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Abstract. A lot of improvements and optimizations for the hardware
implementation of SubBytes of Rijndael, in detail inversion in Fys have
been reported. Instead of the Rijndael original F,s, it is known that its
isomorphic tower field Fs2y2)2 has a more efficient inversion. For the
towerings, several kinds of bases such as polynomial and normal bases
can be used in mizture. Different from the meaning of this mizture of
bases, this paper proposes another mizture that contributes to the re-
duction of the critical path delay of SubBytes. To the F(,2)z—inversion
architecture, for example, the proposed mizture inputs and outputs ele-
ments represented with normal and polynomial bases, respectively.

1 Introduction

SubBytes of the Advanced Encryption Standard (AES), that is Rijndael, uses
arithmetic operations in Fss, especially inversion [8]. From the viewpoint of
hardware implementation, it is said that tower field technique efficiently works
and then a lot of efficient techniques have been reported [4,9]. In detail, instead
of the Rijndael original Fys , its isomorphic tower field F((»2)2)2 is efficiently ap-
plied for calculating an inversion in SubBytes. According to Canright’s work [2],
there are 432 possible combinations of the modular polynomials and bases for
constructing tower field F(s2)2)2. Morioka et al’s work [7] adopted only polyno-
mial bases and Canright’s work [2] did only normal bases; however, the difference
causes little influence for the critical path delays. For example, another efficient
construction that is introduced at Sec. 2.4 of this paper has the same critical
path delay. Tt uses two normal bases and one polynomial basis for the towering
bases in mizture. Different from the meaning of this mizture of bases, this paper
proposes to use normal and polynomial bases in mixture.

When the tower field F((22)2)2 is used in SubBytes, it needs certain conversion
matrices between the Rijndael original Fos and the tower field F(y2)2)2. A few
papers [2, 6] have discussed the efficiency of conversion matrices. Most of those
previous works just discuss the number of 1’s in the conversion matrices; how-
ever, this paper focuses on their critical path delays only, in detail, the Hamming
weights of the row vectors of the conversion matrices. It has been experimen-
tally shown that there are some rare conversion matrices whose row vectors all
have the Hamming weights less than or equal to 4. It is very important for



the hardware implementation. For such efficient conversion matrices, Canright’s
approach [2] such as greedy algorithm and tree structure analysis will be also
applied to decrease the number of 1’s in the matrices.

The mixture of bases proposed in this paper, in brief mized bases, means the
following usage of two different bases such as polynomial and normal bases. Let
A = agB + a1*, ap,a; € Fy2 be a non-zero element represented with normal
basis {3, 81} in [F(22)2, where f3 is a zero of g(x) = 22+ 2z + « and « is a zero of
e(z) = 2* + = + 1. Then, calculate its inverse D = A~ in F(52)> as

D=A"=(apB+a1f*) " =do+ di3, do,d1 € Foe. (1)

The most important point is that the input A is represented with normal basis
{B,3*} but the output D is represented with polynomial basis {1,3}. This pa-
per especially applies the mized bases to the inversions in F(z2)2 and F(s2)2)2.
It is shown that the former contributes to the reduction of the critical path de-
lay of F((22)2)2—inversion and the latter connects the F((;2)z)2—inversion to some
efficient conversion matrices. As previously introduced, the conversion matrices
have smaller critical path delays and they are quite rare cases. In addition, it is
shown that the use of the mized bases has little influence to the number of gates
needed for the logical architectures but reduces the critical path delays.

2 Preliminaries

This section briefly introduces the conventional construction of an inversion in
tower field [F((32)2)2 for the use in S-Box (SubBytes) of AES. In detail, let us
review the adopted bases, modular polynomials, calculation procedure of an in-
version in [F((32)2)2, and then Morioka’s work [7], Canrigt’s work [2], and another
efficient construction. Since the tower field is used with two conversion matrices
for the isomorphism between Fas and F((52)2)z, the conventional viewpoints of
the efficiency of conversion matrices are also introduced.

2.1 Extension field Fss and its tower construction F((22)2)2

8-bit inputs and outputs of the S-Box are dealt as elements in binary field of
extension degree 8, that is Fys. Among the arithmetic operations in the binary
field, inversion plays an important role in SubBytes. In detail, the SubBytes cal-
culates the multiplicative inverse A~! of a non-zero input element A € Fjs and
then carries out a certain Affine transformation. For the preparation of Fys , AES
[8] originally adopts an irreducible polynomial 2% +z* + 2° + 2 + 1 as the modu-
lar polynomial; however, it is well known that its isomorphic tower construction
[F((22)2)2 achieves a more efficient inversion together with Itoh—Tsujii inversion
algorithm (ITA) [5]. In detail, first construct Fyz by using the irreducible poly-
nomial e(z) = 2? + x + 1 over Fy!, then construct Fi22)2 by using a certain
irreducible polynomial f(x) of degree 2 over F,2, and then construct F((z2)2)2
by using a certain irreducible polynomial g(z) of degree 2 over F;2)2. Thus,
the efficiencies of the arithmetic operations in [F((32)2)2 are closely related to the

! Any other irreducible polynomials of degree 2 over F» does not exist.



selection of the modular polynomials and the bases for the towerings. For exam-
ple, polynomial and normal bases are efficient for multiplication and Frobenius
mapping, respectively. In the case that the characteristic is equal to 2 such as
AES, Frobenius mapping is equivalent to squaring.

2.2 Morioka’s construction [7]

Conventional works such as [4] have often referred to Morioka et al.’s construc-
tion [7] for achieving efficient inversion in F((s2)2)2. Morioka’s work [7] adopts
e(z) = 22+ +1 with its polynomial basis {1, a} for Fy2, f(z) = 2%+ +a with
its polynomial basis {1,3} for F(o2)2, and g(z) = 2° + 2 + A, X = o with its
polynomial basis {1,7} for F((2)2)2, where a € Fy2, f € F(p2)2, and y € F((22)2)2
are zeros of e(z), f(x), and g(x), respectively. Note that it adopts polynomial
bases for all towerings. Its critical path delays are summarized in Table 1.

2.3 Canright’s construction [2]

Different from Morioka’s work, Canright’s work [2] adopts e(z) = x? +x + 1 with
its normal basis {a, a?} for Fye, f(z) = 22 + x + a with its normal basis {3, 3*}
for Fo2)2, and g(z) = 2° + = + X\, X = o with its normal basis {v,7'%} for
F((22)2)2, where a € Fp2, B € Fa2)2, and vy € F(a2)2)> are zeros of e(z), f(z),
and g(x), respectively. It is noted that it adopts normal bases for all towerings.
Its critical path delays are summarized in Table 1.

2.4 Another efficient construction

This section introduces another efficient construction. Different from Morioka’s
and Canright’s works, it adopts e(z) = 2% + & + 1 with its normal basis {a, a?}
for Fy2, f(2) = 22 + 2 + a with its polynomial basis {1, 3} for F(32)2, and g(x) =
2?4+ x + X\, A =a?f with its normal basis {v,7'%} for F((22)2)2, where o € Fy2,
B € F(a2)2, and 7y € F((a2)2)2 are zeros of e(z), f(z), and g(x), respectively. Its
critical path delays are summarized in Table 1.

The improvements proposed in this paper are started from this construction,
thus in what follows let us briefly review its arithmetic operations in [Fyz, F(52)2,
and [F((22)2)2. Their calculation architectures are summarized in App. A.

Arithmetic operations in Fy2 In the same of Canright’s work [2], construct
Fy> with the modular polynomial e(z) = 22 + x + 1 and its normal basis {a, a?}
as follows. According to the coefficients of e(z) whose zero is o, a + a? = 1 and
a® =1.Let A =apa+aia?, B =bya+bia?, ag,ar, by, by € Fy, a multiplication
C = AB becomes as follows (Fig. 7).

AB = (apa + a10?) (b + bya?)
= a1bj a0 + aghp® + (ar1bo + agby)(a + a2)
= {(ao + a1)(bo + b1) + aobo} a + {(aop + a1)(bo + b1) + a1b1 }
= + c10® = C. (2)



For a non-zero element A in [,z , Frobenius mapping with respect to [Fy , that
is squaring, is equivalent to inversion as follows (Fig. 8).

A? = A7 = (apa + a10%)? = apa® + a1 = aja + apa®. (3)

2

Times a and times o are carried out as follows (Fig. 9).

= a1a + (ap + a1)o?, (4a)

= (ap + a1)a + apa®. (4b)

aA = apa® + aja

a?A = apa® + arat

Arithmetic operations in F(3z)2 In the same of Morioka et al.’s work [7], con-
struct F(y2)> with the modular polynomial g(x) = 22 + x + « and its polynomial
basis {1, 5}. Thus, the arithmetic operations and calculation procedures become
as follows. Let A = ag + a1, B = by + b13, ag, a1, bg, b1 € Fy2, a multiplication
C = AB in F(32)2 is carried out as follows (Fig. 10).

AB = (ag +a13)(bo + b18)
= (aob[) + albla) + {(ao + al)(bo + bl) + aobg}ﬂ
:Co-l-ClB:C. (5)

Frobenius mapping of A with respect to F,2, that is 4—th power operation,
becomes as follows.

A22 :a0+a164:a0+a1(5+1):(a0+a1)+a16. (6)
The square of A is calculated as follows (Fig. 11).
A? = af +a7f® = af + a7 (B + ) = (af + afa) + a7 . (7)

Let A be a non-zero element in F(,2)2, its inverse D = A~ is calculated by
ITA as follows (Fig. 12).

Afl — (AA4)71A4
= {(ao + a1 8)(a0 + a18*)} " (a0 + a1) + a1 B)

= {ao(ao +a1) + a%a}_l ((ao + a1) + a1 )
=dy+diB=D. (8)

Times A = (o + 1)3 = o2, that is the constant term of the modular poly-
nomial g(z), is carried out as follows (Fig. 13).

?BA = apd®B + a10?f* = apd®B + a1’ (B + a) = a1 + (ap + a1)a’B. (9)

Inversion in F((32)2)2 In the same of Canright’s construction [2], construct
F((22)2)> with the modular polynomial g(z) = & + z + X\, A = o?f with its



normal basis {y,7'%}. Let A = aoy + a17'%, ag,a1 € F2)> be a non—zero
element in F((>2)2)2, ITA calculates its inverse D = A™! as follows (Fig. 14).

A*l _ (AA16)71A16
-1
= {aoa1 (v +7'%)* + (a5 + )y} (ary + aoy'®)
= {aoas + (ap + a1)2)\}71 (a17 + aoy'®)
=dyy + di7v'® = D. (10)

Efficiencies of various tower fields One of typical features of Morioka’s
work [7] is that all of the towering bases are polynomial bases such as {1,a}
for Fy2. As introduced in Canright’s work [2], not only polynomial bases but
also normal bases are available for the towering bases and it is said that there
are 432 possible combinations. Canright’s work [2] has introduced an efficient
construction of tower field F((32)2)> that uses normal bases for all towerings.
As introduced in [2], it will be one of the best combinations for tower field
[F((22)2)2; however, such good constructions of inversion in tower field F((52)2)2
have a comparable compactness. According to his detail report [3], the best
inversion introduced in [2] and that shown in Sec. 2.4 have almost the same
compactness. In addition, the improvements and optimizations introduced in
Morioka et al.’s and Canright’s works [7], [2] will be also efficiently applied to
the inversions shown in this paper. Thus, this paper focuses on the inversion in
F((22)2)= and the conversion matrices with the viewpoint of critical path delay
and without discussing the compactness.

2.5 Conversion matrices with the viewpoint of conjugates

As shown in Fig. 1 and the following Egs. (12), when the inversion in the iso-
morphic tower field [F((222)2 is applied to SubBytes instead of that of the Rijndael
original Fys , the input 8-bit vector needs to be converted to the corresponding
element in F((32)2)=. Then, after calculating its inverse in F((32)2)2, the result
needs to be returned to the Rijndael-original vector representation. Thus, two
conversion matrices together with a certain Affine transformation are required
before and after the inversion in F(;2)2)> (Fig. 1).

a) encryption phase
(a) encryption p

8 8

intput xM . x AM output
Inversion

8 in ]F((QZ)Z)Z 8

output x M xMA input

(b) decryption phase

Fig. 1. Sharing the inversion for encryption/decryption with conversion matrices



In detail, let {1,w, - ,w% W’} be the polynomial basis of Fys, where w is
a zero of the modular polynomial % + z* + 2® + = + 1, the Rijndael originally
represents 8-bit vector as an element X in Fys as follows.

X =8+ Fw+ -+ Few’ + Eqw’ = (0,31, , Tg, I7). (11)

Then, SubBytes for encryption phase calculates
. _ N
7T = A (M ((MXT) )) +(0,1,1,0,0,0,1,1)7, FS (12a)

where M, M = M™!, and A denote the conversion, inverse conversion, and
Affine transformation matrices, respectively. Thus, X = MX becomes an ele-
ment in the tower field F(32)2)2 and then its inverse X ~1is efficiently calculated
in F((22)2)2. As understood from Eq. (12a), AM is precomputed.

Inversely, SubBytes for decryption phase calculates

XT=M <(M (AZT +(0,0,0,0,0,1,0, 1)7))_1> BS (12b)

In this case, Z = M (AZT +(0,0,0,0,0,1,0, 1)T) becomes an element in the
tower field F((32)2)2 and then its inverse 71 is efficiently calculated in Fi(a2)2)z2.
In the same of the encryption phase, MA and M(0,0,0,0,0,1,0,1)7 are pre-
computed. Note here that the inversions in encryption phase Eq. (12a) and
decryption phase Eq. (12b) can be carried out in the same procedure such as
Fig. 14. Thus, previous works such as Canright’s [2] works have mostly focused
on the compact construction of inversion in tower field F((32)2)> but not together
with the efficiency of the conversion matrices in detail.

In the case of the efficient construction shown in Sec. 2.4, for example, the
conversion matrices are given as follows (Table 1).

101001007 110111007

10001010 01110111

00111100 01000110

01010100 ~l1o0011111
M=111010100|" AM=|01100010]" (13a)

10110001 10000010

01000111 00011010

00101010 01110011

7010000007 11010000°

10101010 10100100

10100111 11001001
_ lo1101011 ~ |11010111
M=110100100|" MA=110010000]" (13b)

10010110 01010011

01110110 11000000

(10100101 100011000




Efficiency of conversion matrices These conversion matrices are easily de-
termined but they are not uniquely determined because the modular polynomials
such as e(z) = 22 + x + 1 have conjugate elements as zeros. In detail, in the case
of Sec. 2.2, since « has its conjugate a® with respect to Fy, {1,a?} can be the
basis of Fy2. In the same, {1, 3*} and {1,+'®} can be the towering bases of F(»2)2
and F((o2)2)2, respectively. Thus, there are 8 variants for each matrix and they
play the same role on the connection to Rijndael original Fys. Most of previous
works such as Mentens’s work [6] have basically focused on the number of 1’s in
the conversions matrices to evaluate their efficiencies.

This paper focuses on that every Hamming weight of row vectors of M shown
in Eq. (13a) is smaller than or equal to 4. It is very important for the hardware
implementation. For example, let us consider the following vector multiplications
(inner products). Its hardware calculation will be implemented as Fig. 2.

(]-7 ]-; ]-7 1;07 0;07 0)(1’0,1‘1,1‘2,1‘3,1’4,1’5,1‘6,1‘7)T, (143')
(1,1,1,1,1,0,0,0) (0, 71, T2, T3, T4, T5, Tg, 7). (14b)

To 1 T2 3 To 1 T2 3 T4

Eq. (14a) Eq. (14b)

Fig. 2. Implementations of Eq. (14a) and Eq. (14b)

Thus, in the case of Eq. (13a), since every Hamming weight of row vectors of
M is smaller than or equal to 4, it is efficiently implemented as shown in Fig. 2
and then its critical path delay becomes 2 Tx, where in what follows T'x and T'4
denote the delays of XOR and AND, respectively. Such an efficient conversion
matrix is a quite rare case, therefore, as shown in Eqgs. (13), M has the efficiency
but the other matrices such as AM do not (Table 1).

Since it has been introduced that the Hamming weights of the matrices are
reduced by some techniques such as tree structure [2], this paper does not dis-
cuss the weights of matrices into detail. Then, from the viewpoint of critical
path delay, this paper proposes an efficient inversion in F((;2)2)2 and conversion
matrices to which polynomial and normal bases are used in mizture.



Table 1. Comparison of the efficiencies of three constructions

construction # of 1’s critical path delayi
M 32 3 Tx
AM 29 3 Tx
Morioka et al. [7]| inv. in Fi(22)2)2 - 17 Tx +4 Ta
M 27 2 Tx
MA 29 3 Tx
M 32 3 Tx
AM 25 3 Tx
Canright [2] inv. in F(2)2)2 - 15 Tx + 4 T
M 29 3 Tx
MA 26 3 Tx
M 28 2 Tx
another efficient AM 33 3 Tx
construction | inv. in F(p2y2y2 - 15Tx + 4 Ta
M 31 3 Tx
MA 26 3 Tx

3 Main proposal

This paper proposes an efficient architecture for inversion in tower field F((52)2)2
to which, different from Morioka et al.’s proposal [7] and Canright’s approaches
[2], polynomial and normal bases are used in mizture, in brief mized bases. Espe-
cially based on the inversion in F((32)2)2 constructed as Fig. 14, the mized bases
are mainly applied to two calculation parts: Iy and Ig. In detail, denote their

new versions by I, and Ig, respectively,

— I, has the input and output for F(»2)2—elements represented with normal
basis {/3, 3} and polynomial basis {1, 3}, respectively,

— I has the input and output for F((y2)2)2—elements represented with normal
basis {7,7'®} and polynomial basis {1,~}, respectively.

Then, the critical path delay for encryption phase of SubBytes of AES becomes
QT)(+(14T)(+4TA)+2T)(. (15)

Together with the meaning of the mized bases, in what follows, several improve-
ments using mized bases especially at I, and Ig are shown in detail. Note here
that the modular polynomials and bases are as introduced in Sec. 2.4.

3.1 Mixed bases for I, of Fig. 14

As also introduced in [2], it is often said that inversion with normal basis is more
efficient than that with polynomial basis because several Frobenius mappings



are needed in ITA-based inversion. Inversely, it is often said that multiplication
with polynomial basis is more efficient than that with normal basis because
Karatsuba—based multiplication needs polynomial multiplications [1].

First, let us consider an inversion in F,2)> with the normal basis {f, B},

where f3 is a zero of g(z) = 22 +z+a. Let A = ag3+a,3* be a non—zero element
in F(y2)2, its inverse D = A1 is calculated by ITA as follows.

Afl — (AA4)71A4
-1
= {(aoB + a1B") (@B +aoB")} (a1 + aoB*)
-1
= {aoal + (a0 + 01)20} (01/3 + 00/34)
=dyf+dip* =D. (16a)
However, the following multiplications in F(y2)> denoted by M, in Fig. 14 cannot
accept F(y2)2—elements represented with the normal basis. Because, they accept
ones represented with the polynomial basis {1, 3}. Thus, consider the following
inversion in F(,2)> with a non-zero element A = aof8 + a1 B*.
A—l — (AA4)—1A4
-1
= {(a0f + ar1*) (a8 + aof")} (a1 + aoB?)
-1
= {aoa1 + (a0 + 1)’} ((ap + a1) + aof)
=do+dif=D. (16b)
Based on Eq. (16b), the calculation architecture of the new version Iy is con-

structed as Fig. 3. It is the meaning of mized bases. If I, in Fig. 14 that is
constructed with the polynomial basis {1, 5} is replaced to the inversion with

normal basis {8, '}, that is denoted by I (Fig. 3), the critical path delay of
Ig constructed as Fig. 14 is reduced to 14 Tx + 4 Ta.

input (Normal basis) output (Polynomial basis)
2 2
ao +—¢ |M2 do
+ So X + I
2
2 Mo dy
a1 +—e Mo N P
Iy

Fig. 3. Inversion in F,22> with normal and polynomial bases (L)

On the other hand, I (Fig. 3) needs a non—zero input represented with
the normal basis {3, 3*} in F(2)2. Without increasing the critical path delay, it
needs two changes at x A and M, in Fig. 14 before the inversion in F(,2)2. Their



output elements are originally represented with the polynomial basis {1,5}.
Thus, change them so as to output F(,2)2—elements represented with the normal

basis {3, 3*}. In detail, let A = ag + a1, B = by + b13,a0,a1,by, b1 € Fy2 and
based on the following calculations, their new versions denoted by x\ and M4
are constructed as Fig. 4 and Fig. 5, respectively.

M = apa’B + a1’ [
= {ay + (ap + a1)a*}B + a1 B*
= (aa + apa?)B + a1 B*. (17)

AB = (ag + a13)(bo + b1 3)
= {(ao + a1)(bo + b1) + arbra} B + (aobo + a1bia) B
=cf+apt=C. (18)

input (Polynomial basis)  output (Normal basis)

2 2
ao X a2 + Co
2
a1 -+ X P N N
2 x X
- S C1

Fig. 4. Times X in F»2)> with polynomial and normal bases (x\)

input (Polynomial basis) output (Normal basis)
2
ao —¢ 2
Mo X o —+ Co
2
2 M2
2 P N
b — " (Do [

Fig. 5. Multiplication in F(52)2 with polynomial and normal bases (M4)



3.2 Mixed bases for the inversion in F((22)2)2

The input and output elements for the inversion architecture constructed as Fig.
14 both need to be represented with the normal basis {v,7'%}. However, this
paper changes only the representation of the output element to that with the
polynomial basis {1,7}. In detail, let A = aoy + a17'%, ag,a1 € Fia2)> be a
non-zero element in F((,2)2)2, based on ITA, calculate its inverse D = A7 as

A*l _ (AA16)71A16
-1
= {aoar (v +7'°)* + (a§ + a)) '} (@17 + aoy'?)

= {apa1 + (ap + a1)2/\}71 {ao + (aop + a1)v}

=do+diy = D. (19)

Note that, for a non-zero input represented with the normal basis {,7'%}, it
calculates its inverse represented with the polynomlal basis {1,~}. Fig. 6 shows

its calculation architecture to which I4, M4, and x\ are also applied.

input (Normal basis) output (Polynomial basis)

ag +—e IM4 += dp

Iy

My [—F> dy

Fig. 6. Inversion in F((,2)2)2 with normal and polynomial bases

As previously introduced, this inversion achieves 14 Tx + 4 Ta; however, the
last mized bases used in Eq. (19) is not related to this efficiency. It is related
to the efficiency of the conversion matrices. When the output is represented
with the normal basis {,7'%}, the calculated inverse A~! is multiplied by the
conversion matrix AM shown in Egs. (13a). On the other hand, in the case
of the inversion constructed as Fig. 6, since the output is represented with the
polynomial basis {1,~}, it needs to be multiplied by the following conversion
matrix AMM/,

110111007 [100010007 [000111017
01110111 01000100 00000111
01000110 00100010 00100100
~|1o0011111 00010001 01101001
AMXM = 101100010 10000000| = 01000110/ (202)
10000010 01000000 10101000
00011010 00100000 10110001
0o1110011] |00010000] |01000111]




where M’ is given by

100010007
01000100
00100010
00010001
10000000
01000000
00100000
_00010000J

=
Il

(20b)

and it converts the vector representation with the polynomial basis {1,v} to
that with the normal basis {v,7'%}. According to Eq. (20a), the conversion
matrix AMM' after the inversion in F((22)2)2 shown in Fig. 6 fortunately has
the efficiency introduced in Sec. 2.5. Such an efficient conversion matrix is a
quite rare case and it is experimentally found. Thus, the last mized bases shown
in Fig. 6 is just for obtaining this efficient conversion matrix AMM’.

3.3 Evaluation

Finally, the proposed architecture with conversion matrices, especially its en-
cryption phase, has the critical path delays shown in Table 2.

Table 2. Critical path delays of the proposed architecture

construction # of 1’s critical path delauyi
M Eq. (13a) 28 2 Tx
proposal AMM’ Eq. (20a) 27 2 Tx
inv. in F((22)2)2 Fig. 6 - 14 Tx + 4 T

According to the result, this paper could show that the mized bases con-
tributes to some improvements of SubBytes of AES with tower field technique.

4 Conclusion and future work

This paper has proposed an efficient architecture for inversion in tower field
F((22)2)2 to which, different from the conventional works, polynomial and nor-
mal bases are used in mizture, in brief mized bases. Then, this paper has espe-
cially shown some improvements of the inversion architecture in F((22)2)= and
the conversion matrices in the encryption phase. As a future work, using mized
bases, those in the decryption phase should be also improved. Then, the detailed
comparison with some other efficient implementations is needed. After that, a
consideration for side channel attacks will be also required.
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