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Abstract. Side-channel based collision attacks are a mostly disregarded
alternative to DPA for analyzing unprotected implementations. The ad-
vent of strong countermeasures, such as masking, has made further re-
search in collision attacks seemingly in vain. In this work, we show that
the principles of collision attacks can be adapted to efficiently break some
masked hardware implementation of the AES which still have first-order
leakage. The proposed attack breaks an AES implementation based on
the corrected version of the masked S-box of Canright and Batina pre-
sented at ACNS 2008. The attack requires only six times the number of
traces necessary for breaking a comparable unprotected implementation.
At the same time, the presented attack has minimal requirements on the
abilities and knowledge of an adversary. The attack requires no detailed
knowledge about the design, nor does it require a profiling phase.

1 Introduction

Ten years after the introduction of side-channel attacks [2, 10, 13, 15, 23], the
creation of a DPA-resistant cryptographic hardware implementation remains a
challenge. During the last years several countermeasures to prevent power and
EM-analysis have been proposed [12, 20, 21, 29, 30]. One of the main targets of
the side-channel community are implementations of the AES. AES [19], having
been the NIST symmetric encryption standard for about 10 years, is proba-
bly the most widely used cipher in practical applications. Despite of its high
cryptographic security in a black box scenario, implementations of AES are a
popular and easy target for side-channel attacks such as DPA and SPA. Cor-
respondingly, the efficient and leakage-minimized implementation of AES is a
well-studied problem [8, 9, 21, 24, 25].

At the same time attacking techniques have been improved and defeated
many of these countermeasures. The first practical evaluation was performed
on one additive and one multiplicative masking scheme of AES [16]. It has
been shown that though they are resistant to classical DPA attacks considering
standard Hamming Weight (HW) and Hamming Distance (HD) models, more
sophisticated attacks using more precise power models, e.g., the toggle count
model [16], are capable of overcoming the masking countermeasure. However,
these attacks usually require detailed information about the implementation such



as the netlist of the target device. Later it was shown in [17] that XOR gates
of the mask multipliers of the masked S-box play the most significant role in
the susceptibility of the evaluated schemes, but to our knowledge the proposed
solutions have not been practically evaluated.

Another approach for attacking implementations using a power or EM side-
channel are collision attacks. Here, the attacker concludes from the leakage that
two identical intermediate values have been processed and uses this information
to cryptanalize the encryption scheme. The practicability of these attacks has
been shown against DES in [14, 27]. Successful attacks against AES have been
presented in [6, 26]. Collision attacks remain less popular than DPA-like attacks
because of their sometimes complicated setup, their strong dependence on noise,
and the more complex key recovery phase. Although the number of traces actu-
ally used in an attack is usually lower than that of classical DPAs, the number
of traces needed to generate a collision normally makes the attacks less effi-
cient than, e.g., correlation DPAs. Finally, with the advent of randomizing-like
countermeasures, collision attacks seem to be infeasible against protected imple-
mentations.

Our Contribution In this work we present a method to identify and exploit
collisions between masked S-boxes in a very efficient manner. In fact, we use cor-
relation to combine the leakage of all possible collisions and thereby including
the full set of obtained measurements in the attack. Since practical evaluation of
attacks and countermeasures by means of making a state of the art ASIC chip is
not a time- and cost-effective approach, we have applied our attack on a masked
version of the AES, implemented on a Xilinx Virtex-II Pro chip mounted on
the Side-channel Attack Standard Evaluation Board (SASEBO) [1]. Our imple-
mentation generates all masks for each plaintext byte uniformly at random and
none of the mask bytes is reused in later encryptions. Our investigation shows
that the applied masking scheme is capable of resisting against those first-order
DPA attacks which use common and well-known power models, e.g., HD and
HW. From the results of [16] it can be expected that the masking scheme can be
overcome when using a more accurate power model, e.g., toggle count, or when
applying template-based DPA attacks. These attacks, however, assume a power-
ful adversary, because detailed knowledge such as a back annotated netlist of the
layout is needed, or a profiling phase using a controllable target implementation
has to be performed. None of these requirements have to be met to perform the
attack presented in this article.

Our proposed attack reduces the effect of randomness by means of aver-
aging over known (not chosen) inputs, and detects the collisions on the S-box
input/output by examining the leakage of averaged power traces. In fact, our at-
tack reveals that in our target implementation even uniformly distributed masks
cannot prevent a first-order leakage depending on the unmasked values. It should
be noted that our attack does not depend on a specific leakage model. The ex-
perimental results show that our attack is able to recover the key by means of
less than 20 000 traces while the secret starts leaking out by a zero value attack
using at least 1 000 000 traces of the same implementation. For a second-order



zero-offset DPA, even around 8 000 000 traces are needed to recover the secret
key.

Organization The remainder of this article is organized as follows: Section 2
describes the target implementation of the AES and sets it into the context
of related work. In Section 3 we analyze the AES implementation with classi-
cal methods, before we detail on the proposed collision attack in Section 4. A
conclusion is given in Section 5.

2 Hardware Implementation of the AES

Several optimizations for hardware implementations of the AES have been pro-
posed. To minimize circuit area consumption of the AES, Rijmen [24] suggested
the use of subfield arithmetic in GF (24) to compute the inverse in GF (28).
The idea was taken further by Satoh et al. [25] using the "composite-field"
approach/"tower-field" representation by Paar [22] to implement the inversion
in GF (24) by the use of sub-subfield arithmetic in GF (22). Along with other
innovations this resulted in a very compact AES S-box, which was further im-
proved by Canright [8] through choosing the normal bases which yielded the
smallest circuit size.

Several masking schemes have been proposed to create a masked AES S-box
using either multiplicative or additive methods. Unfortunately, multiplicative
ones [4, 11] are vulnerable to certain attacks, especially the so-called zero-value
attack, because a zero input value does not get masked by multiplication. The
solution is to use the tower-field representation for an additive masking scheme
because the inversion in GF (22) is equivalent to squaring which is linear. The first
at least algorithmically provable secure additive masking scheme was proposed
by Blömer et al. [5]. Later Oswald et al. [21] proposed a more efficient scheme by
using different bases and reusing some mask parts. Canright et al. [9] applied this
idea to his very compact S-box resulting in the most compact masked S-box to
date. [33] is also another design showing the interest of the research community
on this topic.

2.1 Our Implementation

Our goal is the evaluation of a hardware implementation of the AES that is sup-
posed to be secure against first-order side-channel attacks. To cover a wide range
of possible implementations, we decided to implement two different architectures
of the AES. The first one is designed to achieve low power consumption and has
a low area requirement. This is achieved by choosing an 8-bit data path and
features a single S-box that is sequentially used for SubBytes operations and the
key scheduling. All registers are implemented as byte-wise shift-registers which
can be clocked independently. The full data path of the complete AES engine
excluding the key registers is masked. The mask values are generated internally
by means of a PRNG, and the (uniform) distribution of the generated random
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Fig. 1. Architecture of the AES design

values have been verified. The masks are different for each plaintext byte and
differ in each execution of the encryption. The high level architecture of our AES
design is depicted in Fig. 1. Unless stated otherwise, our analysis focuses on this
implementation. To verify that our attack also works in the presence of noise,
we implemented a second AES engine that has a 32-bit data path and features
four parallel S-boxes. Details on this engine can be found in Appendix B of [18].

The design of the masked S-box is identical to [9] which uses two independent
masks, m and n to randomize the input and the output. We retrieved the Verilog
code from author’s website and paid special attention that the order of the
operations and other suggestions to maintain the masking scheme have been
strictly kept by the synthesis tool.

Encryption starts by providing 128-bit plaintext, key, and masks m and
n. The masks are independent and uniformly distributed and differ for each
plaintext byte and each encryption execution. At the beginning of each round
ShiftRows is performed on both the masked data state and the input mask m.
The S-box is then first used by the key schedule unit to compute the first 32-bit
part of the next round key without using any masks. In the following four clock
cycles the masked S-box performs the SubBytes transformation on the first col-
umn. The consecutive masked MixColumns and AddRoundKey transformations
are performed using a 32-bit wide datapath. During this operation the mask of
the state is also changed back to mask m because during SubBytes the input
mask m is replaced by the output mask n. This sequence of four times SubBytes
followed by MixColumns and AddRoundkey is repeated four times to complete
the round function.
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2.2 Details on the Masked AES S-box

The general structure of the used masked S-box is depicted in Fig. 2 omitting
the tower-field conversion. While only the GF (28)/GF (24) module is shown,
the GF (24)/GF (22) module uses the same structure the only difference being
that instead of an GF (22) inversion module, this step is merged as squaring to
the overall design. As can be seen the additional elements in the datapath are
all additive (XORs). It is important to introduce a new mask before adding the
masked products since the distribution of the sum of two masked products is oth-
erwise not uniformly distributed as explained in [9]. By doing all summations in
the correct order the result of every computation is either uniformly distributed
or has the random product distribution independent of the used plaintext and
key. Therefore, as stated in [9], the scheme is considered to theoretically achieve
perfect masking on an algorithmic level by the definition of [5].

3 Analysis of the AES Implementation

The whole design has been implemented on a Xilinx Virtex-II Pro FPGA (xc2vp7)
of a SASEBO circuit board which is particularly designed for side-channel at-
tack experiments [1]. To better understand the leakage of our implementation
we performed several tests of our platform. We performed tests to identify when
certain leakages occur. Subsequently we analyzed the vulnerability of our imple-
mentation to first-order DPA attacks based on correlation, both in the unmasked
and in the masked case.

All tests are performed on the power consumption of the Virtex-II FPGA
containing our implementation. Measurements are performed using a LeCroy
WP715Zi 1.5GHz oscilloscope at a sampling rate of 5GS/s1 and by means of
a differential probe which captures the voltage drop over an 8Ω resistor in the

1 This oversampling is not essential here; however, since glitches and toggles in hard-
ware occur at very high frequencies, we decided to keep a high sampling rate, but we
have confirmed the feasibility of the attacks using lower sampling rates, e.g., 1GS/s.



VDD (3.3V) supply of the FPGA. In all the experiments the clock signal is
provided by a 24MHz oscillator which is divided by 8 using a frequency divider,
i.e., our cryptographic engine is clocked at a frequency of 3MHz.

3.1 Analysis of the Unprotected Architecture

In a first step we analyze the leakage of an unprotected implementation that
employs the highly compact unmasked AES S-box design of Canright [8]. A
power trace of this unprotected implementation during the first 12 clock cycles
is shown in Fig. 3(a). The processing order and hence the occurrence of leakages
over clock cycles will pretty much stay the same for the masked implementation,
as the high level architecture remains constant.

Similarly to what was observed in [16], DPA attacks using the HW of the S-
box input/output are not successful. We get a good estimation about the leakage
strength of the implementation platform performing a DPA attack predicting the
HD of 8 bits of the state register2. The result of this HD-based DPA is shown
by Fig. 3(b). As shown in Fig. 3(d), the leakage of approx. 3 000 traces suffices
to perform a successful attack using a HD model.

As explained in [15], most of the time implementations of the AES S-box
consume less power for the zero input value than for the other cases. It holds
here as well, and an attack using the zero value model is possible which is shown
by Fig. 3(c). Moreover, according to Fig. 3(d) 4 000 measurements are required
for succeeding with the zero value attack.

3.2 Analysis of the Masked Architecture

Moving towards the masked version of the implementation, we should emphasize
that neither the attacks using the HW model predicting S-box input/output nor
those which use the HD model on the state register are expectedly able to reveal
the secrets. Since in our architecture the state and the mask registers are shifted
in the same fashion, both masked values and the masks are processed at the same
time. Therefore, one can perform a zero-offset second-order DPA attack [31] by
squaring the power values and by means of a HD model to predict the transitions
in the state register. In practice higher-oder attacks usually require much more
traces in comparison to the first-order ones, and we collected 10 000 000 traces to
clearly distinguish the correct key guess amongst the others. The result of such
an attack is shown by Fig. 4 indicating that around 8 000 000 traces are needed to
have a successful attack. In our experiments we have examined several possible
power models in first-order attacks, and interestingly the secret starts leaking
by a zero value DPA attack using 1 000 000 traces. The relevant result is shown
by Fig. 5. It shows that power consumption of the target implementation is not
really independent of the unmasked values, and this issue motivated us to try
for an alternative approach in order to decrease the number of measurements

2 Note that to predict the HD of the state register in our target architecture, two key
bytes amongst 216 hypotheses should be guessed at the same time.
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Fig. 3. (a) A measured power traces of an undefended implementation, (b) DPA attack
result predicting toggles in the state register, (c) DPA attack using zero value model
predicting the S-box input, and (d) the required number of traces in attacks using (left)
HD model and (right) zero value model.

Fig. 4. Result of a zero-offset second-order DPA attack on the masked implementation
using a HD model (left) by 10 000 000 traces and (right) at point 2.9µs over the number
of traces.



Fig. 5. Result of a zero value DPA on the masked implementation by 1 million traces.

and to distinguish the secret more clearly. It should be emphasized that in our
target implementation the mask values are internally generated by means of a
PRNG, and the (uniform) distribution of the generated random values has been
verified. Furthermore, the masks are different for each plaintext byte and differ
in each execution of the encryption.

Before introducing our collision attack, we first explain some issues which
we observed during practical experiments. As mentioned before, we acquired
millions of traces for the aforementioned attacks. It should be noted that these
traces have been recorded on randomly chosen plaintext bytes. To learn about the
behavior of the implementation, we computed the average over the traces (mea-
sured from the masked implementation) based on a plaintext byte and thereby
obtained 256 mean traces. By examining the variance of the mean traces we can
detect in which clock cycle a function, e.g. the S-box, relevant to the selected
plaintext byte is computed, if the mean traces are not ideally close to each other.
If such features are detectable in the power traces, the mean traces are not in-
dependent of the unmasked values. In Fig. 6 two variance traces over the mean
traces of plaintext byte 0 and byte 5 are shown3. The figure shows that a func-
tion over these two plaintext bytes is computed in two consecutive clock cycles,
which fits to the target architecture. We have used 1 000 000 measurements to
generate the variance traces shown in Fig. 6, but we have examined using less
number of traces, e.g., 50 000, and the result had the same shape and the same
feature.

Since the mean traces depend on the unmasked values, a couple of attacks
are possible. For example, as expected by the authors of [9], a DPA using the
toggle-count model should work here. Yet, for that attack the adversary needs
to have access to the target netlist or layout to simulate and extract the toggle-
count model. Moreover, a template-based DPA attack also might work, but the
adversary needs to first create profiles for a known key. The aim of our attack is
to avoid such limitations and strong assumptions.

4 Correlation-Enhanced Collision Attack

Based on the observations described in Section 3, we adapt collision attacks to
be able to exploit any first-order leakage without knowing the precise hypothet-

3 Note that the mean traces are computed based on each plaintext byte independently.



Fig. 6. Variance of mean traces for plaintext byte 0 and 5

ical power model. The attack targets collisions in the full S-box computation.
Detected collisions have the same 8-bit input and consequently the same 8-bit
output value. Please keep in mind that these values are always masked, with
different masks for each measurement and each S-box. The developed attack
does not require any sort of profiling phase with a known-key device. Of course,
knowledge about the position of the execution of the S-box computation are
helpful, but all information needed can be extracted from the measurements
of the device under attack. As described in section 3.2, one way would be to
compute the mean traces and perform a variance check. Alternatively, such in-
formation can be gained by combing through the power traces with an offset of
e.g. one clock cycle [28]. We split the attack into a measurement phase, which
is comparable to previous collision attacks against unmasked implementations,
and an enhanced detection phase.

During the measurement phase we record the power consumption traces Ti

of the encryption of random known plaintexts Pi =
{

pij
}15

j=0
. We know that

each trace Ti contains the leakage of every S-box computation of the first round
sij = S(pij ⊕kj), which we target in our collision attack. In our model, a collision
occurs when two S-box computations at the byte position j1 = a and j2 = b
collide, i.e., have equal output si1a = si2b and due to the bijectivity of the S-box

also equal input pi1a ⊕ ka = pi2b ⊕ kb. We can define the input difference ∆a,b as

∆a,b = pi1a ⊕ pi2b = ka ⊕ kb

Hence, this type of collision reveals a linear relation between two key bytes,
depending only on the known difference ∆a,b. By finding more first-round colli-
sions, eventually we will have relations for all 16 key bytes ki, reducing the key
entropy to 8 bits (i.e. 256 key candidates for the full 128-bit AES key), which
can easily be recovered by trial and error. This attack is labeled linear collision

attack on AES in [6]. In theory, this attack is prevented by masking, since both
input and output of the S-box are masked, destroying any relation between in-
put difference ∆ and the plaintexts pi1a and pi2b . Yet, we show that there is a
remaining leakage in the masked Canright/Batina S-box that can be exploited
by an adaption of the linear collision attack we describe in the following.

The measurement phase is the same as for the normal linear collision attack.
Yet, we apply a different detection phase to identify many collisions at once.



As described above, we first have to detect where the leakage of the individual
S-boxes occurs. To reduce the influence of the masks, we average the power
consumption for equal input bytes pj . We do this by browsing all of our traces
T and averaging only those traces where the jth plaintext byte equals a certain
value α ∈ GF (28). Hence, we get 28 average traces Mα

j for each plaintext byte

position j, where Mα
j is the average of all traces Ti where pij = α.

Mα
j = Ti · δ(pij = α)

Unlike the classical linear collision attack, we do not try to detect a single
collision, but directly include all possible collisions between two byte positions
j = a and j = b. We know that for one particular key pair ka and kb, the
difference ∆a,b = ka ⊕ kb is constant. Hence, a collision occurs whenever the
plaintexts at position a and b show the same difference, i.e., pa = α and pb =
α ⊕∆a,b. Our approach is to guess the difference ∆a,b and verify our guess by
detecting all resulting collisions pa = α and pb = α ⊕ ∆a,b for all α ∈ GF (28)
at the same time. For detecting the correct ∆a,b, we correlate the averaged
power consumption Mα

a of the S-box lookup of pa = α to the averaged power

consumption M
α⊕∆a,b

b of the S-box lookup of pb = α⊕∆a,b for all α ∈ GF (28).
The correct difference ∆a,b of the two key bytes ka and kb is then given by:

argmax
∆a,b

ρ
(

Mα
a ,M

α⊕∆a,b

b

)

The correlation ρ
(

Mα
a ,M

α⊕∆a,b

b

)

is computed over all α ∈ GF (28) and can

be computed for every point in time. It is maximum if ∆a,b is correct. For
wrong differences ∆, the correlation approaches zero. Hence, this attack behaves
similar to a correlation attack. Unlike correlation based DPA, which correlates
the power consumption to a power model that will never truly represent the real
power consumption, our attack correlates the power consumption of one S-box
computation to the power consumption of a different instantiation of the same
S-box (processing the same value). Compared to classical collision attacks, our
attack is stronger because all traces are included in calculating the correlation
coefficient ρ, i.e. leakage from all traces Ti is used to recover the key relations.

If we go back to the last experimental results described in section 3.2, where
millions of traces have been collected from the masked implementation while all
256 mask bits are randomly generated for each measured encryption, we had
the mean traces for plaintext byte 0, M0, and for plaintext byte 5, M5. Also,
we have shown that a function, here the S-box, exists, which processes a value
depending on these two plaintext bytes at two consecutive clock cycles. Then
we shift for example M5 with the length of a clock cycle to the left to align
the traces and perform the attack algorithm. The result of the attack is shown
by Fig. 7 in which the correct hypothesis is obviously distinguishable amongst
others. As mentioned before, our attack computes the correlation between the
power consumption of two instances of the S-box computation; this explains
why we get such a high correlation value for a correct guess of ∆. It should be
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Fig. 7. (top) The result of collision attack using the mean traces of byte 0 and byte 5,
(bottom) the result of the attack over the number of used measurements.

noted that while initially 1 000 000 traces have been used to compute the mean
traces, around 20 000 traces are enough to distinguish the correct key relation.
The relevant figure for the number of required traces is also shown in Fig. 7.

Repeating this attack on other sets of mean traces, e.g., between M0 and
M1, M0 and M2, and so on, will reveal 15 relations between all key bytes4. The
correct AES key can easily be distinguished from the remaining 256 candidates
by simple trial and error. In cases where this might not be feasible or to recover
the full key of an implementation of AES-256, we simply extend our attack to
the second round. An alternative for the case when ciphertexts are unknown is
to compute the output of MixColumns of the first round (of AES) for each of
the 256 possible key candidates and perform only one (collision) attack using the
leakages of the second round for each of the 256 128-bit key candidates separately.
The attack would be possible for only one of the key candidates since the use
of others will lead to wrong input bytes for the AddRoundKey and therefore to
incorrect averages (to make the mean traces). In fact, a variance test approach
on mean traces of the second round can reveal the correct 128-bit key candidate,
and performing the attack on the second round is not even necessary to recover
the full key of AES-128. No new measurements are needed for this extension.

Knowing only the ciphertext bytes the same attack is possible using the
power traces covering the last round of the encryption because of the absence
of MixColumns at the last round. Similarly to the attack on the start of the
encryption, 256 128-bit candidates will remain as the last round key. Then,
for each of them the input of MixColumns of the 9th round can be computed
which is also the output of the S-box of the same round. Therefore, the variance
check approach as mentioned above will reveal the correct key. We practically

4 In fact, 120 key byte relations can be computed and possibly all be evaluated by
voting techniques [6, 32].



performed the aforementioned attack, and were able to extract the secret using
the same number of traces as in the known-plaintext attack.

Resemblance to Template DPA: A better understanding of how and why
the attack works can be gained by a comparison to a template-based DPA as
described in [3, 15]. Since we do not have a profiling phase, the creation of tem-
plates is different. We create templates Mα

j for each input (or output) value
pj = α (like in some template attacks) and also for each input (or output) byte
position j. The separate templates for different byte positions j are necessary,
as we cannot match our templates Mα

j to specific states (or input-output com-
binations) of the S-boxes, because we lack knowledge about the key. In the next
step, we compare pairs of these templates for two positions j1 = a and j2 = b
by correlating them to each other. A template-based DPA attack, as described
in [15], instead uses the template as power model which is correlated to each
individual power trace. Due to the noise in each trace, the resulting correla-
tion values are much lower when compared to our case. Our attack correlates
two sets of templates, which have a much lower noise due to the averaging pro-
cess. The relative distance between the correlation of the right and the wrong
key hypotheses is quite similar in both attacks. Compared to a template-based
DPA, our attack assumes a much weaker adversary that neither needs access to
a known key implementation nor requires a profiling phase.

Attack on parallel architectures/Influence of noise: All the practical
results shown are for an 8-bit architecture, and each S-box is computed in a
separate clock cycle. In order to investigate the feasibility of the proposed attack
in the presence of increased (switching) noise, we have examined the same attack
on a 32-bit architecture where four S-boxes are executed in parallel at each clock
cycle. The power consumption of the three unpredicted S-boxes enters the mean
traces as noise, which can be reduced by increasing the number of measurements.
According to the experimental results shown in the Appendix B of [18], the
secret is revealed in the same way using around 300 000 measurements which
shows the strength of the attack. We expect a similar behavior if the shuffling
countermeasure [12, 15] would be applied to the serial 8-bit architecture. For the
case where just 4 S-boxes are shuffled (to avoid conflicts with MixColumns),
we expect a similar behavior as in the 32-bit implementation, if the attacker
applies combing [28]. If a full shuffling on all 16 S-boxes is applied or the 32-bit
architecture is shuffled, the number of traces would accordingly increase further.

The proposed attack is not specific to the applied masking scheme which
still has a first-order leakage. It should be efficient for any case where the mean
traces are slightly different. For example, the attack works on an unprotected
implementation as well, i.e., the adversary does not even need to know whether
a countermeasure has been applied in the target device. We have practically
evaluated this issue as well; as a result around 3 000 traces are required for the
attack on an unprotected implementation using an 8-bit architecture.

Leakage due to an implementation error? One may ask about the source
of the leakage which we found here since we have presented the practical result



on a whole AES implementation, and if some flaws in the design architecture
have caused the observed strong leakage. We should emphasize that as expressed
before in Section 2, we have made sure to keep all necessary requirements sug-
gested in the original design of the masked S-box [9], like the correct order of the
product additions and the masked summation of these. Keep in mind that this
design does not take glitches and their effect on the DPA leakage into account.
Moreover, we have implemented only one masked S-box on the same platform
and have examined its leakage when the S-box input (including masked input
and masks) solely change. The relevant results are shown in Appendix A of [18],
and confirm that the S-box computation is the source of information leakage
which caused the observed vulnerability. Although we have not performed a
simulation to extract the toggle-count model, we believe that the source of the
observed first-order leakage also is toggles and glitches of the combinational cir-
cuits similar to [16], which was already predicted by [9].

Applicability to other Algorithms: On other algorithms exhibiting a similar
structure of a key addition operation followed by some kind of S-box operation
(e.g. typical SPN structures), the attack can be applied in a similar fashion.
One important property of the attack algorithm is the number of values which
contribute to the computation of the correlation coefficient. In the case of AES,
α can take 256 different values such that the correlation is computed over 256
points, which is not too high, but still yields a suitable estimation of the correla-
tion. The estimation gets less reliable for target algorithms with smaller S-boxes,
e.g., PRESENT [7] with α ∈ GF (24). To solve this problem one can define a
window and perform the attack not only on a single point in time, but also using
other adjacent power points, i.e., to compute the correlation in a 2-dimensional
domain which equals to make vectors from matrices and get the correlation over
two vectors. Alternatively, two S-boxes can be attacked in parallel by viewing
them as a single one and predicting the difference ∆ on two keys at the same
time, if the S-boxes are processed at the same time.

5 Conclusion

In this work we have presented a collision attack that efficiently breaks a masked
implementation with a remaining first-order leakage. We have further shown that
combining all possible collisions via the correlation coefficient generates a highly
efficient attack. The number of traces needed to overcome an implementation
of the masking countermeasure of [9] only increases by a small factor of six
when compared to a DPA on an unprotected implementation. Unlike other ad-
vanced attacks, the described attack is as general as a classical DPA attack,
because it makes minimal assumptions about the adversary. In fact, the attack
makes almost no assumptions about the leakage and does not require any de-
tailed knowledge about the implementation (such as general architecture, layout,
and netlist). Furthermore, the attack works out-of-the-box without requiring a
profiling phase. The attack succeeds on any implementation as long as a leak-
age yields distinguishable differences in the means of the power consumption



traces for certain inputs.To the best of our knowledge the presented attack is
the first successful collision-based attack on a masked implementation. We have
practically confirmed that not considering glitches in the implementation of al-
gorithmic masking schemes leads to an exploitable side-channel leakage.
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