub denotes conditional subtraction.
These raw instruction counts are obtained from the optimized implementations
as submitted to NIST and only the number of instructions in the compression
function are considered. Since load and store operations are hard to predict
(due to possible cache misses), and may be incomparable between platforms,
only arithmetic instructions are taken into account (i.e., the required moves,
loads/stores, including all the possible table-lookups, are ignored).

We would like to stress that the performance figures presented in Table 3
are estimates for a hypothetical 32-bit architecture, the instruction set of which
includes all the operations shown in the columns of Table 3. Moreover, we assume
that such a machine can dispatch one instruction clock cycle. Estimating the
actual performance number on modern platforms is considerably more difficult
because they often have access to a separate SIMD unit, which is ignored by our
estimates. However, these estimates can be used as a starting point to create
more accurate platform-specific speed estimations, for instance for the Cell and



Table 3. Performance estimates for all non-AES inspired SHA-3 candidates based on
the number of 32- and 64-bit arithmetic instructions used in the various compression
functions (which process b bytes). The † indicates an alternative implementation ap-
proach (on-the-fly interleaving) for Keccak. We assume that all operations stated in
the columns are single instruction operations.

Hash function b add
sub

mul and
nand

eqv
or

rotate shift xor
Cycles

csub andc orc / byte

Hash functions operating on 32-bit words

BLAKE-32 64 480 - - - - - - 320 - 508 20.4
BMW-256 64 296 58 - - - - - 212 144 277 15.4
CubeHash-16/1 1 512 - - - - - - 512 - 512 1536.0
CubeHash-16/32 32 512 - - - - - - 512 - 512 48.0
Hamsi-256 4 - - - 24 12 - 24 72 24 287 110.8
JH-256 64 - - - 1792 1152 288 688 - 800 4024 136.6

Keccak-256 136 - - - 684 96 144
480
144

1248 204 3810 50.1

Keccak-256† 136 - - - 756 384 - 624 1248 360 4224 55.9
Luffa-256 32 - - - 144 - 96 96 392 - 756 46.4
Shabal-256 64 52 16 96 - 48 48 - 112 - 242 9.6

SIMD-256 64 817
901
256

419 852 - - 256 288 804 176 74.5

Hash functions operating on 64-bit words

Skein-512 64 497 - - 1 - - - 288 - 305 17.0

GPU architectures. Note that while the multiplications by the candidate SIMD
operate on 16-bit operands, the multiplications in Shabal are by one of the
constants {3, 5}. Each of the latter multiplications can be converted into a shift
and addition, if cheaper than native multiplication.

Cell Broadband Engine Architecture. Ignoring moves and assuming per-
fect circumstances, i.e., all even and odd pairs of instructions can be dispatched
simultaneously without stalls, an estimate for hashing four messages of equal
length in parallel on a single SPE may be obtained by dividing the performance
numbers in Table 3 by a factor of four. Note that these are pessimistic estimates,
as the balancing techniques from Section 3 are not (implicitly) considered. In
Table 4 we present actual implementation results of all non-AES based candi-
dates, with the fine-tuned estimates in parentheses. The performance results are
obtained by hashing thousands of long messages (25 KB) and measuring the
complete hash function (not only the compression function), in addition to the
benchmarking overhead.

The number of shifts and rotations which are replaced by their odd vari-
ants is often close to the expected value required to balance the number of odd
and even instructions. It might happen that this introduces stalls due to in-
struction dependencies, the optimal number of operations which are replaced is
then decided experimentally. This information is taken into account in the es-
timates in Table 4. For some candidates, additional optimizations are possible.



Table 4. Performance results and estimates (in parentheses) for the non-AES based
SHA-3 candidates for the SPE and the GPU architecture. The SPE implementations
process four or two (for Skein) messages of equal length. The GPU implementations
process 680 blocks of 64 threads on a single NVIDIA GTX 295 GPU. Measurements
of only the compression function are shown in [brackets].

Algorithm SPE GPU

Cycles Throughput Cycles Throughput
per byte (Gb/sec) per byte (Gb/sec)

SHA-256 [10] 8.2 3.1 - -

[2] BLAKE-32 5.0 (4.5) 5.1 (5.7) 0.27 [0.13] (0.13) 36.8 (76.4)
[17] BMW-256 4.2 (3.7) 6.2 (6.9) 0.27 [0.27] (0.10) 36.8 (99.4)
[6] CubeHash-16/1 326.7 (316.0) 0.1 (0.1) 11.1 [11.0] (10.9) 0.90 (0.91)
[6] CubeHash-16/32 11.6 (9.9) 2.2 (2.6) 0.36 [0.35] (0.34) 27.6 (29.2)
[23] Hamsi-256 32.2 (26.9) 0.8 (1.0) 5.19 [0.66] (0.64) 1.91 (15.5)
[40] JH-256 31.5 (29.8) 0.8 (0.9) 0.76 [0.75] (0.67) 13.1 (14.8)
[7] Keccak-256 13.0 (11.1) 2.0 (2.3) 0.56 [0.56] (0.31) 17.7 (32.1)
[12] Luffa-256 11.5 (10.1) 2.2 (2.5) 0.35 [0.34] (0.32) 28.4 (31.1)
[11] Shabal-256 3.5 (2.8) 7.2 (9.2) 0.69 [0.56] (0.07) 14.4 (141.9)
[24] SIMD-256 22.6 (19.0) 1.1 (1.4) 3.60 [3.60] (0.43) 2.76 (23.1)
[15] Skein-512 13.7 (12.1) 1.9 (2.1) 0.46 [0.29] (0.22) 22.1 (45.2)

For instance, the candidate SIMD uses the select operation (bitwise “if X then
Y else Z”), (X ∧ Y ) ⊕ (X̄ ∧ Z), and the majority operation on three operands,
(X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z), which can be implemented using one and two
select instructions, respectively. This optimization is counter-balanced by the
fact that the conditional subtraction requires three instructions (a comparison,
subtraction and a select) to avoid branching. Another example where instruc-
tions on the SPE can be saved is in JH: the swapping of (multiple) bytes requires
just a shuffle instruction, and the swapping of bits requires two shift and a
single select.

We observe that one of the main reasons the actual performance numbers are
slightly higher than the given estimates is that the four input streams of bytes
need to be converted to a 4-way SIMD representation. This introduces noticeable
overhead, similar to all candidates, which is not accounted for in the estimates.
In Hamsi, the overhead is even larger because the message-data is used as an
index for a table look-up which further gives rise to extra arithmetic instructions
needed to calculate the locations of the loads. Doing this in 4-way SIMD, even
when pre-fetching data for subsequent blocks, introduces ample overhead that is
not considered in our estimates since all load and store operations are ignored.

NVIDIA Graphics Processing Units. As discussed in Section 3, the PTX
ISA is considerably more limited than the Cell’s ISA, and therefore some of
the instructions in Table 3 will have to be implemented by multiple, simpler,
instructions. For example, each rotate is implemented using two shift instruc-
tion and an or; each andc is implemented using a not and an and, etc. Taking
the implementation of these non-native instructions into account, in addition to



the fact that each GPU on the GTX 295 contains 30 SMs (for a total of 240
SPs) we divide the (slightly higher) instruction count of Table 3 by a factor of
240. These estimates are presented in Table 4, along with actual implementation
results.

As in the Cell, the GPU estimated performance results of Table 4 do not
account for message memory-register copies or moves. Furthermore, they do not
account for kernel launch overhead, host-to/from-device copies, or possible table-
setup timings (e.g., copying a table to shared memory). For fair comparison,
we, however, do account for the chain value copies to/from registers and global
memory; this rough figure was measured for the different sizes using a kernel that
simply copied the state to registers and back to global memory. Nevertheless, our
GPU estimates are certainly optimistic and implementation results, measuring
the full hash function, are higher. Additionally, for algorithms with huge internal
states or expanded messages, e.g., SIMD, the use of local storage might not be
easily avoided and the implementation results are expected to be much worse
than the estimates.

Along with considering the techniques of Section 3 when implementing the
candidates, we further emphasize the details of Keccak and Hamsi. Since us-
ing large tables on the GPU is prohibited, we estimate and implement Keccak
with on-the-fly interleaving (Keccak-256† in Table 4) and divide the execution
of Hamsi into two kernels. The latter requires the use of a very large 32KB
table (which is larger than all the fast memories on the SMs) for the message
expansion, and, thus, necessitates a less direct implementation approach. The
proposed two-part approach requires: (i) a kernel in which 16 threads expand the
32-bit message to 256-bits (each using 2 1KB tables and an atomic xor), and
(ii) a kernel implementing the actual compression function. Because the message
expansion requires random access reads and uses atomic instructions (to global
memory), estimates without considering the effects of memory operations are
expected to diverge.

As expected, we observe that the actual performance numbers in Table 4 are
slightly higher than the corresponding estimated figures. In most cases, how-
ever, the performance overhead is a result of the memory copies (host-to-device
and global memory-to-registers). We confirmed this conjecture by measuring the
throughput of the compression functions working on a single message block, the
results of which are shown [in brackets] in Table 4. We note that the implemen-
tation result of SIMD does not, however, agree with our estimated figure—we
attribute the extremely low performance to using local memory for the mes-
sage expansion (4096 bits) and having a single thread do the full compression;
splitting the compression function across multiple threads would likely improve
SIMD’s performance. Additionally, we highlight the Shabal implementation, for
which we heavily used the optimized reference code, required the use of a non-
inline function in the permutations as to address a compiler optimization bug;
the fully-inlined, but buggy, implementation is twice as fast.



6 Conclusion

Efficiency of hash function algorithms is a very important design criterion, al-
most parallel with security. This work presents a generic framework for analyzing
and evaluating the performance of such algorithms; specifically, we estimate the
performance of the second-round candidates in the ongoing competition to es-
tablish a new cryptographic hash standard, SHA-3. Using this framework as a
base, we then take advantage of platform-specific optimization techniques to pro-
vide more precise performance estimates for two exotic many-core architectures:
the Cell Broadband Engine and NVIDIA Graphics Processing Units. We further
support our analysis by presenting multi-stream implementation results of all
the non-AES based candidates. Finally, we believe that this work can assist in
the decision process of the SHA-3 competition.
Acknowledgements. We gratefully acknowledge useful suggestions by Dag
Arne Osvik, Onur Özen and the CHES reviewers.

References

1. American National Standards Institute. ANSI X9.44-2007: Key Establishment
Using Integer Factorization Cryptography, 2007.

2. J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal
BLAKE, 2008.

3. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Eurocrypt 1994,
volume 950 of LNCS, pages 92–111, 1994.

4. R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and
Y. Seurin. SHA-3 Proposal: ECHO, 2009.

5. R. Benadjila, O. Billet, S. Gueron, and M. J. B. Robshaw. The Intel AES instruc-
tions set and the SHA-3 candidates. In Asiacrypt 2009, volume 5912 of LNCS,
pages 162–178, 2009.

6. D. J. Bernstein. CubeHash specification (2.B.1), 2009.
7. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak specifications, 2009.
8. M. Bevand. MD5 Chosen-Prefix Collisions on GPUs. Black Hat, 2009. Whitepaper.
9. E. Biham and O. Dunkelman. The SHAvite-3 Hash Function, 2009.

10. J. W. Bos, N. Casati, and D. A. Osvik. Multi-Stream Hash-
ing on the PlayStation 3. In PARA, LNCS, 2008. To appear,
http://documents.epfl.ch/users/b/bo/bos/public/PARA2008.pdf.

11. E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard,
C. Thuillet, and M. Videau. The Hash Function Shabal, 2008.

12. C. D. Canniere, H. Sato, and D. Watanabe. Hash Function Luffa, 2009.
13. T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell broadband en-

gine architecture and its first implementation: A performance view.
http://www.ibm.com/developerworks/power/library/pa-cellperf/, November
2005.

14. J. Daemen and V. Rijmen. The design of Rijndael. Springer-Verlag New York,
Inc. Secaucus, NJ, USA, 2002.

15. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein Hash Function Family, 2009.



16. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 candidate, 2008.

17. D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amundsen, and S. F.
Mjolsnes. Cryptographic Hash Function BLUE MIDNIGHT WISH, 2009.

18. S. Halevi, W. E. Hall, and C. S. Jutla. The Hash Function Fugue, 2009.
19. O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Modern

Graphics Hardware. In USENIX Security Symposium, pages 195–210, 2008.
20. H. P. Hofstee. Power Efficient Processor Architecture and The Cell Processor. In

HPCA 2005, pages 258–262. IEEE Computer Society, 2005.
21. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography.

IEEE, New York, 2000.
22. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message

Authentication. RFC 2104, IETF, 1997.
23. O. Küçük. The Hash Function Hamsi, 2009.
24. G. Leurent, C. Bouillaguet, and P.-A. Fouque. SIMD Is a Message Digest, 2009.
25. S. A. Manavski. CUDA Compatible GPU as an Efficient Hardware Accelerator for

AES Cryptography. In ICSPC 2007, pages 65–68. IEEE, November 2007.
26. S. Marechal. Advances in password cracking. Journal in Computer Virology,

4(1):73–81, 2008.
27. NIST. FIPS-197: Advanced Encryption Standard (AES), 2001.

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
28. NIST. Secure hash standard. FIPS 180-2, http://www.itl.nist.gov/fipspubs/fip180-

2.htm, August 2002.
29. NIST. Announcing request for candidate algorithm nominations for a new cryp-

tographic hash algorithm (SHA-3) family. Technical report, Department of Com-
merce, http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf,
November 2007.

30. NVIDIA. NVIDIA Compute. PTX: Parallel Thread Execution, March 2008.
31. NVIDIA. NVIDIA CUDA Programming Guide 2.3, 2009.
32. NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.

Whitepaper, September 2009.
33. D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software AES encryption.

In FSE 2010, volume 6147 of LNCS, pages 75–93, 2010.
34. D. Patterson and J. Hennessy. Computer organization and design: the hard-

ware/software interface. Morgan Kaufmann, 2008.
35. A. Regenscheid, R. Perlner, S. jen Chang, J. Kelsey, M. Nandi, and S. Paul. Sta-

tus report on the first round of the SHA-3 cryptographic hash algorithm compe-
tition. Technical Report 7620, NIST, http://csrc.nist.gov/groups/ST/hash/sha-
3/Round1/documents/sha3 NISTIR7620.pdf, September 2009.

36. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, 2002.
37. M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and

B. de Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In Crypto 2009, volume 5677 of LNCS, pages 55–69, 2009.

38. R. Szerwinski and T. Güneysu. Exploiting the power of GPUs for asymmetric
cryptography. In CHES 2008, volume 5154 of LNCS, pages 79–99, 2008.

39. O. Takahashi, R. Cook, S. Cottier, S. H. Dhong, B. Flachs, K. Hirairi, A. Kawa-
sumi, H. Murakami, H. Noro, H. Oh, S. Onish, J. Pille, and J. Silberman. The
circuit design of the synergistic processor element of a Cell processor. In ICCAD
2005, pages 111–117. IEEE Computer Society, 2005.

40. H. Wu. The Hash Function JH, 2009.


