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Abstract. In this paper, a thorough bottom-up optimization process
(field, point and scalar arithmetic) is used to speed up the computa-
tion of elliptic curve point multiplication and report new speed records
on modern x86-64 based processors. Our different implementations in-
clude elliptic curves using Jacobian coordinates, extended Twisted Ed-
wards coordinates and the recently proposed Galbraith-Lin-Scott (GLS)
method. Compared to state-of-the-art implementations on identical plat-
forms the proposed techniques provide up to 30% speed improvements.
Additionally, compared to the best previous published results on similar
platforms improvements up to 31% are observed. This research is cru-
cial for advancing high speed cryptography on new emerging processor
architectures.
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1 Introduction

Elliptic curve point multiplication, defined as [k]P , where P is a point with order
r on an elliptic curve E(IFp) and k ∈ [1, r − 1] is an integer, is the central and
most time-consuming operation in Elliptic Curve Cryptography (ECC). Hence,
its efficient realization on commodity processors, such as the new generation
based on the x86-64 ISA, has gained increasing importance in recent years.

In this work, we combine several efficient techniques at the different compu-
tational levels of point multiplication to achieve significant speed improvements
on x86-64 based CPUs:

– At the field arithmetic, code scheduling on hand-written assembly modules is
carefully tuned for high performance field operations. Furthermore, optimal
combination of well-known techniques such as incomplete reduction (IR) [21]
and elimination of conditional branches is performed.

– At the point arithmetic, the cost of explicit formulas is reduced further by
minimizing the number of additions/subtractions and small constants and
maximizing the use of operations exploiting IR. Also, we study the nega-
tive effect of (true) data dependencies between “close” field operations and
propose three techniques to reduce their effect: field arithmetic scheduling,
merging of point operations and merging of field operations.
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– At the scalar arithmetic, we discuss our choice of recoding method and pre-
computation scheme and describe their efficient implementation.

Our implementations are carried out on elliptic curves using Jacobian and
(extended) Twisted Edwards coordinates [13]. We also present results when ap-
plying the GLS method [8] that exploits an efficiently computable endomorphism
to speed up the point multiplication over a quadratic extension field.

By efficiently combining the aforementioned techniques and other optimiza-
tions, we are able to compute a 256-bit point multiplication for the case of Ja-
cobian and (extended) Twisted Edwards coordinates in only 337000 and 281000
cycles, respectively, on one core of an Intel Core 2 Duo processor. Compared to
the previous results of 468000 and 362000 cycles (respect.) by Hisil et al. [14],
our results achieve an improvement of about 28% and 22% (respect.). In the
case of the GLS method, for Jacobian and (extended) Twisted Edwards coordi-
nates, we compute one point multiplication in about 252000 and 229000 cycles
(respect.) on the same processor, which compared to the best previous results
by Galbraith et al. [7, 8] (326000 and 293000 cycles, respect.) translate to im-
provements of about 23% and 22%, respectively.

Our implementations use the well-known MIRACL library by M. Scott [20],
which contains an extensive set of cryptographic functions that simplified the
development/optimization process of our crypto routines. Our programs, based
on M. Scott’s software, are faster due to several improvements discussed in this
paper. We greatly thank M. Scott for making his software freely available for
educational purposes.

Although our programs are portable to any x86-64 based CPU, in this work
we present test results on three processors: 2.66GHz Intel Core 2 Duo E6750,
2.83GHz Intel Xeon E5440 and 2.6GHz AMD Opteron 252.

Our work is organized as follows. In Section 2, we briefly introduce ECC over
prime fields and the GLS method, and summarize the most relevant features of
x86-64 based processors. In Sections 3, 4 and 5 we describe the different tech-
niques employed for the speed-up of point multiplication at the field, point and
scalar arithmetic levels. In Section 6, we discuss how our optimizations apply
to implementations using GLS. Finally, in Section 7, we present our timings for
point multiplication and compare them to the best previous results.

2 Preliminaries

For a background in elliptic curves, the reader is referred to [12]. In this work,
we consider the standard elliptic curve equation E: y2 =x3 + ax+ b (also known
as short Weierstrass equation) over a prime field IFp, where a, b∈ IFp.

Representation of points using (x, y) is known as affine coordinates (A). It
is common practice to replace this representation with projective coordinates
since affine coordinates are expensive over prime fields due to costly field inver-
sions. In this work, we use Jacobian coordinates (J ), where each projective point
(X : Y : Z) corresponds to the affine point (X/Z2, Y/Z3), Z 6= 0. The negative
of (X : Y : Z) is (X : −Y : Z), and (X : Y : Z) = {(λ2X,λ3Y, λZ) : λ ∈ IF∗p}.
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The central operation, namely point multiplication (denoted by [k]P , for a
point P ∈E(IFp)), is traditionally carried out through a series of point doublings
and additions using some algorithm such as double-and-add. More efficiently, a
doubling followed by another doubling can be computed as J ← 2J and every
doubling followed by an addition can utilize the new doubling-addition by [15,
19] to compute J ← 2J+A or J ← 2J+J . All these formulas can also be
found in our database of state-of-the-art formulas using Jacobian coord. [16].

Different curve forms exhibiting faster group arithmetic have been studied
during the last few years. A good example is given by Twisted Edwards. This
curve form, proposed in [2], is a generalization of Edwards curves [3] and has the
equation ax2+y2 = 1+dx2y2, where a, d∈ IFp are distinct nonzero elements. For
this case, each triplet (X :Y :Z) corresponds to the affine point (X/Z, Y/Z), Z 6=
0, in homogeneous projective coordinates (denoted by E). Later, Hisil et al. [13]
introduced an extended system (called extended Twisted Edwards coord.; de-
noted by Ee), where each point (X :Y :Z :T ) corresponds to (X/Z, Y/Z, 1, T/Z)
in affine, T = XY/Z and (X : Y : Z : T ) = {(λX, λY, λZ, λT ) : λ ∈ IF∗p}.

Hisil et al. [13] also suggest the map (x, y) 7→ (x/
√
−a, y) to convert the previ-

ous curve to −x2+y2 = 1+d′x2y2, where d′=−d/a, allowing further reductions
in the cost of point operations. For the point multiplication, they ultimately pro-
pose to compute a doubling followed by an addition as Ee ← 2E and E ← Ee+Ee
or E ← Ee+A (which can be unified into a doubling-addition operation with the
form E ← (2E)e+Ee or E ← (2E)e+A), and the remaining doublings as E ← 2E .

In Table 1, we have summarized the cost of formulas1 using J and E/Ee.
Although variations to these formulas exist [16], these sometimes involve an in-
creased number of “small” operations such as additions/subtractions. On some
platforms, the extra cost may not be negligible. Formulas in Table 1 have been
selected so that the overall cost is minimal on the targeted platforms. In Section
4, we apply some techniques to minimize the number of such “small” operations
and, thus, to reduce the cost of point operations further.

Table 1. Cost of point operations on Weierstrass and Twisted Edwards curves.

Point Operation Coord.
Weierstrass

Coord.
Twisted Edw.

(a = −3) (a = −1)

Doubling J ← 2J 4M+4S E ← 2E 4M+3S

Mixed addition J ← J+A 8M+3S E ← Ee+A 7M

General addition J → J+J 11M+3S (1) E ← Ee+Ee 8M

Mixed doubling-addition J ← 2J+A 13M+5S E ← (2E)e+A 11M+3S

General doubling-addition J → 2J+J 16M+5S (1) E ← (2E)e+Ee 12M+3S

(1) Using cached values.

A recent method to improve the computation of point multiplication was
proposed by Galbraith et al. [8], in which the computation is performed on a
quadratic twist of a curve E over IFp2 with an efficiently computable homomor-
phism ψ(x, y)→ (αx, αy), ψ(P ) = λP . Then, following [9], [k]P can be computed

1 Field operations: M = multiplication, S = squaring, Add = addition, Sub = sub-
traction, Mulx = multiplication by x, Divx = division by x, Neg = negation.
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as a multiple point multiplication with the form [k0]P + [k1](λP ), where k0 and
k1 have approximately half the bitlength of k. See [7, 8] for complete details.

In this work, we present two “traditional” implementations (on Weierstrass
and Twisted Edwards curves) and another two using the GLS method (again,
one per curve). For the traditional case (and to be competitive with other im-
plementations in the literature), we have written the underlying field arithmetic
over IFp using assembly language. On the other hand, for the GLS method we
reuse the efficient modules for IFp2 field arithmetic provided with MIRACL.

For IFp, we consider for maximal speed-up a pseudo-Mersenne prime with
the form p = 2m − c, where m = n.w on an w -bit platform, n ∈ ZZ+, and c is
a “small” integer (i.e., c < 2w). These primes are highly efficient for perform-
ing modular reduction and support other optimizations such as elimination of
conditional branches. Similarly, for the GLS method, field arithmetic over IFp2

provided by MIRACL considers a Mersenne prime p = 2t − 1 (i.e., t is prime).
For a more in-depth treatment of the techniques exploited in our implemen-

tations, the reader is referred to the extended paper version [18].

2.1 The x86-64 based Processor Family

Modern CPUs from the desktop and server classes have decisively adopted the
64-bit x86 ISA (a.k.a. x86-64). This new instruction set expands general-purpose
registers (GPRs) from 32 to 64 bits, allows arithmetic and logical operations on
64-bit integers and increments the number of GPRs, among other enhancements.

It seems that the move to 64 bits, with the inclusion of a powerful 64-bit in-
teger multiplier, favors prime fields. Although the analysis becomes complex and
processor dependent, our tests on the targeted processors suggest that SSE2 and
its extensions seem not to be advantageous by themselves for the IFp arithmetic.
This is probably due to the lack of carry handling and the fact that SSE2 mul-
tipliers can perform vector-multiplication with operands up to 32 bits only [11].
However, this outcome could change with improved SIMD extensions.

Another relevant feature of modern CPUs is their highly pipelined archi-
tectures. For instance, experiments by [6] suggest that Core 2 Duo and AMD
architectures have pipelines with 15 and 12 stages, respectively. Although so-
phisticated branch prediction techniques exist, it is expected that the “random”
nature of crypto computations, specifically of modular reduction, causes expen-
sive mispredictions that force the pipeline to flush. In this work, we present
experimental data quantifying the performance improvement obtained by elim-
inating branches in the field arithmetic (see Section 3).

Another direct consequence of highly pipelined architectures is that data de-
pendencies between “close” instructions may insert a high penalty. Data depen-
dencies that are relevant to our application are read-after-write (RAW), which
can be found between a considerable number of field operations when the result
of a previous operation is required as input by the next operation. Our tests
show that, if field operations are not scheduled properly, RAW dependencies can
cause the pipeline to stall for several cycles degrading the performance signifi-
cantly. In this work, we propose several techniques that help to minimize this
problem, enhancing the performance of point multiplication (see Section 4).
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3 Optimizations at the Field Arithmetic Level

In this section, we discuss the algorithms and optimizations that were applied
to modular operations. All tests described were performed on our assembly lan-
guage module implementing the field arithmetic over IFp.

3.1 Field Multiplication

Schoolbook and Comba are the methods of choice for performing this operation
on general purpose processors (GPPs). Methods such as Karatsuba multiplica-
tion theoretically reduce the number of integer multiplications but increase the
number of other (cheaper) operations, which are not inexpensive in our case.

In x86-64 based CPUs, integer multiplication is relatively expensive. For in-
stance, on an Intel Core 2 Duo, 64-bit multiplications can be executed every
5 clock cycles in a dependence chain [5]. A strategy to reduce costs is to in-
terleave other (cheaper) operations with integer multiplications to exploit the
instruction-level parallelism (ILP) found in modern processors. Precisely, both
schoolbook (also known as operand scanning) and Comba’s method (also known
as product scanning) exhibit this attractive feature. Both methods require n2 w -
bit multiplications when multiplying two n-digit numbers. However, we choose to
implement Comba’s method since it requires approximately 3n2 w -bit additions,
whereas schoolbook requires 4n2 (see Section 5.3.1 of [4]).

3.2 Other “Cheaper” Operations

There are two key techniques that we exploit to reduce the cost of additions,
subtractions, and divisions/multiplications by small constants:

Incomplete Reduction (IR). This technique was introduced by Yanik et al.
[21]. Given two numbers in the range [0, p− 1], it consists of allowing the result
of an operation to stay in the range [0, 2s−1] instead of executing a complete
reduction, where p< 2s< 2p−1, s = n.w, w is the wordlength (e.g., w= 64) and
n is the number of words. If the modulus is a pseudo-Mersenne prime with form
2m−c such that m= s and c< 2w, the method gets even more advantageous. For
example, in the case of addition the result can be reduced by first discarding the
carry bit in the most significant word and then adding the correction value c.

In Table 2, we summarize the cost of field operations and the gain in perfor-
mance when exploiting IR. As can be seen, in our experiments using p= 2256− 189
we obtain significant reductions in cost ranging from 20% to up to 41%.

It is important to note that, because multiplication and squaring accept in-
puts in the range [0, 2s − 1], an operation using IR can precede any of these
two operations. Then it turns out that virtually all additions and multiplica-
tions/divisions by small constants can be implemented with IR in our software.

Elimination of Conditional Branches. Following the trend of other crypto
implementations [10, 20] and to avoid the high cost of branch misprediction on
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Table 2. Cost (in cycles) of modular operations when using incomplete reduction (IR)
against complete reduction (CR) (p = 2256 − 189).

Modular Operation

Core 2 Duo E6750 Opteron 252

IR CR
Cost reduction

IR CR
Cost reduction

(%) (%)

Addition 20 25 20% 13 20 35%

Multiplication by 2 19 24 21% 10 17 41%

Multiplication by 3 28 43 35% 15 23 35%

Division by 2 20 25 20% 11 18 39%

highly pipelined processors, we have implemented field addition, subtraction and
multiplication/division by small constants without conditional branches [18].

In Table 3, we present the difference in performance for several field opera-
tions. In our tests using the prime p= 2256− 189, we observed cost reductions as
high as 50%. Remarkably, it can be seen that the greatest performance gains are
obtained for operations exploiting IR. In conclusion, elimination of conditional
branches favors more strongly our implementations, which are based on IR.

Table 3. Cost (in cycles) of modular operations without conditional branches (w/o
CB) against operations using conditional branches (with CB) (p = 2256 − 189).

Modular Operation

Core 2 Duo E6750 Opteron 252

w/o with Cost reduction w/o with Cost reduction

CB CB (%) CB CB (%)

Subtraction 21 37 43% 16 23 30%

Addition with IR 20 37 46% 13 21 38%

Addition 25 39 36% 20 23 13%

Mult. by 2 with IR 19 38 50% 10 19 47%

Multiplication by 2 24 38 37% 17 20 15%

Table 4. Cost (in cycles) of modular operations.

Modular Operation

Intel Core 2 Duo AMD Opteron

This work mpFq [10] This work mpFq [10]

p = 2256 − 189 p = 2255 − 19 p = 2256 − 189 p = 2255 − 19

Addition 20 (1) 21 13 (1) 19

Subtraction 21 24 16 22

Multiplication by 2 19 (1) N/A 10 (1) N/A

Division by 2 20 (1) N/A 11 (1) N/A

Squaring 101 107 65 72

Multiplication 110 141 80 108

(1) Using incomplete reduction.

Finally, Table 4 summarizes the cost of field operations optimized with the
techniques discussed above and used in our implementations, and compare them
with mpFq [10], a well-known and highly-efficient crypto library. Note that tim-
ings for mpFq are reported for Intel Core 2 Duo 6700 and AMD Opteron 250
[10], which have very similar architectures to those used for our tests. Although



Efficient Techniques for High-Speed Elliptic Curve Cryptography 7

our modular operations and those from mpFq are based on a different modulus
p, comparisons in Table 4 are useful to explain part of the performance improve-
ment obtained by our implementations in comparison with the implementation
of curve25519 using mpFq (see comparisons in Section 7).

4 Optimizations at the Point Arithmetic Level

In this section, we describe our choice of point formulas and some techniques to
reduce their costs further. Also, we analyze how to reduce the computing cost
of point multiplication by minimizing the number of pipeline stalls caused by
contiguous field operations holding (true) data dependencies.

4.1 Our Choice of Explicit Formulas

For our programs, we choose the execution patterns based on doublings and
doubling-additions proposed by Longa [15] and Hisil et al. [13] for J and E/Ee,
respectively (see Section 2). For J , we take as starting points the doubling
formula from pp. 90 of [12] that costs 4M+4S, and the doubling-addition formula
(3.5), pp. 37 of [15], that costs 13M+5S (16M+5S in the general case [16]). For
E/Ee, we choose the doubling formula on pp. 400 of [2] that costs 4M+3S and
the (dedicated) doubling-(dedicated) addition formulas from pp. 332-333 of [13]
which cost in total 11M+3S (12M+3S in the general case). The previous costs
(which are minimal on the targeted platforms in terms of mults and squarings)
are obtained by setting a=−3 on J and a=−1 on E/Ee [13] and avoiding the
S-M tradings. Moreover, following [13], we precalculate (X2+Y2), (X2−Y2), 2Z2

and 2T2 to save two Adds and two Mul2 in the (dedicated) addition formula.

4.2 Minimizing the Cost of Point Operations

Further cost reduction of point operations can be achieved by exploiting the
equivalence relation of projective coordinates. Consider, for example, the dou-
bling formula using J in pp. 90-91 of [12] that has an overall cost of 4M+4S+
1Add+4Sub+2Mul2+1Mul3+1Div2. If we fix λ = 2−1 ∈ IF∗p that formula can
be modified to the following

X2 = A2 − 2B, Y2 = A (B −X2)− Y 4
1 , Z2 = Y1Z1 (1)

where A = 3(X1 + Z2
1 )(X1 − Z2

1 )/2, B = X1Y
2
1 . With formula (1), the op-

eration count is reduced to 4M+4S+1AddIR+5Sub+1Mul3IR+1Div2IR (where
operationIR represents an operation using incomplete reduction), replacing two
multiplications by 2 with one subtraction and allowing the optimal use of in-
complete reductions (every addition and multiplication/division by constants
precedes a multiplication or squaring).

Additionally, depending on the relative cost of additions and subtractions
(and the feasibility of using efficient “fused” subtractions such as a−2b (mod p);
see Section 4.3) one may “convert” additions to subtractions (or vice versa) by
applying λ = −1 ∈ IF∗p to a given formula. Refer to Appendix A for the details
of the revised formulas exploiting these techniques.
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4.3 Minimizing the Effect of Data Dependencies

Next, we present three techniques that help to reduce the number of memory
stalls caused by RAW dependencies between successive field operations. For the
remainder (and abusing notation), we define as contiguous data dependence if
the output of a field operation is required as input by the immediately following
operation causing the pipeline to stall in certain processor architecture.

Scheduling of Field Operations. The simplest solution to eliminate contigu-
ous data dependencies is to perform a careful scheduling of the field operations
inside point formulas. However, there is no unique solution and finding the op-
timal “arrangement” could be quite difficult and compiler/platform dependent.
Instead, we demonstrate that some effort minimizing the number of these de-
pendencies increases the overall performance significantly.

We tested several field operation “arrangements” to observe the potential
impact of scheduling field operations. We detail here a few of our tests with field
multiplication on an Intel Core 2 Duo. For example, let us consider the operation
sequences given in Table 5. As can be seen, Sequence 1 involves a series of “ideal”
data-independent multiplications, where the output of a given operation is not an
input to the immediately following operation. In this case, the execution reaches
its maximal performance with approx. 110 cycles/multiplication (see Table 4).
Contrarily, the second sequence is highly-dependent because each output is re-
quired as input in the following operation. This is the worst-case scenario with
an average of 128 cycles/mult., which is about 14% less efficient than the “ideal”
case. We also studied other possible arrangements such as Sequence 3, in which
operands of Sequence 2 have been reordered. This slightly amortizes the impact
of contiguous data dependencies, improving the performance to 125 cycles/mult.

Table 5. Various sequences of field operations with different levels of contiguous data
dependence. Mult(opi,opj,resk ) denotes the field operation resk←opi ∗opj .

Sequence 1 Sequence 2 Sequence 3
> Mult(op1,op2,res1) > Mult(op1,op2,res1) > Mult(op1,op2,res1)

> Mult(op3,op4,res2) > Mult(res1,op4,res2) > Mult(op4,res1,res2)

> Mult(op5,op6,res3) > Mult(res2,op6,res3) > Mult(op6,res2,res3)

> Mult(op7,op8,res4) > Mult(res3,op8,res4) > Mult(op8,res3,res4)

Similarly, we have also tested the effect of contiguous data dependencies on
other field operations, and detected that the cost reduction obtained by switching
from an execution with strong contiguous data dependence (worst-case scenario,
Sequence 2) to an execution with no contiguous data dependencies (best-case sce-
nario, Sequence 1) ranges from approx. 9% to up to 33% on an Intel Core 2 Duo.

Merging point operations. This technique complements and increases the
gain obtained by scheduling field operations. As expected, in some cases it is
not possible to eliminate all contiguous data dependencies in a point formula by
simple rescheduling. A clever way to increase the chances of eliminating more of
these dependencies is by “merging” successive point operations.
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It appears natural to merge successive doublings or a doubling and an addi-
tion. For our implementations, we use wNAF with window size w = 5 to recode
the scalar (see Section 5). Then, at least five successive doublings between addi-
tions are expected. An efficient solution is to merge four consecutive doublings
in a separate function and merge each addition with the precedent doubling in
another function. In this way, we have been able to minimize most contiguous
data dependencies and improve the overall performance further. As a side-effect,
the number of function calls to point formulas is also reduced dramatically.

Merging field operations. If certain field operations are merged (and there
are enough registers available) one can directly avoid memory stalls caused by
dependencies between the writing to memory of the result and its posterior read-
ing in the following field operation. A positive side-effect of this approach is that
memory accesses (and potential cache misses) are also minimized.

Some crypto libraries have already experimented with this approach to cer-
tain extent. For example, MIRACL includes a double subtraction operation that
executes a−b−c (mod p) and a multiplication by 3 executed as a+a+a (mod p).
However, in this work we have maximized the use of registers and included
other combinations such as a−2b (mod p) and the merging of a−b (mod p) and
(a−b)−2c (mod p). We remark that this list is not exhaustive. Different plat-
forms with more registers or different coordinate systems/underlying fields may
enable a much wider range of merging options (for instance, see Section 6 for
the merging options suggested for quadratic extension fields).

To illustrate the impact of scheduling field operations, merging point op-
erations and merging field operations, we show in Table 6 the cost of a point
doubling when using these techniques in comparison with a näıve implementa-
tion with a high number of dependencies.

Table 6. Cost (in cycles) of point doubling with different number of contiguous data
dependencies (Jacobian coordinates, p = 2256 − 189).

Technique

# contiguous Core 2 Duo E6750 Opteron 252

data-depend. Cost per Relative Cost per Relative

per doubling doubling reduction (%) doubling reduction (%)

“Unscheduled” 10 1115 – 786 –

Scheduled/merged 1.25 979 12% 726 8%

As shown in Table 6, by reducing the number of dependencies from ten to
about one per doubling, minimizing function calls and reducing the number of
memory reads/writes, we are able to reduce the cost of a doubling by 12% and
8% on Core 2 Duo and Opteron processors, respectively.

Following the strategies presented in this section, we have first minimized the
cost of point operations (cf. §4.2) and then carefully scheduled (merged) field
operations inside (merged) point operations so that memory stalls and memory
accesses are minimized. See Appendix A for costs and scheduling details of most
relevant point operations used in our implementations and discussed in §4.1.
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5 Optimizations at the Scalar Arithmetic Level

In this section, we describe our choice of algorithms for the computation of point
multiplication and precomputation.

For scalar recoding we use width-w Non-Adjacent Form (wNAF), which of-
fers minimal nonzero density among signed binary representations for a given
window width [1]. In particular, we use Alg. 3.35 of [12] for conversion from inte-
ger to wNAF representation. Although left-to-right conversion algorithms exist
[1], which save memory and allow on-the-fly computation of point multiplica-
tion, they are not advantageous on the targeted CPUs. In fact, our tests show
that converting the scalar to wNAF and then executing the point multiplication
achieves higher performance than interleaving both stages. This could be ex-
plained by the fact that the latter approach “interrupts” the otherwise smooth
flow of point multiplication by calling the conversion function at every iteration
of the double-and-add algorithm.

For precomputation on J , we have chosen a variant of the LM scheme [19]
that does not require inversions (see Section 7.1 of [17]). This method achieves
the lowest precomputing cost, given by (5L+2)M+(2L+4)S, where L represents
the number of non-trivial points (note that we avoid here the S-M trading in
the first doubling). On E/Ee coordinates, we precompute points using the tradi-
tional sequence P + 2P + . . . + 2P , adding 2P with general additions. Because
precomputed points are left in projective coordinates no inversion is required
and the cost is given by (8L+ 4)M+2S. For both J and E/Ee, we have chosen
a window with size w= 5 (i.e., precomputing {P, [3]P, . . . , [15]P}, L = 7), which
is optimal and slightly better than fractional windows using L = 6 or L = 8.

6 Implementation using GLS

For our implementations using GLS, we apply similar techniques to those de-
scribed in Sections 4 and 5 for the elliptic curve arithmetic. As mentioned previ-
ously, we use the optimized assembly implementation of the field arithmetic over
IFp2 by M. Scott [20]. This library exploits the “nice” Mersenne prime 2127 − 1,
which allows a very simple reduction step with no conditional branches.

Note that the field arithmetic over IFp2 in fact translates to a bunch of IFp

operations, where p has 127 bits in our case. For instance, each multiplication
using Karatsuba (as implemented in [20]) involves 3 IFp multiplications and 5
IFp additions/subtractions. Thus, the scheduling and merging of field operations
described in Section 4.3 are first applied to this underlying layer over IFp and
then extended to the upper layer over IFp2 .

For the point arithmetic, we slightly modify formulas described in Section 4
and Appendix A since in this case these require a few extra multiplications with
the twisted curve parameter µ (see Appendix B). For example, the (dedicated)
addition using E/Ee with cost 8M has to be replaced with a formula that costs
9M (discussed in pp. 332 of [13] as “9M+1D”). Moreover, field arithmetic over
IFp2 enables a much richer opportunity for merging field operations. In our imple-
mentations, we include a− 2b (modp), (a+ a+ a )/2 (modp), a+ b− c (modp),
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the merging of a+b ( mod p) and a−b ( mod p), the merging of a−b ( mod p) and
c− d (modp), and the merging of a+ a (modp) and a+ a+ a (modp). For com-
plete details about point formulas and their implementation for the GLS method,
the reader is referred to Appendix B in the extended paper version [18].

For the multiple point multiplication [k0]P+[k1](λP ), each of the two scalars
k0 and k1 is converted using fractional wNAF, and then the evaluation stage is
executed using interleaving (see Alg. 3.51 of [12]). Again, we remark that the
separation of the conversion and evaluation stages yields better performance
in our case. For precomputation on J , we use the LM scheme (see Section 4
of [19]) that has minimal cost among methods using only one inversion, i.e.,
1I+(9L+1)M+(2L+5)S (we avoid here the S-M trading in the first doubling).
A fractional window with L = 6 achieves the optimal performance in our case.
Again, on E/Ee we precompute points using general additions in the sequence
P + 2P + . . .+ 2P . Precomputed points are better left in projective coordinates,
in which case the cost is given by (9L+4)M+2S. In this case, an integral win-
dow w = 5 (i.e., L = 7) achieves optimal performance. As pointed out by [8],
precomputing {P, [3]ψ(P ), . . . , [2L+ 1]ψ(P )} can be done on-the-fly at low cost.

7 Implementation Results

In this section, we summarize the timings obtained by our “traditional” im-
plementations using E/Ee and J (called ted256189 and jac256189, respect.),
and our implementations using GLS (called ted1271gls and jac1271gls, respect.),
when running them on a single core of the targeted x86-64 based CPUs. The
curves used in these implementations are described in detail in Appendix B. For
verification of each implementation, the results of 104 point multiplications with
“random” scalars were all validated using MIRACL. Several “random” point
multiplications were also verified with Magma.

All the tested programs were compiled with gcc v4.4.1 on the Intel Core
2 Duo E6750 and with gcc v4.3.4 on the Intel Xeon E5440 and Opteron 252
processors. For measuring computing time, we follow [10] and use a method
based on cycle counts. To obtain our timings, we ran each implementation 105

times with randomly generated scalars, averaged and approximated the results to
the nearest 1000 cycles. Table 7 summarizes our results, labeled as ted1271gls,
jac1271gls, ted256189 and jac256189. All costs include scalar conversion, the
point multiplication computation (precomputation and evaluation stages) and
the final normalization step to affine. Table 7 also shows the cycle counts that we
obtained when running the implementations by M. Scott (displayed as gls1271-
ref4 and gls1271-ref3 [20]) on exactly the same platforms. Finally, the last 5
rows of the table detail cycle counts of several state-of-the-art implementations
as reported in the literature. However, these referenced results are used only to
provide an approximate comparison since the processor platforms are not iden-
tical (though they use very similar processors).

As can be seen in Table 7, our fastest implementation on the targeted plat-
forms is ted1271gls, using E/Ee with the GLS method. This implementation is
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Table 7. Cost (in cycles) of point multiplication.

Implementation Coord. Field Arithm.
Core 2 Duo

Xeon E5440 Opteron 252
E6750

ted1271gls E/Ee IFp2 , 127-bit 229000 230000 211000

jac1271gls J IFp2 , 127-bit 252000 255000 238000

ted256189 E/Ee IFp, 256-bit 281000 289000 232000

jac256189 J IFp, 256-bit 337000 343000 274000

gls1271-ref4 [20] Einv IFp2 , 127-bit 295000 296000 295000

gls1271-ref3 [20] J IFp2 , 127-bit 332000 332000 341000

gls1271-ref4 [7] Einv IFp2 , 127-bit 293000 (1) – –

gls1271-ref3 [8] J IFp2 , 127-bit 326000 (1) – –

curve25519 [10] Montgomery IFp, 255-bit 386000 (2) – 307000 (4)

Hisil et al. [14] E/Ee IFp, 256-bit 362000 (3) – –

Hisil et al. [14] J IFp, 256-bit 468000 (3) – –

(1) On a 1.66GHz Intel Core 2 Duo. (2) On a 2.66GHz Intel Core 2 Duo E6700.

(3) On a 2.66GHz Intel Core 2 Duo E6550. (4) On a 2.4GHz AMD Opteron 250.

about 22% faster than the previous record set by gls1271-ref4 [7] on a slightly
different processor (1.66GHZ Intel Core 2 Duo). A more precise comparison,
however, would be between measurements on identical processor platforms. In
this case, ted1271gls is approx. 22%, 22% and 28% faster than gls1271-ref4 [20]
on Intel Core 2 Duo E6750, Intel Xeon E5440 and AMD Opteron 252, respec-
tively. Although [20] uses inverted Twisted Edwards coordinates (E inv), the im-
provement with the change of coordinates only explains a small fraction of the
speed-up. Similarly, in the case of J combined with GLS, jac1271gls is about
23% faster than the record set by gls1271-ref3 [8] on a 1.66GHZ Intel Core 2
Duo. When comparing cycle counts on identical processor platforms, jac1271gls
is 24%, 23% and 30% faster than gls1271-ref3 [20] on Intel Core 2 Duo E6750,
Intel Xeon E5440 and AMD Opteron 252, respect. Our implementations are
also significantly faster than the implementation of Bernstein’s curve25519 by
Gaudry and Thomé [10]. For instance, ted1271gls is 41% faster than curve25519
[10] on a 2.66GHz Intel Core 2 Duo.

If GLS is not considered, the fastest implementations using E/Ee and J are
ted256189 and jac256189, respectively. In this case, ted256189 and jac256189
are 22% and 28% faster than the previous best cycle counts due to Hisil et al.
[14] using also E/Ee and J , respect., on a 2.66GHz Intel Core 2 Duo.

It is also interesting to note that the performance boost given by the GLS
method depends on the characteristics of a given platform. For instance, ted1271gls
and jac1271gls are about 19% and 25% faster than their “counterparts” over IFp,
namely ted256189 and jac256189, respect., on a Core 2 Duo E6750. However,
on the AMD Opteron processor the gap between the costs of field operations
over IFp and IFp2 is shorter. As consequence, on Opteron 252 ted1271gls and
jac1271gls only achieve a reduction of approx. 9% and 13% with respect to
ted256189 and jac256189, respectively. For the record, ted1271gls achieves the
best cycle count on an AMD Opteron with an advantage of about 31% over the
best previous result in the literature, i.e., curve25519 [10].

In summary, this paper has illustrated that a significant speed-up can be
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achieved using a combination of optimizing techniques applied to all levels of
the ECC computation and adapted to the architectural features of modern pro-
cessors. This research is crucial for advancing the state-of-the-art crypto imple-
mentations in present and future platforms. Also, although our implementations
(in their current form) only compute [k]P where k and P vary, several of the
optimizations discussed in this work are generic and can be easily adapted to
speed up other implementations using a fixed point P , digital signatures and
different coordinate systems/curve forms/underlying fields.
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A Point Operations using J and E/Ee coordinates

The Maple scripts below verify most representative formulas used in our “tradi-
tional” implementations. Revised formulas for the GLS method can be found in
the extended paper version [18]. Note that field operations are carefully merged
and scheduled to reduce pipeline stalls and memory reads/writes. Temporary
registers are denoted by ti, DblSub represents a−2b (mod p) and SubDblSub
merges a−b (mod p) and (a−b)−2c (mod p). Underlined operations are merged.

# Weierstrass curve (for verification):
x1:=X1/Z1^ 2; y1:=Y1/Z1^ 3; x2:=X2/Z2^ 2; y2:=Y2/Z2^ 3; ZZ2:=Z2^ 2; ZZZ2:=Z2^ 3; a:=-3;
x3:=((3*x1^ 2+a)/(2*y1))^ 2-2*x1; y3:=((3*x1^ 2+a)/(2*y1))*(x1-x3)-y1;
x4:=((y1-y2)/(x1-x2))^ 2-x2-x1; y4:=((y1-y2)/(x1-x2))*(x2-x4)-y2;
x5:=((y1-y4)/(x1-x4))^ 2-x4-x1; y5:=((y1-y4)/(x1-x4))*(x4-x5)-y4;

DBL, J ← 2J : (Xout, Yout, Zout) ← 2(X1, Y1, Z1). Cost = 4M+4S+3Sub+
1DblSub+1AddIR+1Mul3IR+1Div2IR; 5 contiguous data depend.

# In practice, Xout,Yout,Zout reuse the registers X1,Y1,Z1 for all cases below.
t4:=Z1^ 2; t3:=Y1^ 2; t1:=X1+t4; t4:=X1-t4; t0:=3*t4; t5:=X1*t3; t4:=t1*t0; t0:=t3^ 2; t1:=t4/2;
t3:=t1^ 2; Zout:=Y1*Z1; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;
simplify([x3-Xout/Zout^ 2]), simplify([y3-Yout/Zout^ 3]); # Check

4DBL, J ← 8J : (Xout, Yout, Zout)← 8(X1, Y1, Z1). Cost = 4*(4M+4S+3Sub+
1DblSub+1AddIR+1Mul3IR+1Div2IR); 1.25 contiguous data depend./doubling

t4:=Z1^ 2; t3:=Y1^ 2; t1:=X1+t4; t4:=X1-t4; t2:=3*t4; t5:=X1*t3; t4:=t1*t2; t0:=t3^ 2; t1:=t4/2;
Zout:=Y1*Z1; t3:=t1^ 2; t4:=Z1^ 2; Xout:=t3-2*t5; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-
t4; Yout:=t5-t0; t1:=3*t4; t3:=Yout^ 2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^ 2; t3:=t1^ 2;
Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^ 2; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4;
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Yout:=t5-t0; t1:=3*t4; t3:=Yout^ 2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^ 2; t3:=t1^ 2;
Zout:=Yout*Zout; Xout:=t3-2*t5; t4:=Zout^ 2; t3:=t5-Xout; t2:=Xout+t4; t5:=t1*t3; t4:=Xout-t4;
Yout:=t5-t0; t1:=3*t4; t3:=Yout^ 2; t4:=t1*t2; t5:=Xout*t3; t1:=t4/2; t0:=t3^ 2; t3:=t1^ 2;
Zout:=Yout*Zout; Xout:=t3-2*t5; t3:=t5-Xout; t5:=t1*t3; Yout:=t5-t0;

DBLADD, J ← 2J+J : (Xout, Yout, Zout)← 2(X1, Y1, Z1)+(X2, Y2, Z2, Z
2
2 , Z

3
2 ).

Cost = 16M+5S+7Sub+2DblSub+1AddIR+1Mul2IR; 3 contiguous data depend.

t0:=X1*ZZ2; t5:=Z1^ 2; t7:=Y1*ZZZ2; t4:=X2*t5; t6:=t5*Z1; t1:=t4-t0; t5:=Y2*t6; t6:=t1^ 2; t2:=
t5-t7; t4:=t2^ 2; t5:=t6*t0; t0:=t1*t6; t3:=t4-2*t5; t6:=Z1*t1; t3:=t3-t5; t4:=Z2*t6; t3:=t3-t0;
t6:=t7*t0; Zout:=t4*t3; t4:=t2*t3; t1:=2*t6; t0:=t3^ 2; t1:=t1+t4; t4:=t0*t5; t7:=t1^ 2; t5:=t0*t3;
Xout:=t7-2*t4; Xout:=Xout-t5; t3:=Xout-t4; t0:=t5*t6; t4:=t1*t3; Yout:=t4-t0;
simplify([x5-Xout/Zout^ 2]), simplify([y5-Yout/Zout^ 3]); # Check

# Twisted Edwards curve (for verification):
x1:=X1/Z1; y1:=Y1/Z1; x2:=X2/Z2; y2:=Y2/Z2; T2:=X2*Y2/Z2; a:=-1;
x3:=(2*x1*y1)/(y1^ 2+a*x1^ 2); y3:=(y1^ 2-a*x1^ 2)/(2-y1^ 2-a*x1^ 2);
x4:=(x3*y3+x2*y2)/(y3*y2+a*x3*x2); y4:=(x3*y3-x2*y2)/(x3*y2-y3*x2);

DBL, E ← 2E : (Xout, Yout, Zout)← 2(X1, Y1, Z1). Cost = 4M+3S+1SubDblSub+
1AddIR+1Mul2IR+1Neg; no contiguous data dependencies

t1:=2*X1; t2:=X1^ 2; t4:=Y1^ 2; t3:=Z1^ 2; Xout:=t2+t4; t4:=t4-t2; t3:=t4-2*t3; t2:=t1*Y1; Yout:=
-t4; Zout:=t4*t3; Yout:=Yout*Xout; Xout:=t3*t2;
simplify([x3-Xout/Zout]), simplify([y3-Yout/Zout]); # Check
# Iterate this code n times to obtain nDBL with cost n(4M+3S+1SubDblSub+1AddIR+1Mul2IR+1Neg)

Merged DBL–ADD, E ← (2E)e+Ee : (Xout, Yout, Zout)← 2(X1, Y1, Z1)+((X2+Y2),
(X2 − Y2), 2Z2, 2T2). Cost = 12M+3S+3Sub+1SubDblSub+4AddIR+ 1Mul2IR;
no contiguous data dependencies

t1:=2*X1; t5:=X1^ 2; t7:=Y1^ 2; t6:=Z1^ 2; Xout:=t5+t7; t7:=t7-t5; t6:=t7-2*t6; t5:=t1*Y1; t8:=t7*
Xout; t0:=t7*t6; t7:=t6*t5; t6:=Xout*t5; Xout:=t7+t8; t1:=t7-t8; t7:=(2*T2)*t0; t5:=(2*Z2)*t6;
t0:=(X2-Y2)*t1; t1:=t5+t7; t6:=(X2+Y2)*Xout; Xout:=t5-t7; t7:=t0-t6; t0:=t0+t6; Xout:=Xout*t7;
Yout:=t1*t0; Zout:=t0*t7;
simplify([x4-Xout/Zout]), simplify([y4-Yout/Zout]); # Check

B The Curves

The curves below provide approximately 128-bit level of security and were found
by using a modified version of the Schoof’s algorithm provided with MIRACL.

– Jac256189 uses the Weierstrass curve Ew : y2 = x3−3x+B over IFp with J ,
where p = 2256−189, B = 0xfd63c3319814da55e88e9328e96273c483dca6cc84
df53ec8d91b1b3e0237064 and #Ew(IFp) = 10r (r is a 253-bit prime).

– Ted256189 uses the Twisted Edwards curve Etedw:−x2+y2=1+358x2y2 over
IFp with E/Ee, where p=2256−189 and #Etedw(IFp)=4r (r is a 255-bit prime).

– Jac1271gls uses the quadratic twist E′w−gls: y
2 =x3− 3µx+ 44µ of the Weier-

strass curve Ew−gls(IFp2), where µ= 2 + i ∈ IFp2 is non-square, Ew−gls/IFp:
y2 = x3− 3x+ 44 and p= 2127− 1. In this case, #E′w−gls(IFp2) is a 254-bit
prime. The same curve is also used in [8].

– Ted1271gls uses the quadratic twist E′tedw−gls : −µx2 + y2 = 1 + 109µx2y2

of the Twisted Edwards curve Etedw−gls(IFp2), where µ= 2 + i ∈ IFp2 is non-
square, Etedw−gls/IFp : −x2 + y2 = 1 + 109x2y2 and p = 2127 − 1. In this
case, #E′tedw−gls(IFp2) = 4r where r is a 252-bit prime.


