
Fair and Comprehensive Methodology for
Comparing Hardware Performance of Fourteen
Round Two SHA-3 Candidates using FPGAs?

Kris Gaj, Ekawat Homsirikamol, and Marcin Rogawski

ECE Department, George Mason University, Fairfax, VA 22030, U.S.A.
{kgaj,ehomsiri,mrogawsk}@gmu.edu

http://cryptography.gmu.edu

Abstract. Performance in hardware has been demonstrated to be an
important factor in the evaluation of candidates for cryptographic stan-
dards. Up to now, no consensus exists on how such an evaluation should
be performed in order to make it fair, transparent, practical, and ac-
ceptable for the majority of the cryptographic community. In this pa-
per, we formulate a proposal for a fair and comprehensive evaluation
methodology, and apply it to the comparison of hardware performance
of 14 Round 2 SHA-3 candidates. The most important aspects of our
methodology include the definition of clear performance metrics, the de-
velopment of a uniform and practical interface, generation of multiple
sets of results for several representative FPGA families from two major
vendors, and the application of a simple procedure to convert multiple
sets of results into a single ranking.

Keywords: benchmarking, hash functions, SHA-3, FPGA.

1 Introduction and Motivation

Starting from the Advanced Encryption Standard (AES) contest organized by
NIST in 1997-2000 [1], open contests have become a method of choice for select-
ing cryptographic standards in the U.S. and over the world. The AES contest in
the U.S. was followed by the NESSIE competition in Europe [2], CRYPTREC
in Japan, and eSTREAM in Europe [3].

Four typical criteria taken into account in the evaluation of candidates are:
security, performance in software, performance in hardware, and flexibility. While
security is commonly recognized as the most important evaluation criterion, it is
also a measure that is most difficult to evaluate and quantify, especially during
a relatively short period of time reserved for the majority of contests. A typical
outcome is that, after eliminating a fraction of candidates based on security
flaws, a significant number of remaining candidates fail to demonstrate any easy
? This work has been supported in part by NIST through the Recovery Act

Measurement Science and Engineering Research Grant Program, under contract no.
60NANB10D004.

2 K. Gaj, E. Homsirikamol, and M. Rogawski

to identify security weaknesses, and as a result are judged to have adequate
security.

Performance in software and hardware are next in line to clearly differentiate
among the candidates for a cryptographic standard. Interestingly, the differences
among the cryptographic algorithms in terms of hardware performance seem to
be particularly large, and often serve as a tiebreaker when other criteria fail
to identify a clear winner. For example, in the AES contest, the difference in
hardware speed between the two fastest final candidates (Serpent and Rijndael)
and the slowest one (Mars) was by a factor of seven [1][4]; in the eSTREAM
competition the spread of results among the eight top candidates qualified to the
final round was by a factor of 500 in terms of speed (Trivium x64 vs. Pomaranch),
and by a factor of 30 in terms of area (Grain v1 vs. Edon80) [5][6].

At this point, the focus of the attention of the entire cryptographic commu-
nity is on the SHA-3 contest for a new hash function standard, organized by
NIST [7][8]. The contest is now in its second round, with 14 candidates remain-
ing in the competition. The evaluation is scheduled to continue until the second
quarter of 2012.

In spite of the progress made during previous competitions, no clear and
commonly accepted methodology exists for comparing hardware performance
of cryptographic algorithms [9]. The majority of the reported evaluations have
been performed on an ad-hoc basis, and focused on one particular technology and
one particular family of hardware devices. Other pitfalls included the lack of a
uniform interface, performance metrics, and optimization criteria. These pitfalls
are compounded by different skills of designers, using two different hardware de-
scription languages, and no clear way of compressing multiple results to a single
ranking. In this paper, we address all the aforementioned issues, and propose
a clear, fair, and comprehensive methodology for comparing hardware perfor-
mance of SHA-3 candidates and any future algorithms competing to become a
new cryptographic standard.

The hardware evaluation of SHA-3 candidates started shortly after announc-
ing the specifications and reference software implementations of 51 algorithms
submitted to the contest [7][8][10]. The majority of initial comparisons were lim-
ited to less than five candidates, and their results have been published at [10].
The more comprehensive efforts became feasible only after NISTs announcement
of 14 candidates qualified to the second round of the competition in July 2009.
Since then, two comprehensive studies have been reported in the Cryptology
ePrint Archive [11][12]. The first, from the University of Graz, has focused on
ASIC technology, the second from two institutions in Japan, has focused on the
use of the FPGA-based SASEBO-GII board from AIST, Japan. Although both
studies generated quite comprehensive results for their respective technologies,
they did not quite address the issues of the uniform methodology, which could
be accepted and used by a larger number of research teams. Our study is in-
tended to fill this gap, and put forward the proposal that could be evaluated
and commented on by a larger cryptographic community.

Fair and Comprehensive Methodology for Comparing Hardware Performance 3

2 Choice of a Language, FPGA Devices, and Tools

Out of two major hardware description languages used in industry, VHDL and
Verilog HDL, we choose VHDL. We believe that either of the two languages is
perfectly suited for the implementation and comparison of SHA-3 candidates, as
long as all candidates are described in the same language. Using two different
languages to describe different candidates may introduce an undesired bias to
the evaluation.

FPGA devices from two major vendors, Xilinx and Altera, dominate the mar-
ket with about 90% of the market share. We therefore feel that it is appropriate
to focus on FPGA devices from these two companies. In this study, we have
chosen to use seven families of FPGA devices from Xilinx and Altera. These
families include two major groups, those optimized for minimum cost (Spartan
3 from Xilinx, and Cyclone II and III from Altera) and those optimized for high
performance (Virtex 4 and 5 from Xilinx, and Stratix II and III from Altera).
Within each family, we use devices with the highest speed grade, and the largest
number of pins.

As CAD tools, we have selected tools developed by FPGA vendors them-
selves: Xilinx ISE Design Suite v. 11.1 (including Xilinx XST, used for synthesis)
and Altera Quartus II v. 9.1 Subscription Edition Software.

3 Performance Metrics for FPGAs

Speed. In order to characterize the speed of the hardware implementation of
a hash function, we suggest using Throughput, understood as a throughput
(number of input bits processed per unit of time) for long messages. To be
exact, we define Throughput using the following formula:

Throughput =
block size

T · (HTime(N + 1) − HTime(N))
(1)

where block size is a message block size, characteristic for each hash function
(as defined in the function specification, and shown in Table 3), HTime(N) is
a total number of clock cycles necessary to hash an N-block message, T is a
clock period, different and characteristic for each hardware implementation of a
specific hash function.

In this paper, we provide the exact formulas for HTime(N) for each SHA-3
candidate, and values of f = 1/T for each algorithm–FPGA device pair (see
Tables 3 and 6).

For short messages, it is more important to evaluate the total time required
to process a message of a given size (rather than throughput). The size of the
message can be chosen depending on the requirements of an application. For
example, in the eBASH study of software implementations of hash functions,
execution times for all sizes of messages, from 0-bytes (empty message) to 4096
bytes, are reported, and five specific sizes 8, 64, 576, 1536, and 4096 are featured

4 K. Gaj, E. Homsirikamol, and M. Rogawski

in the tables [13]. The generic formulas we include in this paper (see Table 3)
allow the calculation of the execution times for any message size.

In order to characterize the capability of a given hash function implementa-
tion for processing short messages, we present in this study the comparison of
execution times for an empty message (one block of data after padding) and a
100-byte (800-bits) message before padding (which becomes equivalent for ma-
jority, but not all, of the investigated functions to 1024 bits after padding).

Resource Utilization/Area. Resource utilization is particularly difficult to
compare fairly in FPGAs, and is often a source of various evaluation pitfalls.
First, the basic programmable block (such as CLB slice in Xilinx FPGAs) has
a different structure and different capabilities for various FPGA families from
different vendors. Taking this issue into account, we suggest avoiding any com-
parisons across family lines. Secondly, all modern FPGAs include multiple ded-
icated resources, which can be used to implement specific functionality. These
resources include Block RAMs (BRAMs), multipliers (MULs), and DSP units
in Xilinx FPGAs, and memory blocks, multipliers, and DSP units in Altera FP-
GAs. In order to implement a specific operation, some of these resources may be
interchangable, but there is no clear conversion factor to express one resource in
terms of the other.

Therefore, we suggest in the general case, treating resource utilization as a
vector, with coordinates specific to a given FPGA family. For example,

Resource UtilizationSpartan3 = (#CLBslices, #BRAMs, #MULs) (2)

Taking into account that vectors cannot be easily compared to each other,
we have decided to opt out of using any dedicated resources in the hash function
implementations used for our comparison. Thus, all coordinates of our vectors,
other than the first one have been forced (by choosing appropriate options of the
synthesis and implementation tools) to be zero. This way, our resource utilization
(further referred to as Area) is characterized using a single number, specific to
the given family of FPGAs, namely the number of CLB slices (#CLBslices) for
Xilinx FPGAs, the number of Logic Elements (#LE) for Cyclone II and Cyclone
III, and the number of Adaptive Look-Up Tables (#ALUT) in Stratix II and
Stratix III.

4 Uniform Interface

In order to remove any ambiguity in the definition of our hardware cores for
SHA-3 candidates, and in order to make our implementations as practical as
possible, we have developed an interface shown in Fig. 1a, and described below.
In a typical scenario, the SHA core is assumed to be surrounded by two standard
FIFO modules: Input FIFO and Output FIFO, as shown in Fig. 1b. In this
configuration, SHA core is an active module, while a surrounding logic (FIFOs)
is passive. Passive logic is much easier to implement, and in our case is composed
of standard logic components, FIFOs, available in any major library of IP cores.

Fair and Comprehensive Methodology for Comparing Hardware Performance 5

w	

SHA	 core	

din	 dout	

src_ready	

src_read	

dst_ready	

dst_write	

clk	 rst	

clk	 rst	

w	

a)	

fifoin_empty	

fifoin_read	

idata	
w	 w	

odata	

fifoout_full	

fifoout_write	

fifoin_full	

fifoin_write	

fifoout_empty	

fifoout_read	

Input	
FIFO	

SHA	 core	

clk	 rst	

ext_idata	

w	

ext_odata	
din	 dout	

src_ready	

src_read	

dst_ready	

dst_write	

din	 dout	

full	 empty	

write	 read	

Output	
FIFO	

din	 dout	

full	 empty	

write	 read	

w	

clk	 rst	 clk	 rst	

clk	 rst	 clk	 rst	 clk	 rst	
b)	

Fig. 1. a) Input/output interface of a SHA core. b) A typical configuration of a SHA
core connected to two surrounding FIFOs.

Each FIFO module generates signals empty and full, which indicate that
the FIFO is empty and/or full, respectively. Each FIFO accepts control signals
write and read, indicating that the FIFO is being written to and/or read from,
respectively.

The aforementioned assumptions about the use of FIFOs as surrounding
modules are very natural and easy to meet. For example, if a SHA core imple-
mented on an FPGA communicates with an outside world using PCI, PCI-X,
or PCIe interface, the implementations of these interfaces most likely already
include Input and Output FIFOs, which can be directly connected to the SHA
core. If a SHA core communicates with another core implemented on the same
FPGA, then FIFOs are often used on the boundary between the two cores in
order to accommodate for any differences between the rate of generating data
by one core and the rate of accepting data by another core.

Additionally, the inputs and outputs of our proposed SHA core interface do
not need to be necessarily generated/consumed by FIFOs. Any circuit that can
support control signals src ready and src read can be used as a source of data.
Any circuit that can support control signals dst ready and dst write can be used
as a destination for data.

The exact format of an input to the SHA core, for the case of pre-padded
messages, is shown in Fig. 2. Two scenarios of operation are supported. In the
first scenario, the message bitlength after padding is known in advance and is
smaller than 2w. In this scenario, shown in Fig. 2a, the first word of input rep-
resents message length after padding, expressed in bits. This word has the least
significant bit, representing a flag called last, set to one. This word is followed
by the message length before padding. This value is required by several SHA-
3 algorithms using internal counters (such as BLAKE, ECHO, Shavite-3, and
Skein), even if padding is done outside of the SHA core. These two control words
are followed by all words of the message.

The second format, shown in Fig. 2b, is used when either message length
is not known in advance, or it is greater than 2w. In this case, the message is
processed in segments of data denoted as seg 0, seg 1,. . . ,seg n-1. For the ease of
processing data by the hash core, the size of the segments, from seg 0 to seg n-2

6 K. Gaj, E. Homsirikamol, and M. Rogawski

msg_len | last = 1

message

w bits

.	

.	

.	

seg_0_len | last=0

seg_0

w bits

seg_1_len | last=0

seg_1

seg_n-1_len | last=1

seg_n-1

a)

msg_len_bp

seg_n-1_len_bp

b)

Fig. 2. Format of input data for two different operation scenarios: a) with message
bitlength known in advance, and b) with message bitlength unknown in advance. No-
tation: msg len – message length after padding, msg len bp – message length before
padding, seg i len – segment i length after padding, seg i len bp – segment i length
before padding, last – a one-bit flag denoting the last segment of the message (or
one-segment message), “|” – bitwise OR.

is required to be always an integer multiple of the block size b, and thus also of
the word size w. The least significant bit of the segment length expressed in bits
is thus naturally zero, and this bit, treated as a flag called last, can be used to
differentiate between the last segment and all previous segments of the message.
The last segment before padding can be of arbitrary length < 2w. Scenario a) is a
special case of scenario b). In case the SHA core supports padding, the protocol
can be even simpler, as explained in [14].

5 Optimization Target and Design Methodology

Our study is performed using the following assumptions. Only the SHA-3 can-
didate variants with a 256-bit output are compared in this paper. Padding is
assumed to be done outside of the hash cores (e.g., in software). All investigated
hash functions have very similar padding schemes, which would lead to similar
absolute area overhead if implemented as a part of the hardware core.

Only the primary mode of operation is supported for all functions. Special
modes, such as tree hashing or MAC mode are not implemented. The salt val-
ues are fixed to all zeros in all SHA-3 candidates supporting this special input
(namely BLAKE, ECHO, SHAvite-3, and Skein).

We believe that the choice of the primary optimization target is one of the
most important decisions that needs to be made before the start of the com-
parison. The optimization target should drive the design process of every SHA-3
candidate, and it should also be used as a primary factor in ranking the obtained
SHA-3 cores. The most common choices are: Maximum Throughput, Minimum
Latency, Minimum Area, Throughput to Area Ratio, etc.

Fair and Comprehensive Methodology for Comparing Hardware Performance 7

Our choice is the Throughput to Area Ratio, where Throughput is defined as
Throughput for long messages, and Area is expressed in terms of the number of
basic programmable logic blocks specific to a given FPGA family. This choice has
multiple advantages. First, it is practical, as hardware cores are typically applied
in situations, where the size of the processed data is significant and the speed of
processing is essential. Otherwise, the input/output latency overhead associated
with using a hardware accelerator dominates the total processing time, and the
cost of using dedicated hardware (FPGA) is not justified. Optimizing for the best
ratio provides a good balance between the speed and the cost of the solution.

Secondly, this optimization criterion is a very reliable guide throughout the
entire design process. At every junction where the decisions must be made,
starting from the choice of a high-level hardware architecture down to the choice
of the particular FPGA tool options, this criterion facilitates the decision process,
leaving very few possible paths for further investigation.

On the contrary, optimizing for Throughput alone, leads to highly unrolled
hash function architectures, in which a relatively minor improvement in speed
is associated with a major increase in the circuit area. In hash function cores,
latency, defined as a delay between providing an input and obtaining the corre-
sponding output, is a function of the input size. Since various sizes may be most
common in specific applications, this parameter is not a well-defined optimization
target. Finally, optimizing for area leads to highly sequential designs, resembling
small general-purpose microprocessors, and the final product depends highly on
the maximum amount of area (e.g., a particular FPGA device) assumed to be
available.

Our design of all 14 SHA-3 candidates followed an identical design method-
ology. Each SHA core is composed of the Datapath and the Controller. The
Controller is implemented using three main Finite State Machines, working in
parallel, and responsible for the Input, Main Processing, and the Output, re-
spectively. As a result, each circuit can simultaneously perform the following
three tasks: output hash value for the previous message, process a current block
of data, and read the next block of data. The parameters of the interface are
selected in such a way that the time necessary to process one block of data is
always larger or equal to the time necessary to read the next block of data. This
way, the processing of long streams of data can happen at full speed, without any
visible input interface overhead. The finite state machines responsible for input
and output are almost identical for all hash function candidates; the third state
machine, responsible for main data processing, is based on a similar template.
The similarity of all designs and reuse of common building blocks assures a high
fairness of the comparison.

The design of the Datapath starts from the high level architecture. At this
point, the most complex task that can be executed in an iterative fashion, with
the minimum overhead associated with multiplexing inputs specific to a given
iteration round, is identified. The proper choice of such a task is very important,
as it determines both the number of clock cycles per block of the message and
the circuit critical path (minimum clock period).

8 K. Gaj, E. Homsirikamol, and M. Rogawski

Table 1. Main iterative tasks of the hardware architectures of SHA-3 candidates op-
timized for the maximum Throughput to Area ratio

Function Main Iterative Task Function Main Iterative Task

BLAKE Gi..Gi+3 JH Round function R8

BMW entire function Keccak Round R

CubeHash one round Luffa The Step Function, Step

ECHO AES round/AES round/ Shabal Two iterations
BIG.SHIFTROWS, BIG.MIXCOLUMNS of the main loop

Fugue 2 subrounds SHAvite-3 AES round
(ROR3, CMIX, SMIX)

Groestl Modified AES round SIMD 4 steps of the
compression function

Hamsi Truncated Non-Linear Skein 8 rounds of
Permutation P Threefish-256

Table 2. Major operations of SHA-3 candidates (other than permutations, fixed shifts
and fixed rotations). mADDn denotes a multioperand addition with n operands.

Function NTT Linear S-box GF MUL MUL mADD ADD Boolean
code /SUB

BLAKE mADD3 ADD XOR

BMW mADD17 ADD,SUB XOR

CubeHash ADD XOR

ECHO AES 8x8 x02, x03 XOR

Fugue AES 8x8 x04..x07 XOR

Groestl AES 8x8 x02..x07 XOR

Hamsi LC[128, Serpent XOR
16,70] 4x4

JH Serpent x2, x5 XOR
4x4

Keccak NOT,AND,XOR

Luffa 4x4 x2 XOR

Shabal x3, x5 ADD,SUB NOT,AND,XOR

SHAvite-3 AES 8x8 x02, x03 NOT,XOR

SIMD NTT128 x185, x233 mADD3 ADD NOT,AND,OR

Skein ADD XOR

SHA-256 mADD5 NOT,AND,XOR

It should be stressed that the choice of the most complex task that can be
executed in an iterative fashion should not follow blindly the specification of a
function. In particular, quite often one round (or one step) from the description
of the algorithm is not the most suitable component to be iterated in hardware.
Either multiple rounds (steps) or fractions thereof may be more appropriate.
In Table 1 we summarize our choices of the main iterative tasks of SHA-3 can-
didates. Each such task is implemented as combinational logic, surrounded by
registers.

The next step is an efficient implementation of each combinational block
within the DataPath. In Table 2, we summarize major operations of all SHA-
3 candidates that require logic resources in hardware implementations. Fixed
shifts, fixed rotations, and other more complex permutations are omitted because

Fair and Comprehensive Methodology for Comparing Hardware Performance 9

they appear in all candidates and require only routing resources (programmable
interconnects). The most complex out of logic operations are the Number Theo-
retic Transform (NTT) [15] in SIMD, linear code (LC) [16] in Hamsi, and basic
operations of AES (8x8 AES S-box and multiplication by a constant in the Ga-
lois Field GF(28)) in ECHO, Fugue, Groestl, and SHAvite-3; and multioperand
additions in BLAKE, BMW, SIMD, and SHA-256.

For each of these operations we have implemented at least two alternative
architectures. NTT was optimized by using a 7-stage Fast Fourier Transform
(FFT) [15]. In Hamsi, the linear code was implemented using both logic (matrix
by vector multiplications in GF(4)), and using look-up tables. AES 8x8 S-boxes
(SubBytes) were implemented using both look-up tables (stored in distributed
memories), and using logic only (following method described in [17], Section
10.6.1.3). Multi-operand additions were implemented using the following four
methods: carry save adders (CSA), tree of two operand adders, parallel counter,
and a “+” in VHDL. Finally, integer multiplications by 3 and 5 in Shabal have
been replaced by a fixed shift and addition.

All optimized implementations of basic operations have been applied uni-
formly to all SHA-3 candidates. In case the initial testing did not provide a
strong indication of superiority of one of the alternative methods, the entire
hash function unit was implemented using two alternative versions of the basic
operation code, and the results for a version with the better throughput to area
ratio have been listed in the result tables.

All VHDL codes have been thoroughly verified using a universal testbench,
capable of testing an arbitrary hash function core that follows interface described
in Section 4 [18]. A special padding script was developed in Perl in order to pad
messages included in the Known Answer Test (KAT) files distributed as a part of
each candidates submission package. An output from the script follows a similar
format as its input, but includes apart from padding bits also the lengths of the
message segments, defined in Section 4, and shown schematically in Fig. 2b. The
generation of a large number of results was facilitated by an open source tool
ATHENa (Automated Tool for Hardware EvaluatioN) [18]. This benchmarking
environment was also used to optimize requested synthesis and implementation
frequencies and other tool options.

6 Results

In Table 3, we summarize the major parameters of our hardware architectures for
all 14 SHA-3 candidates, as well as the current standard SHA-256. Block size, b,
is a feature of the algorithm, and is described in the specification of each SHA-3
candidate. The I/O Data Bus Width, w, is a feature of our interface described in
Section 4. It is the size of the data buses, din and dout, used to connect the SHA
core with external logic (such as Input and Output FIFOs). The parameter w
has been chosen to be equal to 64, unless there was a compelling reason to make
it smaller. The value of 64 was considered to be small enough so that the SHA
cores fit in all investigated FPGAs (even the smallest ones) without exceeding

10 K. Gaj, E. Homsirikamol, and M. Rogawski

Table 3. Timing characteristics of our hardware architectures of SHA-3 candidates.
Notation: T – minimum clock period in ns (specific for each algorithm and each FPGA
device, see Table 6), N - Number of blocks of an input message after padding.

Function Block size, b I/O Data Bus Time to hash Throughput
[bits] Width, w N message blocks [Mbit/s]

[bits] [clock cycles]

BLAKE 512 64 2+8+20·N+4 512/(20·T)

BMW 512 64 2+d8/8e+N+d4/8e 512/T

CubeHash 256 64 2+4+16·N+160+4 256/(16·T)

ECHO 1536 64 3+24+27·N+4 1536/(27·T)

Fugue 32 32 2+N+18+8 32/T

Groestl 512 64 3+8+21·N+4 512/(21·T)

Hamsi 32 32 3+1+3·(N-1)+6+8 32/(3·T)

JH 512 64 3+8+36·N+4 512/(36·T)

Keccak 1088 64 3+17+24·N+4 1088/(24·T)

Luffa 256 64 3+4+9·N+9+4 256/(9·T)

Shabal 512 64 3+8+1+25·N+3·25+4 512/(25·T)

Shavite-3 512 64 3+8+37·N+4 512/(37·T)

SIMD 512 64 3+8+8+9·N+4 512/(9·T)

Skein 256 64 2+4+9·N+4 256/(9·T)

SHA-256 512 32 2+1+65·N+8 512/(65·T)

the maximum number of user pins. At the same time, setting this value to any
smaller power of two (e.g., 32) would increase the time necessary to load input
data from the input FIFO and store the hash value to the output FIFO. In some
cases, it would also mean that the time necessary for processing a single block
of data would be smaller than the time of loading the next block of data, which
would decrease the overall throughput. The only exceptions are made in case of
Fugue and Hamsi, which have a block size b equal to 32 bits. Additionally, in the
old standard SHA-256, the input/output data bus is set naturally to 32-bits, as
the message scheduling unit accepts only one word of data per clock cycle.

In case of BMW, an additional faster i/o clock was used on top of the main
clock shown in Fig. 1a. This faster clock is driving input/output interfaces of the
SHA core, as well as surrounding FIFOs. The ratio of the i/o clock frequency
to the main clock frequency was selected to be 8, so the entire block of message
(512 bits) can be loaded in a single clock cycle of the main clock (8 cycles of the
fast i/o clock).

The forth column of Table 3 contains the detailed formulas for the number
of clock cycles necessary to hash N blocks of the message after padding. The
formulas include the time necessary to load the message length, load input data
from the FIFO, perform all necessary initializations, perform main processing,
perform all required finalizations, and then send the result to the output FIFO.
Finally, the last column contains the formula for the circuit throughput for long
messages as defined by equation (1).

Fair and Comprehensive Methodology for Comparing Hardware Performance 11

In Table 4, we list absolute values of the major parameters describing our
implementations for one particular FPGA family, Xilinx Virtex 5. According to
this table the highest throughput to area ratio is achieved by Keccak, Luffa,
Groestl, and CubeHash. The highest absolute throughput is accomplished by
Keccak, ECHO, Groestl, Luffa, and BMW. The smallest hashing time for an
empty message is achieved by Hamsi, Groestl, Luffa, and JH. For a 100 byte
message, the list of the first four candidates changes to Groestl, Luffa, Keccak,
and JH. As one can see, the execution time for small messages is not strongly cor-
related with the throughput for long messages, and therefore it must be treated
as a separate evaluation criterion (as discussed in Section 3).

In Table 5, we summarize the absolute results obtained for our implemen-
tation of the current standard SHA-256. The results are repeated for all seven
FPGA families used in our study. As hardware architecture, we have selected the
architecture by Chaves et al., presented at CHES 2006 [19]. This architecture has
been specifically optimized for the maximum throughput to area ratio [19][20],
and is considered one of the best known SHA-2 architectures of this type.

In Table 6, the maximum clock frequencies are listed for each pair: hash
algorithm–FPGA family. These frequencies can be used together with the for-
mulas provided in Table 3, in order to compute the exact execution times of each
algorithm (depending on the number of the message blocks, N) and the values
of the throughputs for long messages.

In the following analysis, the absolute values of the three major performance
measures: throughput, area, and the throughput to area ratio, for all SHA-3
candidates, have been normalized by dividing them by the corresponding values
for the reference implementation of SHA-256. The corresponding ratios, referred
to as normalized throughput, normalized area, and normalized throughput to
area ratios are summarized in Tables 7, 8, and 9. The Overall column represents
the geometric mean of all normalized results available for a given algorithm.
The candidate algorithms are ranked based on the value of this Overall metric,
representing the performance for a wide range of different FPGA families.

Interestingly, based on Table 9, only three candidates, Keccak, Luffa, and
CubeHash outperform SHA-256 in terms of the throughput to area ratio. The
additional four candidates, Hamsi, JH, Groestl, and BLAKE, have the overall
normalized ratio higher than 0.5.

In Fig. 3, we present a two dimensional diagram, with Normalized Area on
the X-axis and Normalized Throughput on the Y-axis. The algorithms seem
to fall into several major groups. Group with the high normalized throughput
(>5), medium normalized area (<4), and the high normalized throughput to
area ratio (>1.5), include Keccak and Luffa. Groestl, BMW, and ECHO, have all
high normalized throughput (>4), but their normalized area varies significantly
from about 6 in case of Groestl, through 12 for BMW, up to over 25 in case of
ECHO. SIMD is both relatively slow (less then 2 times faster than SHA-256)
and big (more than 20 times bigger than SHA-256). The last group includes 8
candidates covering the range of the normalized throughputs from 0.8 to 2.7,
and the normalized areas from 1.9 to 4.1.

12 K. Gaj, E. Homsirikamol, and M. Rogawski

Table 4. Major performance measures of SHA-3 candidates when implemented in
Xilinx Virtex 5 FPGAs. Notation: Tempty – Time to hash an empty message (after this
message is padded in software), T100B – Time to hash a 100-byte message (after this
message is padded in software).

Function Clk Freq Area Throughput Throughput Tempty T100B

[MHz] [CLB slices] [Mbits/s] to Area Ratio [ns] [ns]

BLAKE 102.0 1851 2610.6 1.4 333.4 529.5

BMW 10.9 4400 5576.7 1.3 459.1 550.9

CubeHash 199.4 730 3189.8 4.4 922.9 1163.7

ECHO 178.1 6453 10133.4 1.6 308.8 308.8

Fugue 98.5 956 3151.2 3.3 304.6 558.5

Groestl 355.9 1884 8676.5 4.6 101.2 160.2

Hamsi 248.1 946 2646.2 2.8 96.7 399.1

JH 282.2 1275 4013.5 3.1 180.7 308.3

Keccak 238.4 1229 10806.5 8.8 201.4 201.4

Luffa 281.5 1154 8008.0 6.9 103.0 198.9

Shabal 128.1 1266 2624.0 2.1 905.4 1100.5

SHAvite-3 208.6 1130 2885.9 2.6 249.3 426.8

SIMD 40.9 9288 2325.9 0.3 635.9 1076.2

Skein 49.8 1312 1416.1 1.1 381.6 924.0

SHA-256 207.0 433 1630.5 3.8 352.7 1294.7

Table 5. Results for the reference design of SHA-256

Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III

Max. Clk Freq. 90.8 183.0 207.0 111.0 126.9 158.1 212.8
[MHz]

Throughput 715.6 1441.6 1630.5 874.7 999.3 1245.2 1676.3
[Mbit/s]

Area 838 838 433 1655 1653 973 963

Throughput 0.85 1.72 3.77 0.53 0.60 1.28 1.74
to Area Ratio

Table 6. Clock frequencies of all SHA-3 candidates and SHA-256 expressed in MHz
(post placing and routing)

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III

BLAKE 41.87 79.82 101.98 52.40 52.37 85.77 109.21

BMW 4.19 12.37 10.89 7.69 8.41 13.45 16.45

CubeHash 84.70 187.58 199.36 115.67 133.83 179.40 237.64

ECHO 52.10 131.90 176.24 N/A 105.70 109.50 164.20

Fugue 39.67 72.86 98.47 53.25 60.71 83.75 123.64

Groestl 105.72 234.74 355.87 132.00 148.46 216.73 270.27

Hamsi 90.37 200.88 248.08 148.83 183.52 193.87 294.81

JH 119.36 221.58 282.20 173.43 215.89 267.45 364.30

Keccak 96.32 202.47 238.38 165.07 174.28 198.65 296.30

Luffa 129.84 260.28 281.53 171.64 173.43 219.88 307.31

Shabal 30.99 114.03 128.12 69.57 68.76 105.40 126.87

SHAvite-3 84.60 152.23 208.55 95.40 114.40 170.00 255.00

SIMD 17.20 29.25 40.89 21.66 23.97 37.07 47.40

Skein 18.22 38.16 49.79 22.30 25.14 38.89 52.29

SHA-512 90.84 183.02 207.00 111.04 126.86 158.08 212.81

Fair and Comprehensive Methodology for Comparing Hardware Performance 13

Table 7. Throughput of all SHA-3 candidates normalized to the throughput of SHA-
256. N/A means that the design did not fit within any device of a given family.

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall

Keccak 6.10 6.37 6.63 8.56 7.91 7.23 8.01 7.21

ECHO 4.14 5.21 6.15 N/A 6.02 5.00 5.57 5.30

Luffa 5.16 5.14 4.91 5.58 4.94 5.02 5.21 5.13

Groestl 3.60 3.97 5.32 3.68 3.62 4.24 3.93 4.02

BMW 3.00 4.39 3.42 4.50 4.31 5.53 5.02 4.48

JH 2.37 2.19 2.46 2.82 3.07 3.05 3.09 2.70

CubeHash 1.89 2.08 1.96 2.12 2.14 2.31 2.27 2.10

Fugue 1.77 1.62 1.93 1.95 1.94 2.15 2.36 1.95

SHAvite-3 1.64 1.46 1.77 1.51 1.58 1.89 2.11 1.70

Hamsi 1.35 1.49 1.62 1.82 1.96 1.66 1.88 1.67

BLAKE 1.50 1.42 1.60 1.53 1.34 1.76 1.67 1.54

Shabal 0.89 1.62 1.61 1.63 1.41 1.73 1.55 1.46

SIMD 1.37 1.15 1.43 1.41 1.36 1.69 1.61 1.38

Skein 0.72 0.75 0.87 0.73 0.72 0.89 0.89 0.79

Table 8. Area (utilization of programmable logic blocks) of all SHA-3 candidates
normalized to the area of SHA-256

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall

CubeHash 1.81 1.81 1.69 1.87 1.88 1.99 2.01 1.86

Hamsi 2.17 2.16 2.18 1.92 1.94 2.40 2.41 2.16

BLAKE 4.96 4.87 4.27 2.17 2.16 2.00 2.04 2.96

Luffa 3.28 3.29 2.67 2.74 2.77 3.40 3.43 3.07

Skein 3.41 3.45 3.03 3.28 3.34 3.68 3.74 3.41

Shabal 3.75 3.84 2.92 3.67 3.68 3.90 3.74 3.63

Keccak 3.97 3.99 2.84 3.77 3.62 4.20 4.63 3.82

JH 4.84 4.78 2.94 4.37 4.31 3.18 3.24 3.88

SHAvite-3 4.91 4.91 2.61 5.68 5.64 2.57 2.59 3.89

Fugue 4.26 4.44 2.21 5.85 5.87 3.70 3.73 4.11

Groestl 15.96 16.01 4.35 4.60 4.50 3.21 3.22 5.86

BMW 12.07 13.45 10.16 12.00 12.02 12.99 13.12 12.24

SIMD 20.97 19.99 21.45 18.53 18.57 23.03 23.24 20.39

ECHO 30.87 28.48 14.90 N/A 39.77 22.29 22.52 25.29

Table 9. Throughput to Area Ratio of all SHA-3 candidates normalized to the through-
put to area ratio of SHA-256

Function Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall

Keccak 1.54 1.60 2.34 2.27 2.18 1.72 1.73 1.89

Luffa 1.57 1.56 1.84 2.04 1.78 1.48 1.52 1.67

CubeHash 1.04 1.15 1.16 1.13 1.14 1.16 1.13 1.13

Hamsi 0.62 0.69 0.74 0.94 1.01 0.69 0.78 0.77

JH 0.49 0.46 0.84 0.65 0.71 0.96 0.95 0.70

Groestl 0.23 0.25 1.22 0.80 0.81 1.32 1.22 0.69

BLAKE 0.30 0.29 0.37 0.71 0.62 0.88 0.82 0.52

Fugue 0.42 0.36 0.88 0.33 0.33 0.58 0.63 0.47

SHAvite-3 0.33 0.30 0.68 0.27 0.28 0.74 0.81 0.44

Shabal 0.24 0.42 0.55 0.44 0.38 0.44 0.41 0.40

BMW 0.25 0.33 0.34 0.38 0.36 0.43 0.38 0.37

Skein 0.21 0.22 0.29 0.22 0.21 0.24 0.24 0.23

ECHO 0.13 0.18 0.41 N/A 0.15 0.22 0.25 0.21

SIMD 0.07 0.06 0.07 0.08 0.07 0.07 0.07 0.07

14 K. Gaj, E. Homsirikamol, and M. Rogawski

Fig. 3. Relative performance of all Round 2 SHA-3 Candidates in terms of the over-
all normalized throughput and the overall normalized area (with SHA-256 used as a
reference point).

7 Conclusions and Future Work

Our evaluation methodology, applied to 14 Round 2 SHA-3 candidates, has
demonstrated large differences among competing candidates. The ratio of the
best result to the worst result was equal to about 9 in terms of the throughput
(Keccak vs. Skein), over 13 times in terms of area (CubeHash vs. ECHO), and
about 27 in terms of our primary optimization target, the throughput to area
ratio (Keccak vs. SIMD). Only three candidates, Keccak, Luffa, and CubeHash,
have demonstrated the throughput to area ratio better than the current standard
SHA-256. Out of these three algorithms, Keccak and Luffa have also demon-
strated very high throughputs, while CubeHash outperformed other candidates
in terms of minimum area. All candidates except Skein outperform SHA-256 in
terms of the throughput, but at the same time none of them matches SHA-256
in terms of the area.

Future work will include the evaluation of the remaining variants of SHA-3
candidates (such as variants with 224, 384, and 512 bit outputs, and an all-in-one
architecture). The uniform padding units will be added to each SHA core, and
their cost estimated. We will also investigate the influence of synthesis tools from
different vendors (e.g., Synplify Pro from Synopsys). The evaluation may be also
extended to the cases of hardware architectures optimized for the minimum area
(cost), maximum throughput (speed), or minimum power consumption. Each
algorithm will be also evaluated in terms of its suitability for implementation
using dedicated FPGA resources, such embedded memories, dedicated multipli-
ers, and DSP units. Finally, an extension of our methodology to the standard-cell
ASIC technology will be investigated.

Fair and Comprehensive Methodology for Comparing Hardware Performance 15

Acknowledgments. The authors would like to acknowledge all students from
the Fall 2009 edition of the George Mason University course entitled “Digital
System Design with VHDL,” for conducting initial exploration of the design
space of all SHA-3 candidates.

References

1. Nechvatal, J., et al.: Report on the Development of the Advanced Encryption Stan-
dard (AES), http://csrc.nist.gov/archive/aes/round2/r2report.pdf

2. NESSIE, https://www.cosic.esat.kuleuven.be/nessie/
3. eSTREAM, http://www.ecrypt.eu.org/stream/
4. Gaj, K., Chodowiec, P.: Fast Implementation and Fair Comparison of the Final

Candidates for Advanced Encryption Standard Using Field Programmable Gate
Arrays. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 84-99. Springer,
Heidelberg (2001)

5. Hwang, D., Chaney, M., Karanam, S., Ton, N., Gaj, K.: Comparison of FPGA-
targeted Hardware Implementations of eSTREAM Stream Cipher Candidates. In:
State of the Art of Stream Ciphers Workshop, SASC 2008, pp. 151–162, Feb 2008

6. Good, T., Benaissa, M.: Hardware Performance of eStream Phase-III Stream Cipher
Candidates. In: State of the Art of Stream Ciphers Workshop, SASC 2008, pp. 163–
173, Feb 2008

7. SHA-3 Contest, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
8. SHA-3 Zoo, http://ehash.iaik.tugraz.at/wiki/TheSHA-3Zoo
9. Drimer S.: Security for Volatile FPGAs. Chapter 5: The Meaning and Reproducibil-

ity of FPGA Results. Ph.D. Dissertation, University of Cambridge, Computer Lab-
oratory, Nov 2009, uCAM-CL-TR-763

10. SHA-3 Hardware Implementations, http://ehash.iaik.tugraz.at/wiki/SHA-3_
Hardware_Implementations

11. Tilich, S., et al.: High-speed Hardware Implementations of Blake, Blue Mid-
night Wish, Cubehash, ECHO, Fugue, Groestl, Hamsi, JH, Keccak, Luffa, Shabal,
Shavite-3, SIMD, and Skein. Cryptology, ePrint Archive, Report 2009/510, 2009

12. Kobayashi, K., et al., : Evaluation of Hardware Performance for the SHA-3 Can-
didates Using SASEBO-GII. Cryptology, ePrint Archive, Report 2010/010, 2010

13. ECRYPT Benchmarking of Cryptographic Systems, http://bench.cr.yp.to
14. CERG GMU Group: Hardware Interface of a Secure Hash Algorithm (SHA),

http://cryptography.gmu.edu/athena/index.php?id=interfaces

15. Meyer-Baese, U.: Digital Signal Processing with Field Programmable Gate Arrays,
Chapters 6 and 7, pp. 343–475. Springer, 3rd ed. (2007)

16. van Lint, J. H.: Introduction to Coding Theory. Springer, 2nd ed. (1992)
17. Gaj, K., Chodowiec, P.: Cryptographic Engineering, Chapter 10, FPGA and ASIC

Implementations of AES, pp. 235–294. Springer, 2009
18. ATHENa Project Website, http://cryptography.gmu.edu/athena
19. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Improving SHA-2 Hardware

Implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 298–310. Springer, Heidelberg (2006)

20. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Cost Efficient SHA Hardware
Accelerators. IEEE Trans. Very Large Scale Integration Systems, vol. 16, 999–1008
(2008)

