
New Results on Instruction Cache Attacks

Onur Acıiçmez1, Billy Bob Brumley2?, and Philipp Grabher3??

1 Samsung Electronics, USA
o.aciicmez@samsung.com

2 Aalto University School of Science and Technology, Finland
billy.brumley@tkk.fi

3 University of Bristol, UK
grabher@cs.bris.ac.uk

Abstract. We improve instruction cache data analysis techniques with
a framework based on vector quantization and hidden Markov models.
As a result, we are capable of carrying out efficient automated attacks
using live I-cache timing data. Using this analysis technique, we run
an I-cache attack on OpenSSL’s DSA implementation and recover keys
using lattice methods. Previous I-cache attacks were proof-of-concept: we
present results of an actual attack in a real-world setting, proving these
attacks to be realistic. We also present general software countermeasures,
along with their performance impact, that are not algorithm specific and
can be employed at the kernel and/or compiler level.

1 Introduction

Cache-timing attacks are emerging attack vectors on security-critical software.
They belong to a larger group of cryptanalysis techniques within side-channel
analysis called Microarchitectural Attacks (MA). Microarchitectural Cryptanal-
ysis focuses on the effects of common processor components and their func-
tionalities on the security of software cryptosystems. The main characteristic
of microarchitectural attacks, which sets them aside from classical side-channel
attacks, is the simple fact that they exploit the microarchitectural behavior of
modern computer systems. MA techniques have been shown to be effective and
practical on real-world systems. For example, Osvik et. al. used cache attacks
on dm-crypt application to recover AES keys [11]. Ristenpart et. al. successfully
applied cache attacks in Amazon’s EC2 cloud infrastructure and showed the
information leakage from one virtualized machine to another [14]. Several stud-
ies showed the effectiveness of these attacks on various cryptosystems including
AES [11, 5], RSA [13, 4, 3], and ECC [6]. Popular cryptographic libraries such
as OpenSSL have gone under several revisions to mitigate different MA attacks,
c.f. e.g. [1].

? Supported in part by the European Commission’s Seventh Framework Programme
(FP7) under contract number ICT-2007-216499 (CACE).

?? Supported in part by EPSRC grant EP/E001556/1.



There are usually two types of caches in today’s processors, data cache and
instruction cache, which have different characteristics, and hence we have two
different types of cache-timing attacks. Our work presented in this paper deals
only with instruction caches. I-cache attacks rely on the fact that instruction
cache misses increase the execution time of a software. An adversary executes
a so-called spy process on the same machine that his target software (e.g. an
encryption application) is running on and this spy uses some techniques to keep
track of the changes in the state of I-cache during the execution of the tar-
get software. Knowing the state changes in I-cache may allow the adversary
to extract the instruction flow of the target software. Cipher implementations
that have key-dependent instruction flows can be vulnerable to I-cache attacks
unless effective countermeasures are in place. I-cache analysis technique was in-
troduced in [2]. We have seen I-cache attack vulnerabilities in widely used RSA
implementations [4]. Previous works on I-cache analysis were, in a sense, only
proof-of-concept attacks. Spy measurements were either taken within the cipher
process or in a simplified experimental setup.

In this paper, we present several contributions related to I-cache attacks, their
data analysis, and countermeasures. We apply the templating cache-timing data
analysis framework [6] to I-cache data. It makes use of Vector Quantization (VQ)
and Hidden Markov Models (HMM) to automate the side-channel data analysis
step. This allows us to mount a lattice attack on an unmodified OpenSSL-DSA
implementation and successfully recover DSA keys. These are the first published
results of a real-life I-cache attack on a cryptosystem. In a nut-shell, our contri-
butions in this paper include:

– improving I-cache data analysis techniques,
– mounting a lattice attack on OpenSSL’s DSA implementation using this

improved analysis,
– presenting results of I-cache Analysis in a real-world attack settings,
– and outlining possible countermeasures to prevent I-cache attacks and mea-

suring their performance impacts.

We give an overview of the original I-cache attack of [2] in Section 2 and
present the details of our improved attack and our results on OpenSSL-DSA in
Section 3. Our results prove the dangers of I-cache attacks and the necessity of
employing appropriate countermeasures. We studied some of the possible coun-
termeasures and analyzed their impacts on cipher performance and also on the
performance of the entire system. We discuss these countermeasures and present
our results in Sections 4 and 5.

2 I-cache Attack Concept

I-cache analysis relies on the fact that instruction cache misses increase the
execution time of software applications. Each I-cache miss mandates an access
to a higher level memory, i.e., a higher level cache or main memory, and thus
results in additional execution time delays. In I-cache analysis, an adversary



runs a so-called spy process that monitors the changes in I-cache. They spy
process continuously executes a set of “dummy” instructions in a loop in a
particular order and measures how much time it takes to bring the I-cache to a
predetermined state. Sec. 3.1 contains an example of such a spy routine.

If another process is running simultaneously with the spy on the same physi-
cal core of an SMT processor, the instructions executed by this process will alter
the I-cache state and cause evictions of spy’s dummy instructions. When the
spy measures the time to re-execute its instructions, the latency will be higher
for any evicted dummy instructions that must be fetched from a higher memory
level. In this manner the spy detects changes in the I-cache state induced by the
other (i.e., “spied-on”) process and can follow the footprints of this process.

[2] shows an attack on OpenSSL’s RSA implementation. They take advan-
tage of the fact that OpenSSL employs sliding window exponentiation which
generates a key dependent sequence of modular operations in RSA. Further-
more, OpenSSL uses different functions to compute modular multiplications
and square operations that leaves different footprints on I-cache. Thus, a spy
can monitor these footprints and can easily determine the operation sequence
of RSA. [2] uses a different spy than the one we outline in Sec. 3.1. They try to
extract the sequence of multiplication and square operations and thus their spy
monitors only the I-cache sets related to these functions. Furthermore, their spy
does not take timing measurements for each individual I-cache set, but instead
considers a number of sets as a group and takes combined measurements. In our
work, the spy takes individual measurements for each I-cache set so that we can
monitor each set independently and devise template I-cache attacks.

3 Improved Attack Techniques

In this section, we present our improvements to I-cache timing data analysis and
subsequently apply the results to run an I-cache attack on OpenSSL’s DSA im-
plementation (0.9.8l) to recover keys. We concentrate on Intel’s Atom processor
featuring Intel’s HyperThreading Technology (HT).

3.1 Spying on the Instruction Cache

The templating framework in [6] used to analyze cache-timing data assumes
vectors of timing data where each component is a timing measurement for a
distinct cache set. We can realize this with the I-cache as well using a spy process
that is essentially the I-cache analogue of Percival’s D-cache spy process [13]. It
pollutes the I-cache with its own data, then measures the time it takes to re-
execute code that maps to a distinct set, then repeats this procedure indefinitely
for any desired I-cache sets.

To this end, we outline a generic instruction cache spy process; the exam-
ple here is for the Atom’s 8-way associative 32KB cache, c = 64 cache sets,
but is straightforwardly adaptable to other cache structures. We lay out con-
tiguous 64-byte regions of code (precisely the size of one cache line) in labels



L = {L0, L1, . . . , L511}. Denote subsets Li = {Lj ∈ L : j mod c = i} in this
case each with cardinality eight, where all regions map to the same cache set yet
critically do not share the same address tag. These subsets naturally partition
L =

⋃c−1
i=0 Li. Observe that stepping through a given Li pollutes the correspond-

ing cache set i and repeating for all i completely pollutes the entire cache.
The spy steps iteratively through these Li and measures their individual

execution time. For example, it begins with regions that map to cache set zero:
L0 = {L0, L64, L128, . . . , L448}, stores the execution time, then continues with
cache set one: L1 = {L1, L65, . . . , L449} and so on through all 0 ≤ i < c. For each
i we get a single latency measurement, and for all i a vector of measurements:
repeating this process gives us the desired side-channel. For completeness, we
provide a code snippet in Fig. 1. The majority of the code is nop instructions,
but they are only used for padding and never executed. Note rdtsc is a clock
cycle metric.

xor %edi, %edi .endr .rept 49
mov <buffer addr>, %ecx ... nop
rdtsc L64: .endr
mov %eax, %esi jmp L128 ...
jmp L0 .rept 59 L511:
.align 4096 nop rdtsc
L0: .endr sub %esi, %eax

jmp L64 ... movb %al, (%ecx,%edi)
.rept 59 L448: add %eax, %esi
nop rdtsc inc %edi
.endr sub %esi, %eax cmp <buffer len>, %edi

L1: movb %al, (%ecx,%edi) jge END
jmp L65 add %eax, %esi jmp L0
.rept 59 inc %edi
nop jmp L1

Fig. 1. Outline of a generic I-cache spy process.

3.2 Realizing the DSA

We use the following notation for the DSA. The parameters include a hash
function h and primes p, q such that g ∈ F∗p generates a subgroup of order q.
Currently, a standard choice for these would be a 1024-bit p and 160-bit q. Parties
select a private key x uniformly from 0 < x < q and publish the corresponding
public key y = gx mod p. To sign a message m, parties select nonce k uniformly
from 0 < k < q then compute the signature (r, s) by

r = gk mod p mod q (1)

s = (h(m) + xr)k−1 mod q (2)

and note OpenSSL pads nonces to thwart traditional timing attacks by adding
either q or 2q to k.



The performance bottleneck for the above signatures is the exponentiation in
(1); extensive literature exists on speeding up said operation. Arguably the most
widely implemented method in software is based on the basic left-to-right square-
and-multiply algorithm and employs a standard sliding window (see [8, 14.85]).
It is a generalization where multiple bits of the exponent can be processed during
a given iteration. This is done to reduce the total number of multiplications using
a time-memory trade-off. With the standard 160-bit q, a reasonable choice (and
what OpenSSL uses) is a window width w = 4.

The OpenSSL library includes an implementation of this algorithm, and uses
it for DSA computations. Its speed is highly dependent on how the modular
squaring and multiplication functions are implemented. Computations modulo
p are carried out in a textbook manner using Montgomery reduction. Outside
of the reduction step, the actual squaring and multiplication are implemented
in separate functions; this is because we can square numbers noticeably faster
than we can multiply them.

3.3 The Attack

We aim to determine partial nonce data during the computation of (1) by ob-
serving I-cache timings and use said partial data on multiple nonces to mount a
lattice attack on (2) to recover the private key x.

In Sec. 3.2 we mention that squaring and multiplication are implemented as
two distinct functions. In light of this, it is reasonable to assume that:

– All portions of these two sections of code are unlikely to map to the same
I-cache sets;

– The load and consequentially execution time of (1) is dependent on their
respective availability in the I-cache;

– An attacker capable of taking I-cache timings by executing their own code
as outlined in Sec. 3.1 in parallel with the computation of (1) can deduce
information about the state of the exponentiation algorithm—thus obtaining
critical information about k.

The resulting side-channel is a list of vectors where each vector component
is a timing measurement for a distinct cache set. We illustrate in Fig. 2, where
we hand picked 16 of 64 possible I-cache sets that seemed to carry pertinent
information.
Analyzing Timing Data Next, we analyze this data to determine the sequence
of states the exponentiation algorithm passed through. Just the sequence of
squarings and multiplications that the sliding window algorithm passes through
implies a significant amount of information about the exponent input. We utilize
the framework of [6] to analyze the timing data, obtain a good guess at the
algorithm state sequence, and infer a number of bits for each nonce. The steps
include:

– For each operation we wish to distinguish (for example, squaring and mul-
tiplication), take a number of exemplar timing vectors that represent the
I-cache behavior during said operation; [6, Sec. 4.2] calls this “templating”.



– With these templates, create a Vector Quantization (VQ) codebook for each
operation; this is done using a standard supervised learning method called
LVQ. This can help eliminate noise and reduce the size of the codebook.

– Create a Hidden Markov Model (HMM) that accurately reflects the control
flow of the considered algorithm. The observation input to the HMM is the
output from VQ.

– Use the Viterbi algorithm to predict the most likely state sequence given a
(noisy) observation sequence (VQ output of I-cache timing data).

Vector Quantization. We categorize timing vectors using VQ, which maps the
input vectors to their closest (Euclidean distance-wise) representative vector in
a fixed codebook. We obtain codebook vectors during a profiling stage of the
attack, where we examine timing data from known input to classify the vectors
in the codebook. Essentially, this means we setup an environment similar to the
one under attack, obtain side-channel and DSA signatures with our own known
key, then partition the obtained vectors into a number of sets with fixed labels.
These sets represent the I-cache access behavior of the algorithm in different
states, such as multiplication and squaring; these are the labels. When running
the attack, we classify the incoming timing vectors using VQ. The algorithm
state guess is the label of the closest vector in the codebook. To summarize, we
guess at the algorithm state based on previously observed (known) algorithm
state.

Hidden Markov Models. We also build and train the HMM during the profiling
stage, using the classical Baum-Welch algorithm. The training data is the output
from VQ above: the observation domain for the HMM is the range of VQ (the
labels). As multiplication and squaring steps in the algorithm span multiple
timing vectors in the trace, we consider these steps as meta-states, represented
explicitly in the HMM by a number of sub-states corresponding to this span.
When running the attack, we feed the trace through VQ and send the output
to the HMM. The classical Viterbi algorithm outputs the state sequence that
maximizes the probability of the observation sequence. To summarize, we guess
the algorithm state sequence that best explains the side-channel observations.

Example. In addition to the timing data (rows 0-15) in Fig. 2, we give the
VQ output (rows 16-17) and HMM state prediction (rows 18-19). Normally the
purpose of any HMM in signal processing is to clean up a noisy signal, but in
this case we are able to obtain extremely accurate results from VQ. This leaves
little work in the end for the HMM. We chose to template squaring (the dark
gray), multiplication (black), and what we can only assume is the Montgomery
reduction step (light gray).
Using Partial Nonce Data Having obtained a state sequence guess and thus
partial information on nonces k for many signatures, the endgame is a lattice
attack.

In such an attack it is difficult to utilize sparse key data, thus an attacker
usually concentrates on a fairly long run of consecutive (un)known bits, and



Time
 0

 8

 16
C

ac
he

 S
et

 30

 60

 90

 120

Fig. 2. Live I-cache timing data produced by a spy process running in parallel with an
OpenSSL DSA sign operation; roughly 250 timing vectors (in CPU cycles), and time
moves left-to-right. The bottom 16 rows are the timing vector components on 16 out
of 64 possible cache sets. The top four are meta-data, of which the bottom two are the
VQ classification and the top two the HMM state guess given the VQ output. Seven
squarings are depicted in dark gray and two multiplications in black.

obtains more equations instead. Furthermore, we experienced that guesses on
bits of k get less accurate the farther away they are from the LSB. We sidestep
these issues by concentrating on signatures where we believe k has {0, 1}{0}6 in
the LSBs—that is, six zeros followed by a zero or one. The top bit is fixed due
to the padding, giving us a total of eight known bits separated by a single long
run of unknown bits. Experiments suggest we need 37 such signatures to recover
the long term key x.

Results We obtained 17K signatures, messages, and corresponding I-cache tim-
ing data. Considering we expect the given bit pattern in k with probability 2−6,
this number seems unnecessarily high at first glance. Like many practical side-
channel attacks, this is due to inherent issues such as noise, context switching,
OS scheduling, and lack of synchronization. As our spy process is truly decoupled
from the OpenSSL code, running as an independent process, we get absolutely
no guarantee that they will execute simultaneously—or when they happen to,
for how long.

After obtaining these 17K signatures, our analysis resulted in 75 signatures
believed to match the pattern. We ran the lattice attack on five Intel Core2 quad
core machines, taking random samples of size 37 until the result yielded a private
key that corresponded to the given public key. The first core to succeed did so
in 54 minutes, after roughly 3200 lattice attack iterations. Checking afterwards,
59 of these guesses were correct and 16 incorrect.

4 Closing the Instruction Cache Side-Channel

Countermeasures to mitigate the I-cache side-channel can be employed at a
hardware and/or a software level. Hardware countermeasures require changes
to the micro-architecture and it might take a while until such a new processor
generation is available on the market. Previous work in this area proposed us-
ing alternative cache hardware, such as Partitioned Caches [12], Partition-locked
Caches and Random-permutation Caches [16]. Most current processor designs
are driven by performance and power criteria, leaving security as a secondary



consideration; it is questionable whether this view will change in the foreseeable
future. In this work, we focus solely on software techniques to address this vulner-
ability. Such countermeasures can be applied instantly by a software engineer as
long as no hardware equivalents are present. In contrast to previously proposed
software techniques, which are usually algorithm specific (e.g., Montgomery’s
powering ladder [9]), our aim is to provide generic methods be employed at the
kernel and/or compiler level.

In the following discussion, we have to distinguish between countermeasures
applicable to architectures which support SMT and conventional single-threaded
processors. While in both architectures multiple threads can exist at the same
time, there is a substantial difference in how they are scheduled. Processors
with SMT support essentially split a single physical processor into two logical
processors by duplicating some sections of the micro-architecture responsible for
architectural state. In this way, the OS can schedule two threads/processes to
be executed simultaneously on the same processor. These two threads execute
literally simultaneously, not in a time-sharing fashion. Memory accesses of both
execution threads alter the cache states at the same time.

In contrast, single-threaded processors are only capable to execute a single
process/thread at any given point in time. In such architectures, execution time is
allocated in time slices to the different processes/threads; by frequently switch-
ing between processes/threads, it gives an outward impression that multiple
tasks are executed simultaneously. This type of execution is called quasi-parallel
execution.

Cache attacks can work on both SMT processors and single-threaded pro-
cessors. It is easier to run these attacks on SMT because spy and cipher can run
simultaneously on different virtual cores in a single physical processor and spy
can monitor cipher execution while cipher is performing its computations. Run-
ning cache attacks on single-threaded processors is more difficult. An attacker
needs to use some tricks to have a “ping-pong” effect between the spy and ci-
pher processes. [10] showed that it is possible to pause the cipher execution at
a determined point and let a spy to examine the cache state. [10] exploited an
OS scheduling trick to achieve this functionality and devised an attack on the
last round of AES. A similar OS trick was shown in [15] to let a malicious party
monopolize CPU cycles. [15] proposes to exploit OS scheduling mechanism to
steal CPU cycles unfairly. Their cheating idea and the source code can easily be
adapted to cache attacks on single-threaded processors.

Disable Multi-threading In general, cache-based side-channel attacks take
advantage of the fact that modern computer systems provide multi-threading
capability. This fact allows an attacker to introduce an unprivileged spy pro-
cess to run simultaneously with a security-critical code, thereby deriving secret
key information from the state of the I-cache. A simple solution to eliminate
this vulnerability is to turn off multi-threading when a security-critical process
is scheduled to be executed: since it is the task of the OS to schedule pro-
cesses/threads, it can simply decide to ignore all unprivileged processes/threads
and not run them. On processors with SMT capability, the OS can adopt a



scheduling policy that does not permit to execute another process in parallel
with the crypto process. Alternatively, SMT can be turned off in the BIOS. Ac-
cording to Intel, SMT improves performance of multi-threaded applications by
up to 30 %. Therefore it needs to be decided on a case-by-case basis if disabling
SMT for a more secure processing platform is acceptable from a performance
point of view. Disabling multi-threading alone does not suffice to close I-cache
side channel. I-cache attacks can be used on single-threaded processors without
SMT capability as we explained above.

Fully Disable Caching Another intuitively simple solution to close the infor-
mation leakage through the I-cache is to disable the cache entirely. The Intel
x86 architecture makes the cache visible to the programmer through the CD
flag in the control register cr0 : if said flag is set, caching is enabled otherwise
it is disabled. However, such an approach severely affects the performance of
the system as a whole. A more fine-grained control sees the cache only disabled
when security-critical code is scheduled to be executed.

Partially Disable Caching The x86 caches allow the OS to use a different
cache management policy for each page frame. Of particular interest in this
context is the PCD flag in control register cr0 which determines whether the
accessed data included in the page frame is stored in the cache or not. In other
words, by setting the PCD flag of the page frames containing security-critical
code it is possible to partially disable the caching mechanism. While such an
approach successfully eliminates the I-cache side-channel we argue that is has a
considerable negative impact on performance (albeit not as severe as with com-
pletely turning off the cache). The reason is that most cryptographic primitives
spend the vast majority of the execution time in some small time-critical code
sections; hence, not caching parts of these sections will be reflected in longer
execution times.

Cache Flushing Ideally, the processor would provide an instruction to flush
the content of the L1 I-cache only. Unfortunately, such an instruction is not yet
available on Intel’s x86 range of processors. Instead, the WBINVD instruction [7]
can be executed during context switches to flush the L1 I-cache. Note, that this
instruction invalidates all internal caches, i.e., the instruction cache as well as
the data cache; modified cache lines in the data cache are written back to main
memory. After that, the instruction signals the external caches, i.e., the L2 and
L3 cache to be invalidated. Invalidation and writing back modified data from
the external caches proceeds in the background while normal program execution
resumes, which partly mitigates the associated performance overhead. OS can
flush the cache when a security-critical process such as a cipher switched out
and thus the next process scheduled right after the cipher cannot extract any
useful information from the cache state. This countermeasure is not effective on
SMT systems because flushing happens during context switch and spy that runs
simultaneously with a cipher on SMT can still monitor cipher’s execution.

Partial Cache Flushing Flushing the entire L1 I-cache negatively affects per-
formance of both the security application as well as of all the other existing



threads. This performance impact can be reduced when following a more fine-
grained approach: instead of flushing the entire I-cache we propose to invalidate
only those cache sets that contain security-critical instructions via some kind of
OS support.

The x86 processor does not include such a mechanism that allows flushing
of specific cache sets. Instead, some architectures provide the CLFLUSH in-
struction [7] capable of invalidating a cache line from the cache hierarchy. This
instruction takes the linear address of the cache line to be invalidated as an ar-
gument. Consequently, flushing an entire cache set with this instruction would
require the knowledge of both the linear address space of the spy process as well
as of the security-critical code sections of the crypto process. While the later can
be made easily available to the OS, it is much more difficult to reason about the
linear address space of the spy process. This instruction is not suitable for our
purposes as a result.

However, flushing of specific cache sets on x86 processors can still be accom-
plished by beating an attacker at his own game. The simple idea is to divert
the spy process from its intended use by employing it as defence mechanism;
essentially, the kernel integrates a duplicate spy process into the context switch.
This permits the eviction of security-critical code sections from the I-cache each
time security-critical code is switched out.

At first glance, it might seem that invalidating only those cache lines contain-
ing security-critical code before giving control to another process (possibly the
spy process) can defeat the I-cache attack. However, from the spy’s point of view,
it makes no difference whether lines with security-critical code have been inval-
idated or not: in any case, the spy process will measure a longer execution time
since the crypto process has evicted a cache line belonging to the spy. Therefore,
invalidating only cache lines with security-critical code is not sufficient and the
entire sets that hold them need to be invalidated. Similar to flushing the entire
cache, partial flushing is not effective on SMT processors as explained above.

Cache-conscious Memory Layout Fundamentally, I-cache attacks rely on
the premise that the security-critical code sections or parts of them map to dif-
ferent regions in the I-cache. By mapping these security-critical code sections
exactly to the same regions in the cache, the I-cache attacks can no longer re-
cover the operation sequence. However, in some cases this approach might not
be sufficient. For example, consider the case of two security-critical code sections
that are of equal size and map to the same sets, where the majority of execu-
tion time of the two security-critical code sections is spent in disjoint cache sets.
In such a scenario, it is still highly likely that the spy observes distinct traces
despite the appropriate alignment in memory. Cache-conscious memory layout
can be accomplished either by a compiler or via OS support. Given the I-cache
parameters and the security-critical code sections, a compiler can generate an
executable resistant against I-cache attacks by appropriately aligning said sec-
tions. To balance the sizes of these sections, it might be necessary to add some
dummy instructions, e.g., NOPs, before and/or after the sections; this padding
with dummy operations implies some performance penalty and results in an in-



crease in the size of the executable. Alternatively, the OS can be in charge of
placing the security-critical code sections in such a way in memory that they map
to the same regions in the cache if the cache is physically addressed. For that,
the executable needs to specify the memory sections with security-critical infor-
mation. Similar to the compiler approach, additional dummy operations might
be required to make the security-critical code sections equal in size. None of the
above countermeasures provide an effective yet practical mechanism for SMT
systems, except cache-conscious memory layout . This countermeasure incurs
very low overhead as we will explain in the next section and it is also effective
on SMT systems.

5 Performance Evaluation

All our practical experiments were conducted on a Intel Core Duo machine
running at 2.2 GHz with a Linux (Ubuntu) Operating System. To minimize the
variations in our timing measurements due to process-interference we used the
process affinity settings to bind the crypto process to one core and assigned all
the other processes to the other core.

Performance impact on the crypto process For the performance evaluation
of our proposed software countermeasures we used the RSA decryption function
of OpenSSL (version 0.9.8d) as a baseline. Table 1 summarizes the performance
impact of our proposed countermeasures upon OpenSSL/RSA in comparison
to the baseline implementation; results are given for different key lengths, i.e.,
1024-bits, 2048-bits and 4096-bits.

Implementation 1024-bit 2048-bit 4096-bit

Baseline OpenSSL/RSA Execution time (in ms) 1.735 9.606 57.9
Decryptions/s 576.3 104 17.3

OpenSSL/RSA with Execution time (in ms) 1273 7204 45060
cache disabled Decryptions/s 0.8 0.1 0.02

OpenSSL/RSA with Execution time (in ms) 1.888 11.192 60.6
cache flushing Decryptions/s 530 89.3 16.5

OpenSSL/RSA with Execution time (in ms) 1.734 9.535 58.2
partial flushing Decryptions/s 576.8 104.9 17.1

OpenSSL/RSA with Execution time (in ms) 1.755 9.727 58.2
cache-conscious layout Decryptions/s 570 102.8 17.2

Table 1. Performance evaluation of the proposed countermeasures

The performance evaluation supports our claim that turning the cache off re-
sults in an immense performance overhead. For instance, execution of a 1024-bit
OpenSSL/RSA with a disabled cache leads to a 3-orders of magnitude degrada-
tion in performance. This experiment was conducted with the help of a simple
kernel module which turns the cache off when loaded into the kernel and turns



the cache on again when unloaded. Similarly, we expect an unacceptable im-
pact on performance when just partially disabling the cache since this forces the
processor to repeatedly fetch instructions from the slow main memory; for that
reason we refrained from investigating this approach in more detail. Flushing the
cache hierarchy during a context switch incurs a performance overhead of about
5− 15 % for the different key sizes. Even more severe than this non-trivial per-
formance penalty is the significant increase in context switch time: using Intel’s
RDTSC instruction, we measured a 10-fold increase. The performance overhead
from both an application as well as OS point of view can be significantly re-
duced when only invalidating the cache sets containing security-critical code.
For that, we aligned the spy process appropriately in the context switch routine
to evict the cache sets that hold data of both the OpenSSL/RSA multiplication
and squaring routines; in total, it was necessary to evict 29 sets (i.e., 18 sets
are occupied by multiplication instructions and 11 sets by squaring instructions)
from the instruction cache.

From Table 1 it appears that no noticeable performance overhead is asso-
ciated with this countermeasure. This result is somewhat expected since the
overhead of bringing the evicted instructions from the L2 cache back into the
instruction cache is negligible.

Finally, we investigated the cache-conscious memory layout approach. It was
necessary to pad the OpenSSL/RSA squaring routine with 406 NOP instruc-
tions in total so that it matches the size of the OpenSSL/RSA multiplication.
However, having the same code size alone does not prevent information leakage;
the security-critical code sections also need to be aligned in memory in such
a way that they map into the same cache sets. This can be done by rewriting
the linker script to control the memory layout of the output file. In more de-
tail, we first used the gcc compiler option “-ffunction-sections” to place the two
security-critical code sections in a separate ELF section each. Then, we redefined
the memory model so that each section is placed at a known address such that
they will be placed in the same sets in the cache. The performance overhead
associated with this countermeasure is so minimal that in practice it can be
regarded as negligible.

Performance impact on the system caused by the countermeasures
Our proposed software countermeasures may have a negative impact on other
processes that are running concurrently with a security-critical application. This
impact might be in particular noticeable for the solution where the entire cache
content is flushed during a context switch.

To estimate the impact on the system as a whole, we ran the SPEC2000int
benchmark simultaneously with a security-critical application; this means the
processor’s entire cache hierarchy is invalidated at regular intervals, i.e., every
time the security-critical process is switched out. Figure 3 illustrates this per-
formance impact on the SPEC benchmark in presence of this countermeasure.

On average, invalidation of the cache during context switches results in a
10 % degradation in performance. This decline is caused by bringing data back
into the cache after it has been discarded during the context switch. Note, this



bzip2

gcc

mcf

gobmk

hmmr

sjeng

libquantum

h264ref

omnetpp

astar

xalancbmk

Partial Flushing

Full Flushing

0 500 1000 1500 2000 2500

perlbench

bzip2

gcc

mcf

gobmk

hmmr

sjeng

libquantum

h264ref

omnetpp

astar

xalancbmk

Run Time (s)

Partial Flushing

Full Flushing

No Flushing

Fig. 3. Performance impact of cache flushing on the SPEC2000int benchmark.

overhead gives an estimation for the worst-case scenario and the impact will typ-
ically be less severe on systems where security-critical applications are executed
less frequently. Figure 3 also shows the run time of the SPEC benchmark in
presence of partial cache eviction as a countermeasure instead. Essentially, the
performance impact on the system as a whole is negligible in this case. Further,
some of our countermeasures can influence the time it takes to perform a context
switch. If there is no process using our countermeasures, which will probably be
the case most of the time, the only extra work that needs to be done is to check
a flag (i.e., the flag that indicates whether the current process needs to be pro-
tected). However, switching out a security-critical process possibly requires some
additional work for the scheduler which results in a longer execution time of the
context switch. This behaviour is in particular apparent when using the cache
flushing approach since the scheduler needs to wait until all dirty data cache lines
have been written back to maintain memory coherence. Consequently, depending
on the type of process that is switched out, a different amount of time is spent in
the context switch routine. This can pose a serious problem to real-time systems,
where highly deterministic behaviour is required. Note that partial eviction has
a considerably smaller impact on the context switch; in theory, for each cache
set that contains security-critical instructions, the OS simply needs to execute
a small number of appropriately aligned dummy instructions and this number
needs to be equal or larger than the associativity of the I-cache.

6 Conclusions

We presented improved I-cache analysis techniques based on vector quantization
and hidden Markov models. The analysis is automated and fast, capable of



analyzing large volumes of concrete I-cache timing data. This can be used to
perform automated I-cache attacks.

We demonstrated its effectiveness by carrying out an I-cache attack on an un-
modified version of OpenSSL’s DSA implementation (0.9.8l). We used the frame-
work to process the timing data from thousands of signatures and subsequently
recovered keys using lattice methods. This attack is automated, recovering a
DSA private key within an hour.

Our study clearly proves that I-cache cryptanalysis is realistic, practical,
and a serious security threat for software systems. We believe it is necessary
to conduct a thorough analysis on current software cryptosystems to detect I-
cache analysis (more generally Microarchitectural Analysis) vulnerabilities. We
already saw several MA vulnerabilities in cryptographic software like OpenSSL
and they were fixed by specific algorithm-level solutions such as removing extra
reduction step from Montgomery multiplication. However, it is crucial to design
generic algorithm-agnostic mitigation mechanisms.

Mitigation mechanisms can be employed at a hardware and/or a software
level. Hardware countermeasures require changes to the micro-architecture and
much longer time to hit the market compared to software countermeasures. Thus,
we focused solely on generic software-level mitigations in our work and presented
some countermeasures to close I-cache side channel. We studied their impacts
on cipher performance and also on the performance of the overall system. Naive
approaches such as disabling cache or flushing the entire cache before or after
the execution of security critical software have high performance overheads as-
sociated with them. Thus, such approaches are far from gaining wide usage due
to their low practicality even though they can eliminate I-cache side channel
leakage. However, we presented two practical approaches, “partial flushing” and
“cache conscious memory layout”, that have very low performance overheads.

We realized that even very primitive support from the hardware can be very
helpful towards designing and developing low-cost mitigations. For instance, if
a processor’s ISA includes an instruction permitting to flush cache sets, miti-
gations like partial flushing become much easier to implement and have lower
performance overheads.

As our final remark, we want to emphasize that our results stress the sig-
nificance of considering security as a dimension in processor design space and
paying it the same level of attention as cost, performance, and power.

Acknowledgments The authors would like to thank Dan Page for his input
throughout the duration of this work.

References

1. Http://cvs.openssl.org/chngview?cn=16275
2. Acıiçmez, O.: Yet another microarchitectural attack: Exploiting I-cache. In: Pro-

ceedings of the 1st ACM Workshop on Computer Security Architecture (CSAW
2007). pp. 11–18. ACM Press (2007)



3. Acıiçmez, O., Koç, Ç.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security (ASIACCS 2007). pp. 312–320. ACM Press (2007)

4. Acıiçmez, O., Schindler, W.: A vulnerability in rsa implementations due to instruc-
tion cache analysis and its demonstration on openssl. In: Topics in Cryptology —
CT-RSA 2008. Lecture Notes in Computer Science, vol. 4964, pp. 256–273. Sprin-
ger Verlag (2008)

5. Acıiçmez, O., Schindler, W., Ç. K. Koç: Cache based remote timing attacks on
the AES. In: Topics in Cryptology — CT-RSA 2007. Lecture Notes in Computer
Science, vol. 4377, pp. 271–286. Springer Verlag (2007)

6. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Advances in
Cryptology — ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912,
pp. 667–684. Springer Verlag (2009)

7. Intel Corporation: Intel(R) 64 and IA-32 Architectures
Software Developer’s Manual. Available for download at
http://developer.intel.com/Assets/PDF/manual/253667.pdf

8. Menezes, A., Vanstone, S., van Oorschot, P.: Handbook of Applied Cryptography.
CRC Press, Inc. (1996)

9. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

10. Neve, M., Seifert, J.P.: Advances on access-driven cache attacks on AES. In: Se-
lected Areas in Cryptography — SAC 2007. Lecture Notes in Computer Science,
vol. 4356, pp. 147–162. Springer Verlag (2007)

11. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case
of AES. In: Topics in Cryptology — CT-RSA 2006. Lecture Notes in Computer
Science, vol. 3860, pp. 1–20. Springer Verlag (2006)

12. Page, D.: Partitioned cache architecture as a side-channel defense mechanism.
Cryptology ePrint Archive, Report 2005/280 (2005), available for download at
http://eprint.iacr.org

13. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan 2005
(2005), available for download at http://www.daemonology.net/papers/htt.pdf

14. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security (CCS 2009).
pp. 199–212. ACM Press (2009)

15. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Secretly monopolizing the CPU without
superuser privileges. In: Proceedings of the 16th USENIX Security Symposium
(SECURITY 2007). pp. 239–256. USENIX Association (2007)

16. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side-
channel attacks. In: Proceedings of the 34th Annual International Symposium on
Computer Architecture (ISCA 2007). pp. 494–505. ACM Press (2007)


