
Fast Exhaustive Search for Polynomial Systems in F2

Charles Bouillaguet1, Hsieh-Chung Chen2, Chen-Mou Cheng3,
Tung Chou3, Ruben Niederhagen3,4, Adi Shamir1,5, and Bo-Yin Yang2

1 Ecole Normale Supérieure, Paris, France, charles.bouillaguet@ens.fr
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan, {kc,by}@crypto.tw

3 National Taiwan University, Taipei, Taiwan, {doug,blueprint}@crypto.tw
4 Technische Universiteit Eindhoven, the Netherlands, ruben@polycephaly.org

5 Weizmann Institute of Science, Israel, adi.shamir@weizmann.ac.il

Abstract. We analyze how fast we can solve general systems of multivariate
equations of various low degrees over F2; this is a well known hard problem
which is important both in itself and as part of many types of algebraic crypt-
analysis. Compared to the standard exhaustive search technique, our improved
approach is more efficient both asymptotically and practically. We implemented
several optimized versions of our techniques on CPUs and GPUs. Our technique
runs more than 10 times faster on modern graphic cards than on the most pow-
erful CPU available. Today, we can solve 48+ quadratic equations in 48 binary
variables on a 500-dollar NVIDIA GTX 295 graphics card in 21 minutes. With
this level of performance, solving systems of equations supposed to ensure a se-
curity level of 64 bits turns out to be feasible in practice with a modest budget.
This is a clear demonstration of the computational power of GPUs in solving
many types of combinatorial and cryptanalytic problems.
Keywords: multivariate polynomials, solving systems of equations, exhaustive
search, parallelization, Graphic Processing Units (GPUs)

Extended Version of this paper is at eprint.iacr.org/2010/313.

1 Introduction

Solving a system of m nonlinear polynomial equations in n variables over Fq is a natu-
ral mathematical problem that has been investigated by various research communities.
The cryptographers are among the interested parties since an NP-complete problem
whose random instances seem hard could be used to design cryptographic primitives,
as witness the development of multivariate cryptography in the last few decades, using
one-way trapdoor functions such as HFE, SFLASH, and QUARTZ [12, 20, 21], as well
as stream ciphers such as QUAD [4]. Conversely, in “algebraic cryptanalysis” one distills
from a cryptographic primitive a system of multivariate polynomial equations with the
secret among the variables. This does not break AES as first advertised, but does break
KeeLoq [11], for a recent example, and find a faster collision on 58-round SHA-1 [24].

Since the pioneering work by Buchberger [9], Gröbner-basis techniques have been
the most prominent tool for this problem, especially after the emergence of faster algo-
rithms such as F4 or F5 [15,16], which broke the first HFE challenge [17]. The crypto-
graphic community independently rediscovered some of the ideas underlying efficient
Gröbner-basis algorithms as of the XL algorithm [13] and its variants. They also intro-
duced techniques to deal with special cases, particularly that of sparse systems [1, 23].

1

In this paper we take a different path, namely improving the standard and seemingly
well-understood exhaustive search algorithm. When the system consists of n randomly
chosen quadratic equations in n variables, all the known solution techniques have ex-
ponential complexity. In particular, Gröbner-basis methods have an advantage on very
overdetermined systems (with many more equations than unknowns) and systems with
certain algebraic “weaknesses”, but were shown to be exponential on “generic” enough
systems in [2, 3]. In addition, the computation of a Gröbner basis is often a memory-
bound process; since memory is more expensive than time at the scale of interest, such
sophisticated techniques can be inferior in practice when compared to simple testing of
all the possible solutions, which uses almost no memory.

For “generic” quadratic systems, experts believe [2,25] that Gröbner basis methods
will go up to degree D0, which is the minimum possible D where the coefficient of tD

in (1+ t)n(1+ t2)−m goes negative, and then require the solution of a system of linear
equations with T &

(
n

D0−1

)
variables. This will take at least poly(n)·T 2 bit-operations,

assuming we can afford a sufficiently large amount of memory and that we can solve
such a linear system of equations with non-negligible probability in O(N2+o(1)) time
for N variables. For example, if we assume we can operate a Wiedemann solver on
a T × T submatrix of the extended Macaulay matrix of the original system, then the
polynomial is 3n(n − 1)/2. When m = n = 200, D0 = 25, making the value of T
exceeds 2102; even taking into consideration guessing before solving [6,26], we can still
easily conclude that Gröbner-basis methods would not outperform exhaustive search in
the practically interesting range of m = n ≤ 200.

The questions we address are therefore: how far can we go, on both theoretical and
practical sides, by pushing exhaustive search further? Is it possible to design more effi-
cient exhaustive search algorithms? Can we get better performance using different hard-
ware such as GPUs? Is it possible to solve in practice, with a modest budget, a system
of 64 equations in 64 unknowns over F2? Less than 15 years ago, this was considered
so difficult that it even underlied the security of a particular signature scheme [19]. In-
tuitively, some people may consider an algebraic attack that reduces a cryptosystem to
64 equations of degree 4 in 64 F2-variables to be a successful practical attack. However,
the matter is not that easily settled because the complexity of a naïve exhaustive search
algorithm would actually be much higher than 264: simply testing all the solutions in a
naïve way results in 2 ·

(
64
4

)
·264 ≈ 284 logical operations, which would make the attack

hardly feasible even on today’s best available hardware.

Our Contribution. Our contribution is twofold. On the theoretical side, we present a
new type of exhaustive search algorithm which is both asymptotically and practically
faster than existing techniques. In particular, we show that finding all zeroes of a single
degree-d polynomial in n variables requires just d · 2n bit operations. We then extend
this technique and show how to find all the common zeroes of m random quadratic
polynomials in log2 n · 2n+2 bit operations, which is only slightly higher. Surprisingly,
this complexity is independent of the number of equations m.

On the practical side, we have implemented our new algorithms on x86 CPUs and
on NVIDIA GPUs. While our CPU implementation is fairly optimized using vector in-
structions, our GPU implementation running on one single NVIDIA GTX 295 graphics
card runs up to 13 times faster than the CPU implementation using all four cores of an
Intel quad-code Core i7 at 3 GHz, one of the fastest CPUs currently available. Today,
we can solve 48+ quadratic equations in 48 binary variables using just an NVIDIA GTX

2

295 graphics card in 21 minutes. This device is available for about $500. It would be
36 minutes for cubic equations and two hours for quartics. The 64-bit signature chal-
lenge [19] can thus be broken with 10 such cards in 3 months, using a budget of $5000.
Even taking into account Moore’s law, this is still quite an achievement.

Table 1. Performance results for n = 48 and projected budgets for solving n = 64 in one month

Time (minutes) Testing platform #cores est. cost
d = 2 d = 3 d = 4 GHz Arch. Name USD (#used) (USD)
1217 2686 3191 2.2 K10 Phenom 9550 120 4(1) 54,000
1157 1992 2685 2.3 K10+ Opteron 2376 184 4(1) 113,316142 240 336 2.3 K10+ Opteron 2376×2 368 8(8)

780 1364 1819 2.4 C2 Xeon X3220 210 4(1) 60,720
671 1176 1560 2.83 C2+ Core2 Q9550 225 4(1) 55,575179 294 390 2.83 C2+ Core2 Q9550 225 4(4)
761 1279 1856 2.26 Ci7 Xeon E5520 385 4(1) 78,72095 154 225 2.26 Ci7 Xeon E5520×2 770 8(8)

41 73 271 1.3 G200 GTX 280 n/a 240 n/a
21 36 126 1.25 G200 GTX 295 500 480 15,500

In contrast, the implementation of F4 in MAGMA-2.16, often cited as the best
Gröbner-basis solver commercially available today, will completely use up 64 GB of
RAM in solving just 25 cubic equations in as many F2-variables. We have also tested it
with overdefined systems, for which Gröbner-basis algorithms are known to work bet-
ter. While it does not run out of memory, the results are not satisfying: 2.5 hours to solve
20 cubic equations in 20 variables, half an hour for 45 quadratic equations in 30 vari-
ables, and 7 minutes for 60 quadratic equations in 30 variables on one 2.2-GHz Opteron
core. Some very recent improvements on Gröbner-basis solvers have reported speed-up
over MAGMA F4 of two- to five-fold [10]. However, even with such significant im-
provements, Gröbner-basis solvers do not seem to be able to compete with exhaustive
search algorithms in this range, as each of the above is solved in a split second using
negligible amount of memory on the same CPU by the latter.

Implications. The new exhaustive search algorithm can be used as a black box in
cryptanalysis that needs to solve quadratic equations. This includes, for instance, several
algorithms for the Isomorphism of Polynomials problem [7, 22], as well as attacks that
rely on such algorithms, e.g., [8].

We also show with a concrete example that (relatively simple) computations requir-
ing 264 operations can be easily carried out in practice with readily available hardware
and a modest budget. Lastly, we highlight the fact that GPUs have been used success-
fully by the cryptographic community to obtain very efficient implementations of com-
binatorial algorithms or cryptanalytic attacks, in addition to the more numeric-flavored
cryptanalysis algorithm demonstrated by the implementation of the ECM factorization
algorithm on GPUs [5].

Organization of the Paper. Section 2 establishes a formal framework of exhaustive
search algorithms including useful results on Gray Codes and derivatives of multivari-

3

ate polynomials. Known exhaustive search algorithms are reviewed in Section 3. Our
algorithm to find the zeroes of a single polynomial of any degree is given in Section 4,
and it is extended to find the common zeroes of a collection of polynomials in Sec-
tion 5. Section 6 describes the two platforms on which we implemented the algorithm,
and Section 7 describes the implementation and performance evaluation results.

2 Generalities

In this paper, we will mostly be working over the finite vector space (F2)
n. The canon-

ical basis is denoted by (e0, . . . , en−1). We use ⊕ to denote addition in (F2)
n, and +

to denote integer addition. We use i� k (resp. i� k) to denote binary left-shift (resp.
right shift) of the integer i by k bits.

Gray Code. Gray Codes play a crucial role in this paper. Let us denote by bk(i) the
index of the k-th lowest-significant bit set to 1, or −1 if the hamming weight of i is less
than k. For example, bk(0) = −1, b1(1) = 0, b1(2) = 1 and b2(3) = 1.

Definition 1. GRAYCODE(i) = i⊕ (i� 1).

Lemma 1. For i ∈ N: GRAYCODE(i + 1) = GRAYCODE(i)⊕ eb1(i+1).

Derivatives. Define the F2 derivative ∂f
∂i of a polynomial with respect to its i-th vari-

able as ∂f
∂i : x 7→ f(x + ei) + f(x). Then for any vector x, we have:

f(x + ei) = f(x) +
∂f

∂i
(x) (1)

If f is of total degree d, then ∂f
∂i is a polynomial of degree d− 1. In particular, if f

is quadratic, then ∂f
∂i is an affine function. In this case, it is easy to isolate the constant

part (which is a constant in F2) : ci = ∂f
∂i (0) = f(ei) + f(0). Then, the function

x 7→ ∂f
∂i (x) + ci is by definition a linear form and can be represented by a vector

Di ∈ (F2)
n. More precisely, we have Di[j] = f (ei + ej) + f (ei) + f (ej) + f (0).

Then equation (1) becomes:

f(x + ei) = f(x) + Di · x + ci (2)

Enumeration Algorithms. We are interested in enumeration algorithms, i.e., algo-
rithms that evaluate a polynomial f over all the points of (F2)

n to find its zeroes. Such
an enumeration algorithm is composed of two functions: INIT and NEXT. INIT(f, x0, k0)
returns a State containing all the information the enumeration algorithm needs for
the remaining operations. The resulting State is configured for the evaluation of f
over x0 ⊕ (GRAYCODE(i)� k0), for increasing values of i. NEXT(State) advance
to the next value and updates State. Three values can be directly read from the state:
State.x, State.y and State.i. These are linked at all times by State.y = f(State.x),
State.x = x0⊕(GRAYCODE(State.i)� k0), NEXT(State).i = State.i+1. Finding
all the zeroes of f is then achieved with the loop shown below.

4

1: procedure ZEROES(f)
2: State← INIT(f, 0, 0)
3: for i from 0 to 2n − 1
4: if State.y = 0 then State.x is a zero of f
5: NEXT(State)
6: end for
7: end procedure

3 Known Techniques for Quadratic Polynomials

We briefly discuss the enumeration techniques known to the authors.

Naïve Evaluation. The simplest way to implement an enumeration algorithm is to
evaluate the polynomial f from scratch at each point of (F2)

n. This requires two AND
per quadratic monomial, and (almost) as many XORs. Since the evaluation takes place
many times for the same f with different values of the variables, we will usually as-
sume that the polynomial can be hard-coded, i.e., that it is not necessary to include the
terms for which aijk = 0. Each call to NEXT would then require at most n(n + 1) bit
operations, half-AND and half-XOR (not counting the cost of enumerating (F2)

n, i.e.,
incrementing a counter). This can be improved a bit, by factoring out the monomials:

f(x) =
∑n−1

i=0 xi ·
(∑n−1

j=i aij · xj

)
+ c (3)

The bit-operation count falls down to n(n + 3)/2, and in general for degree-d polyno-
mials to a sum dominated by

(
n
d

)
. This method is simple but not without its advantages,

chiefly (a) insensitivity to the order in which the points of (F2)
n are enumerated, and

(b) we can bit-slice and get a speed up of nearly ω, where ω is the maximum width of
the CPU logical instructions.

The Folklore Differential Technique. It was pointed out in Sec. 2 that once f(x) is
known, computing f(x + ei) amounts to compute ∂f

∂i (x), and this derivative happens
to be a linear function which can be efficiently evaluated by computing a vector-vector
product and a few scalar additions. This strongly suggests to evaluate f on (F2)

n us-
ing a Gray Code, i.e., an ordering of the elements of (F2)

n such that two consecutive
elements differ in only one bit. This leads to the algorithm shown below.

1: function INIT(f, _, _)
2: i← 0
3: x← 0
4: y← f(0)
5: For all 0 ≤ k ≤ n− 1,

initialize ck and Dk

6: end function

1: function NEXT(State)
2: i← i + 1
3: k = b1(i)
4: z← VECTORVECTORPROD (Dk,x)⊕ ck

5: y← y ⊕ z
6: x← x⊕ ek

7: end function
(a) Initialize (b) Update

We believe this technique to be folklore, and in any case it appears more or less ex-
plicitly in the existing literature. Each call to NEXT requires n ANDs, as well as n + 2
XORs, which makes a total bit operation count of 2(n+1). This is about n/4 times less

5

than the naive method. Note that when we describe an enumeration algorithm, the vari-
ables that appear inside NEXT are in fact implicit functions of State. The dependency
has been removed to lighten the notational burden.

4 A Faster Recursive Algorithm for any Degree

We now describe one of the main contributions of this paper, a new algorithm which is
both asymptotically and practically faster than standard exhaustive search in enumerat-
ing the solutions of one polynomial equation, as summarized by Theorem 1 below.

Theorem 1. All the zeroes of a single multivariate polynomial f in n variables of de-
gree d can be found in essentially d · 2n bit operations (plus a negligible overhead),
using nd−1 bits of read-write memory, and accessing nd bits of constants, after an
initialization phase of negligible complexity O

(
n2d

)
.

The proof is given in the full version.

Construction of the Recursive Enumeration Algorithm. We will construct an enu-
meration algorithm in two stages. First, if f is of degree 0, then we only need to “enu-
merate” through all vectors by updating with x← x⊕ eb1(i) at the i-th step.

When f is of higher degree, we need a little more effort. The main idea is that in
the folklore differential algorithm of Sec. 3, the computation of z essentially amounts
to evaluate ∂f

∂k on something that looks like a Gray Code. We may then use the enumer-
ation algorithm recursively on ∂f

∂k , since it is a polynomial of strictly smaller degree.
The resulting algorithm is shown below.

It is not difficult to see that the complexity of NEXT is O (d), where d is the degree
of f . The temporal complexity of INIT is nd times the time of evaluating f , which
is itself upper-bounded by nd and its spatial complexity is also of order O

(
nd

)
. This

means that the complexity of the algorithm is O
(
d · 2n + n2d

)
. When d = 2, this is

about n times faster than the algorithm described in Sec. 3.
1: function INIT(f, k0, x0)
2: i← 0
3: x← x0
4: y ← f(x0)
5: for i from 0 to 2n − 1

6: x′0 ← x0 ⊕ GRAYCODE
“
2k+k0

”
7: D[k]← INIT

„
∂f

∂k + k0
, k + k0 + 1, x

′
0

«
8: end for
9: end function

1: function NEXT(State)
2: i← i + 1
3: k = b1(i)
4: x← x⊕ ek+k0
5: y ← y ⊕D[k].y
6: NEXT(D[k])

7: end function

1: y ← f(0)
2: if y = 0 then 0 is a zero of f
3: z[0]← c0
4: y ← y ⊕ z[0]
5: for u from 1 to n− 1
6: if y = 0 then GRAYCODE(2u − 1) is a zero
7: z[u]← Du[u− 1]⊕ cu

8: y ← y ⊕ z[u]
9: for v from 0 to 2u − 2
10: if y = 0 then GRAYCODE(2u + v) is a zero
11: k ← b1(2

u + v + 1)
12: `← b2(2

u + v + 1)
13: z[k]← z[k]⊕Dk[`]
14: y ← y ⊕ z[k]
15: end for

16: end for

(a) General Setting (b) Unrolled version for quadratic f

6

5 Common Zeroes of Several Multivariate Polynomials

We will use several time the following simple idea: all the techniques we discussed
above perform a sequence of operations that is independent of the coefficients of the
polynomials. Therefore, m instances of (say) algorithm in Sec. 4 could be run in parallel
on f1, . . . , fm. All the parallel runs would execute the same instruction on different
data, making it efficient to implement on vector or SIMD architectures. In each iteration
of the main loop, it is easy to check if all the polynomials vanished on the current point
of (F2)

n. Evaluating all the m (quadratic) polynomials in parallel using algorithm in
Sec. 4 would take 2m2n bit operations. The point of this section is that it is possible to
do much better than this.

Note that for the sake of simplicity, we limit our discussion to the case of quadratic
polynomials (this case being the most relevant in practice). Our objective is now to
show the following result.

Theorem 2. The common zeroes of m (random) quadratic polynomials in n variables
can be found after having performed in expectation log2 n · 2n+2 bit operations.

We sketch a proof (a complete one given in the extended version) to the theorem. Let
us introduce a useful notation. Given an ordered set U , we denote the common zeroes
of f1, . . . , fm belonging to U by Z([f1, . . . , fm], U). Let us also denote Z0 = (F2)

n,
and Zi = Z ([fi], Zi−1). It should be clear that Z = Zm is the set of common zeroes
of the polynomials, and therefore the object we wish to obtain.

The key idea is to compute Zk using k parallel runs of algorithm in Sec. 4, and then
computing Zk+1, . . . , Zm one by one. Computing Zk requires 2k2n bit operations. It
then remains to compute Zm from Zk, and to find the best possible value of k. If we
use the naïve evaluation strategy with early abort to compute Zm from Zk, then it can
be shown that the best value of k is k = 2 log2 n− log2 log2 n + o(log log n), yielding
a total complexity of about 8 log2 n · 2n. In general, for degree-d systems, the same
reasoning would lead to a total complexity of about 4d · log2 n ·2n. In practice, it makes
more sense to choose k to be the word width on a microprocessor in order to use the
hardware in the most efficient way.

6 A Brief Description of the Hardware Platforms

6.1 Vector Units on x86-64

The most prevalent SIMD (single instruction, multiple data) instruction set today is
SSE2, available on all current Intel-compatible CPUs. SSE2 instructions operate on 16
architectural xmm registers, each of which is 128-bit wide. We use integer operations,
which treat xmm registers as vectors of 8-, 16-, 32- or 64-bit operands.

The highly non-orthogonal SSE instruction set includes Loads and Stores (to/from
xmm registers, memory — both aligned and unaligned, and traditional registers), Pack-
ing/Unpacking/Shuffling, Logical Operations (AND, OR, NOT, XOR, Shifts Left,
Right Logical and Arithmetic — bit-wise on units and byte-wise on the entire xmm
register), and Arithmetic (add, substract, multiply, max-min) with some or all of the
arithmetic widths. The interested reader is referred to Intel and AMD’s manuals for de-
tails on these instructions, and to references such as [18] for throughput and latencies.

7

6.2 G2xx-series Graphics Processing Units from NVIDIA

We choose NVIDIA’s G2xx GPUs as they have the least hostile GPU parallel program-
ming environment called CUDA (Compute Unified Device Architecture). In CUDA,
we program in the familiar C/C++ programming language plus a small set of GPU
extensions.

An NVIDIA GPU contains anywhere from 2–30 streaming multiprocessors (MPs).
There are 8 ALUs (streaming processors or SPs in market-speak) and two super func-
tion units (SFUs) on each MP. A top-end “GTX 295” card has two GPUs, each with
30 MPs, hence the claimed “480 cores”. The theoretical throughput of each SP per cy-
cle is one 32-bit integer or floating-point instruction (including add/subtract, multiply,
bitwise AND/OR/XOR, and fused multiply-add), and that of an SFU 2 floating-point
multiplications or 1 special operation. The arithmetic units have 20+-stage pipelines.

Main memory is slow and forms a major bottleneck in many applications. The read
bandwidth from memory on the card to the GPU is only one 32-bit read per cycle per
MP and has a latency of > 200 cycles. To ease this problem, the MP has a register file
of 64 KB (16,384 registers, max. of 128 per thread), a 16-bank shared memory of 16
KB, and an 8-KB cache for read-only access to a declared “constant region” of at most
64 KB. Every cycle, each MP can achieve one read from the constant cache, which can
broadcast to many thread at once.

Each MP contains a scheduling and dispatching unit that can handle a large number
of lightweight threads. However, the decoding unit can only decode once every 4 cycles.
This is typically 1 instruction, but certain common instructions are “half-sized”, so two
such instructions can be issued together if independent. Since there are 8 SPs in an
MP, CUDA programming is always on a Single Program Multiple Data basis, where
a “warp” of threads (32) should be executing the same instruction. If there is a branch
which is taken by some thread in a warp but not others, we are said to have a “divergent”
warp; from then on only part of the threads will execute until all threads in that warp
are executing the same instruction again. Further, as the latency of a typical instruction
is about 24 cycles, NVIDIA recommends a minimum of 6 warps on each MP, although
it is sometimes possible to get acceptable performance with 4 warps.

7 Implementations

We describe the structure of our code, the approximate cost structure, our design choices
and justify what we did. Our implementation code always consists of three stages:

Partial Evaluation: We substitute all possible values for s variables (xn−s, . . . , xn−1)
out of n, thus splitting the original system into 2s smaller systems, of w equations
each in the remaining (n − s) variables (x0, . . . , xn−s−1), and output them in a
form that is suitable for ...

Enumeration Kernel: Run the algorithm of Sec. 4 to find all candidate vectors x sat-
isfying w equations out of m (≈ 2n−w of them), which are handed over to ...

Candidate Checking: Checking possible solutions x in remaining m− w equations.

7.1 CPU Enumeration Kernel

Typical code fragments from the unrolled inner loops can be seen below:

8

(a) quadratics, C++ x86 instrinsics (b) quadratics, x86 assembly
...
diff0 ^= deg2_block[1];
res ^= diff0;
Mask = _mm_cmpeq_epi16(res, zero);
mask = _mm_movemask_epi8(Mask);
if(mask) check(mask, idx, x^155);
...

.L746:
movq 976(%rsp), %rax //
pxor (%rax), %xmm2 // d_y ^= C_yz
pxor %xmm2, %xmm1 // res ^= d_y
pxor %xmm0, %xmm0 //
pcmpeqw %xmm1, %xmm0 // cmp words for eq
pmovmskb %xmm0, %eax // movemask
testw %ax, %ax // set flag for branch
jne .L1266 // if needed, check and

.L747: // comes back here

.L1624:
movq 2616(%rsp), %rax // load C_yza
movdqa 2976(%rsp), %xmm0 // load d_yz
pxor (%rax), %xmm0 // d_yz ^= C_yza
movdqa %xmm0, 2976(%rsp) // save d_yz
pxor 8176(%rsp), %xmm0 // d_y ^= d_yz
pxor %xmm0, %xmm1 // res ^= d_y
movdqa %xmm0, 8176(%rsp) // save d_y
pxor %xmm0, %xmm0 //
pcmpeqw %xmm1, %xmm0 // cmp words for eq
pmovmskb %xmm0, %eax
testw %ax, %ax // ...
jne .L2246 // branch to check

.L1625: // and comes back

...
diff[0] ^= deg3_ptr1[0];
diff[325] ^= diff[0];
res ^= diff[325];
Mask = _mm_cmpeq_epi16(res, zero);
mask = _mm_movemask_epi8(Mask);
if(mask) check(mask, idx, x^2);
...

(c) cubics, x86 assembly (d) cubics, C++ x86 instrinsics

testing All zeroes in one byte, word, or dword in a XMM register can be tested cheaply
on x86-64. We hence wrote code to test 16 or 32 equations at a time. Strangely enough,
even though the code above is for 16 bits, the code for checking 32/8 bits at the same
time is nearly identical, the only difference being that we would subtitute the intrin-
sics _mm_cmpeq_epi32/8 for _mm_cmpeq_epi16 (leading to the SSE2 instruc-
tion pcmpeqd/b instead of pcmpeqw). Whenever one of the words (or double words
or bytes, if using another testing width) is non-zero, the program branches away and
queues the candidate solution for checking.

unrolling One common aspect of our CPU and GPU code is deep unrolling by upwards
of 1024× to avoid the expensive bit-position indexing. To illustrate with quartics as an
example, instead of having to compute the positions of the four rightmost non-zero bits
in every integer, we only need to compute the first four rightmost non-zero bits in bit 10
or above, then fill in a few blanks. This avoids most of the indexing calculations and all
the calculations involving the most commonly used differentials.

We wrote similar Python scripts to generate unrolled loops in C and CUDA code.
Unrolling is even more critical with GPU, since divergent branching and memory ac-
cesses are prohibitively expensive.

7.2 GPU Enumeration Kernel

register usage Fast memory is precious on GPU and register usage critical for CUDA
programmers. Our algorithms’ memory complexity grows exponentially with the de-
gree d, which is a serious problem when implementing the algorithm for cubic and
quartic systems, compounded by the immaturity of NVIDIA’s nvcc compiler which
tends to allocate more registers than we expected.

Take quartic systems as an example. Recall that each thread needs to maintain third
derivatives, which we may call dijk for 0 ≤ i < j < k < K, where K is the number of
variables in each small system. For K = 10, there are 120 dijk’s and we cannot waste

9

all our registers on them, especially as all differentials are not equal — dijk is accessed
with probability 2−(k+1).

Our strategy for register use is simple: Pick a suitable bound u, and among third
differentials dijk (and first and second differentials di and dij), put the most frequently
used — i.e., all indices less than u — in registers, and the rest in device memory (which
can be read every 8 instructions without choking). We can then control the number of
registers used and find the best u empirically.

fast conditional move We discovered during implementation an undocumented fea-
ture of CUDA for G2xx series GPUs, namely that nvcc reliably generates conditional
(predicated) move instructions, dispatched with exceptional adeptness.
...
xor.b32 $r19, $r19, c0[0x000c] // d_y^=d_yz
xor.b32 $p1|$r20, $r17, $r20
mov.b32 $r3, $r1
mov.b32 $r1, s[$ofs1+0x0038]
xor.b32 $r4, $r4, c0[0x0010]
xor.b32 $p0|$r20, $r19, $r20 // res^=d_y
@$p1.eq mov.b32 $r3, $r1
@$p1.eq mov.b32 $r1, s[$ofs1+0x003c]
xor.b32 $r19, $r19, c0[0x0000]
xor.b32 $p1|$r20, $r4, $r20
@$p0.eq mov.b32 $r3, $r1 // cmov
@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] // cmov
...

...
diff0 ^= deg2_block[3]; // d_y^=d_yz
res ^= diff0; // res^=d_y
if(res == 0) y = z; // cmov
if(res == 0) z = code233; // cmov
diff1 ^= deg2_block[4];
res ^= diff1;
if(res == 0) y = z;
if(res == 0) z = code234;
diff0 ^= deg2_block[0];
res ^= diff0;
if(res == 0) y = z;
if(res == 0) z = code235;
...

(a) decuda result from cubin (b) CUDA code for a inner loop fragment

Consider, for example, the code displayed above right. According to our experi-
mental results, the repetitive 4-line code segments average less than three SP (stream-
processor) cycles. However, decuda output of our program shows that each such code
segment corresponds to at least 4 instructions including 2 XORs and 2 conditional
moves [as marked in above left]. The only explanation is that conditional moves can
be dispatched by the SFUs (Special Function Units) so that the total throughput can
exceed 1 instruction per SP cycle. Further note that the annotated segment on the right
corresponds to actual instructions far apart because an NVIDIA GPU does opportunis-
tic dispatching but is nevertheless a purely in-order architecture, so proper scheduling
must interleave instructions from different parts of the code.

testing The inner loop for GPUs differs from CPUs due to the fast conditional moves.
Here we evaluate 32 equations at a time using Gray code. The result is used to set a

flag if it happens to be all zeroes. We can now conditional move of the index based on
the flag to a register variable z, and at the end of the loop write z out to global memory.

However, how can we tell if there are too many (here, two) candidate solutions in
one small subsystem? Our answer to that is to use a buffer register variable y and a
second conditional move using the same flag. At the end of the thread, (y, z) is written
out to a specific location in device memory and sent back to the CPU.

Now subsystems which have all zero constant terms are automatically satisfied by
the vector of zeroes. Hence we note them down during the partial evaluation phase
include the zeros with the list of candidate solutions to be checked, and never have
to worry about for all-zero candidate solution. The CPU reads the two doublewords
corresponding to y and z for each thread, and:
1. z==0 means no candidate solutions,
2. z!=0 but y==0 means exactly one candidate solution, and
3. y!=0 means 2+ candidate solutions (necessitating a re-check).

10

7.3 Checking Candidates

Checking candidate solutions is always done on CPU because the programming in-
volves branching and hence is difficult on a GPU even with that available. However, the
checking code for CPU enumeration and GPU enumeration is different.

CPU With the CPU, the check code receives a list of candidate solutions. Today the
maximum machine operation is 128-bit wide. Therefore we should collect solutions
into groups of 128 possible solutions. We would rearrange 128 inputs of n bits such that
they appear as n __int128’s, then evaluate one polynomial for 128 results in parallel
using 128-bit wide ANDs and XORs. After we finish all candidates for one equation,
go through the results and discard candidates that are no longer possible. Repeat the
result for the second and any further equations (cf. Sec. 3).

We need to transpose a bit-matrix to achieve the effect of a block of w inputs n-bit
long each, to n machine-words of w-bit long. This looks costly, however, there is an
SSE2 instruction PMOVMSKB (packed-move-mask-bytes) that packs the top bit of each
byte in an XMM register into a 16-bit general-purpose register with 1 cycle throughput.
We combine this with simultaneous shifts of bytes in an XMM and can, for example,
on a K10+ transpose a 128-batch of 32-bit vectors (0.5kB total) into 32 __int128’s
in about 800 cycles, or an overhead of 6.25 cycles per 32-bit vector. In general the
transposition cost is at most a few cycles per byte of data, negligible for large systems.

GPU As explained above, for the GPU we receive a list with 3 kinds of entries:

1. The knowledge that there are two or more candidate solutions within that same
small system, with only the position of the last one in the Gray code order recorded.

2. A candidate solution (and no other within the same small system).
3. Marks to subsystems that have all zero constant terms.

For Case 1, we take the same small system that was passed into the GPU and run the
Enumerative Kernel subroutine in the CPU code and find all possible small systems.
Since most of the time, there are exactly two candidate solutions, we expected the Gray
code enumeration to go two-thirds of the way through the subsystem. Merge remaining
candidate solutions with those of Case 2+3, collate for checking in a larger subsystem
if needed, and pass off to the same routine as used in the CPU above. Not unexpectedly,
the runtime is dominated by the thread-check case, since those does millions of cycles
for two candidate solutions (most of the time).

7.4 Partial Evaluation

The algorithm for Partial Evaluation is for the most part the same Gray Code algorithm
as used in the Enumeration Kernel. Also the highest degree coefficients remain constant,
need no evaluation and and can be shared across the entire Enumeration Kernel stage.
As has been mentioned in the GPU description, these will be stored in the constant
memory, which is reasonably cached on NVIDIA CUDA cards. The other coefficients
can be computed by Gray code enumeration, so for example for quadratics we have
(n− s)+2 XOR per w bit-operations and per substitution. In all, the cost of the Partial
Evaluation stage for w′ equations is ∼ 2s w′

8

((
n−s
d−1

)
+ (smaller terms)

)
byte memory

11

writes. The only difference in the code to the Enumerative Kernel is we write out the
result (smaller systems) to a buffer, and check for a zero constant term only (to find
all-zero candidate solutions).

Peculiarities of GPUS Many warps of threads are required for GPUs to run at full
speed, hence we must split a kernel into many threads, the initial state of each small
system being provided by Partial Evaluation. In fact, for larger systems on GPUs, we
do two stages of partial evaluation because

1. there is a limit to how many threads can be spawned, and how many small systems
the device memory can hold, which bounds how small we can split; but

2. increasing s decreases the fast memory pressure; and
3. a small systems reporting two or more candidate solutions is costly, yet we can’t

run a batch check on a small system with only one candidate solution — hence, an
intermediate partial evaluation so we can batch check with fewer variables.

7.5 More Test Data and Discussion

Some minor points which the reader might find useful in understanding the test data, a
full set of which will appear in the extended version.

Candidate Checking. The check code is now 6–10% of the runtime. In theory (cf.
Sec. 3) evaluation should start with a script which hard-wires a system of equations into
C and compiling to an excutable, eliminating half of the terms, and leading to

(
n−s

d

)
SSE2 (half XORs and half ANDs) operations to check one equation for w = 128 inputs.
The check code can potentially become more than an order of magnitude faster. We do
not (yet) do so presently, because compiling may take more time than the checking
code. However, we may want to go this route for even larger systems, as the overhead
from testing for zero bits, re-collating the results, and wasting due to the number of
candidate solutions is not divisible by w would all go down proportionally.

Without hard-wiring, the running time of the candidate check is dominated by load-
ing coefficients. E.g., for quartics with 44 variables, 14 pre-evaluated, K10+ and Ci7
averages 4300 and 3300 cycles respectively per candidate. With each candidate averag-
ing 2 equations of

(
44−14

4

)
terms each, the 128-wide inner loop averages about 10 and

7.7 cycles respectively per term to accomplish 1 PXOR and 1 PAND.

Partial Evaluation. We point out that Partial Evaluation also reduces the complexity of
the Checking phase. The simplified description in Sec. 5 implies the cost of checking
each candidate solution to be ≈ 1

w

(
n
d

)
instructions. But we can get down to ≈ 1

w

(
n−s

d

)
instructions by partially evaluating w′ > w equations and storing the result for check-
ing. For example, when solving a quartic system with n = 48, m = 64, the best CPU
results are s = 18, and we cut the complexity of the checking phase by factor of at least
4× even if it was not the theoretical 7× (i.e.,

(
n
d

)
/
(
n−s

d

)
) due to overheads.

The Probability of Thread-Checking for GPUs. If we have n variables, pre-evaluate
s, and check w equations via Gray Code, then the probability of a subsystem with
2n−s vectors including at least two candidates ≈

(
2n−s

2

)
(1 − 2−w)2

n−s

(2−w)2 ≈
1/22(s+w−n)+1, provided that n < s+w. As an example, for n = 48, s = 22, w = 32,
the thread-recheck probability is about 1 in 213, and we must re-check about 29 threads
using Gray Code. This pushes up the optimal s for GPUs.

12

Architecture and Differences. All our tests with a huge variety of machines and video
cards show that the kernel time in cycles per attempt is almost a constant of the ar-
chitecture, and the speed-up in multi-cores is almost completely linear for almost all
modern hardware. So we can compute the time complexity given the architecture, the
frequency, the number of cores, and n. The marked cycle count difference between Intel
and AMD cores is explained by Intel dispatching three XMM (SSE2) logical instruc-
tions to AMD’s two per cycle and handling branch prediction and caching better.

Fig. 1. Cycles per candidate tested for degree 2,3 and 4 polynomials.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 3 4

c
y
c
le

s

degree

K10
K10+

C2
C2+
Ci7

G200

As the Degree d increases. We plot how many cycles is taken by the inner loop (which
is 8 vectors per core for CPUs and 1 vector per SP for GPUs) on different architectures
in Fig. 1. As we can see, all except two architectures have inner loop cycle counts that
are increasing roughly linearly with the degree. The exceptions are the AMD K10 and
NVIDIA G200 architectures, which is in line with fast memory pressure on the NVIDIA
GPUs and fact that K10 has the least cache among the CPU architectures.

More Tuning. We can conduct a Gaussian elimination among the m equations and such
that m/2 selected terms in m/2 of the equations are all zero. We can of course make this
the most commonly used coefficients (i.e., c01, c02, c12, . . . for the quadratic case). The
corresponding XOR instructions can be removed from the code by our code generator.
This is not yet automated and we have to test everything by hand. However, this clearly
leads to significant savings. On GPUs, we have a speed up of 21% on quadratic cases,
18% for cubics, and 4% for quadratics. [The last is again due to the memory problems.]

13

Table 2. Efficiency comparison: cycles per candidate tested on one core

n = 32 n = 40 n = 48 Testing platform
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 GHz Arch. Name USD

0.58 1.21 1.41 0.57 1.27 1.43 0.57 1.26 1.50 2.2 K10 Phenom9550 120
0.57 0.91 1.32 0.57 0.98 1.31 0.57 0.98 1.32 2.3 K10+ Opteron2376 184
0.40 0.65 0.95 0.40 0.70 0.94 0.40 0.70 0.93 2.4 C2 Xeon X3220 210
0.40 0.66 0.96 0.41 0.71 0.94 0.41 0.71 0.94 2.83 C2+ Core2 Q9550 225
0.50 0.66 1.00 0.38 0.65 0.91 0.37 0.62 0.89 2.26 Ci7 Xeon E5520 385
2.87 4.66 15.01 2.69 4.62 17.94 2.72 4.82 17.95 1.296 G200 GTX280 n/a
2.93 4.90 14.76 2.70 4.62 15.54 2.69 4.57 15.97 1.242 G200 GTX295 500

Notes and Acknowledgements

C. Bouillaguet thanks Jean Vuillemin for helpful discussions. The Taiwanese authors
thank Ming-Shing Chen for assistance with programming and fruitful discussion, Tai-
wan’s National Science Council for partial sponsorship under grants NSC96-2221-E-
001-031-MY3, 98-2915-I-001-041, and 98-2219-E-011-001 (Taiwan Information Se-
curity Center), and Academia Sinica for the Career Development Award. Questions and
esp. corrections about the extended version should be addressed to by@crypto.tw.

References

1. G. V. Bard, N. T. Courtois, and C. Jefferson. Efficient methods for conversion and solution of
sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. http:
//eprint.iacr.org/2007/024.

2. M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis computation of
semi-regular overdetermined algebraic equations. In Proc. Int’l Conference on Polynomial
System Solving, pp. 71–74, 2004. INRIA report RR-5049.

3. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic expansion of the degree of
regularity for semi-regular systems of equations. Proc. MEGA 2005, 2005.

4. C. Berbain, H. Gilbert, and J. Patarin. QUAD: A practical stream cipher with provable
security. Eurocrypt 2006, LNCS 4004, pp. 109–128.

5. D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM on graphics cards.
Eurocrypt 2009, LNCS 5479, pp. 483–501.

6. Luk Bettale, Jean-Charles Faugère and Ludovic Perret. Hybrid approach for solving multi-
variate systems over finite fields, J. Math. Crypto. 3:3(2009) pp. 177–197.

7. C. Bouillaguet, J.-C. Faugère, P.-A. Fouque, and L. Perret. Differential-algebraic algorithms
for the isomorphism of polynomials problem. http://eprint.iacr.org/2009/583

8. C. Bouillaguet, P.-A. Fouque, A. Joux, and J. Treger. A family of weak keys in HFE (and the
corresponding practical key-recovery). http://eprint.iacr.org/2009/619.

9. B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck, 1965.

10. Johannes Buchmann, Daniel Cabarcas, Jintai Ding and Mohamed Saied Emam Mohamed.
Flexible Partial Enlargement to Accelerate Gröbner Basis Computation over F2, Africacrypt
2010, LNCS 6055, pp. 69–81.

11. N. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on Keeloq. FSE 2008,
LNCS 5086, pp. 97–115.

12. N. Courtois, L. Goubin, and J. Patarin. SFLASH: Primitive specification (second revised
version), 2002. https://www.cosic.esat.kuleuven.be/nessie

14

13. N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overde-
fined systems of multivariate polynomial equations. Eurocrypt 2000, LNCS 1807, pp. 392–
407. Extended ver.: http://www.minrank.org/xlfull.pdf.

14. N. de Bruijn. Asymptotic methods in analysis. 2nd edition. Bibliotheca Mathematica. Vol. 4.
Groningen: P. Noordhoff Ltd. XII, 200 p. , 1961.

15. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). J. of Pure and
Applied Algebra, 139(1999), pp. 61–88.

16. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). ACM ISSAC 2002, pp. 75–83.

17. J.-C. Faugère and A. Joux. Algebraic cryptanalysis of Hidden Field Equations (HFE) using
Gröbner bases. CRYPTO 2003, LNCS 2729, pp. 44–60.

18. A. Fog. Instruction Tables. Copenhagen University, College of Engineering, Feb 2010. Lists
of Instruction Latencies, Throughputs and micro-operation breakdowns for Intel, AMD, and
VIA CPUs, http://www.agner.org/optimize/instruction_tables.pdf.

19. J. Patarin. Asymmetric cryptography with a hidden monomial. Crypto 1996, LNCS 1109,
pp. 45–60.

20. J. Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new
families of asymmetric algorithms. Eurocrypt 1996, LNCS 1070, pp. 33–48. Extended ver.:
http://www.minrank.org/hfe.pdf.

21. J. Patarin, N. Courtois, and L. Goubin. QUARTZ, 128-bit long digital signatures
http://www.minrank.org/quartz/. CT-RSA 2001, LNCS 2020, pp. 282–297.

22. J. Patarin, L. Goubin, and N. Courtois. Improved algorithms for Isomorphisms of Polynomi-
als. Eurocrypt 1998, LNCS 1403, pp. 184–200. Extended ver.: http://www.minrank.
org/ip6long.ps.

23. H. Raddum. MRHS equation systems. SAC 2007, LNCS 4876, pp. 232–245.
24. M. Sugita, M. Kawazoe, L. Perret, and H. Imai. Algebraic cryptanalysis of 58-round SHA-1.

FSE 2007, LNCS 4593, pp. 349–365.
25. B.-Y. Yang and J.-M. Chen. Theoretical analysis of XL over small fields. ACISP 2004,

LNCS 3108, pp. 277–288.
26. B.-Y. Yang, J.-M. Chen, and N. Courtois, On Asymptotic Security Estimates in XL and

Gröbner Bases-Related Algebraic Cryptanalysis, ICICS 2004, LNCS 3269, pp. 401-413.

15

