
A high speed coprocessor for elliptic curve scalar
multiplications over Fp

Nicolas Guillermin1,2

1 DGA Information Superiority, Bruz, France
2 IRMAR, Université Rennes 1, France

Abstract. We present a new hardware architecture to compute scalar multiplications in
the group of rational points of elliptic curves defined over a prime field. We have made an
implementation on Altera FPGA family for some elliptic curves defined over randomly
chosen ground fields offering classic cryptographic security level. Our implementations
show that our architecture is the fastest among the public designs to compute scalar
multiplication for elliptic curves defined over a general prime ground field. Our design
is based upon the Residue Number System, guaranteeing carry-free arithmetic and easy
parallelism. It is SPA resistant and DPA capable.

Keywords: elliptic curve, high speed, RNS, prime field, FPGA

1 Introduction

Twenty five years after their introduction for cryptographic applications [14], elliptic curves are
well established in the field of public key cryptography. A standard of the National Institute of
technology (NIST) recommends their use for digital signature [17]. The most time consuming
operation in elliptic curve based protocols is the scalar multiplication. As a consequence, scalar
multiplication has attracted a lot of attention in public literature. Available designs may differ
greatly depending on the target implementation (GPGPUs, CPUs, ASICs, FPGAs) and the aim
they try to achieve which may be related to speed, size, power consumption or security issues.
We refer the reader to [3, 25, 10, 21] for example of known implementations.

In this paper, we describe the fastest available architecture for computing [k]G over curves
defined over Fp for general prime p in FPGA. Our architecture is based on Residue Number
Systems (RNS) and is resistant against side channel attacks. We have made a FPGA implemen-
tation of our design. Actually, FPGA implementations are particularly interesting for at least
two reasons : they are well suited to provide a good local protection level, and they constitute
generally the first step towards faster ASIC implementations.

Target application of such special purpose designs are all the fields where both high speed,
low latency and high level resistance against attacks are required (example : IPSEC set-top
box).

Related work : A great overview of high speed hardware accelerator for ECC is given by [13].
Designs can be split in two categories : those which support elliptic curves over F2n , and those
over Fp. Architectures of the first group give the best speed to security ratio. It is mostly due
to the field structure (No carry is propagated). State of the art implementations show a latency
under 20 µs for a 280 security [8]. Nevertheless large characteristic remain interesting, mostly
because Fp offers less structure than F2n , and may be safer. Some architecture can also support
both field types [22].

Some implementations are specific to a pseudo-Mersenne prime [7]. These implementations
may be faster than the one which do not depend on the relying field. Nevertheless the ability of
changing the curve is also an asset for security (finding weak curves is still an active research
area). Our architecture is of this kind. To our knowledge the best architecture is the one of

Mentens [11], which computes a 1 ms 160 bit scalar multiplication on a Xilinx Virtex 2 pro.
Most of the implementations are based on a multi-precision Montgomery representations of
numbers, allowing reduction without expensive divisions.

Another way to represent big numbers is the Residue Number System. It provides fast and
carry free arithmetic. A modified version of the Montgomery algorithm [1] makes it suitable for
arithmetic in Fp. Szerwinski et al [25] used it to produce the fastest software implementation
of scalar multiplication. Kawamura et al [10, 16] proposed a very efficient architecture for RSA
signature on an ASIC. Their contribution is analysed in section 3, since it is the starting point
of our work.

The higher p is, the more efficient RNS is (because its high parallelization ability). Then
we could think that applying RNS to ECC will be less interesting than RSA. We show in this
paper that this drawback is compensated by 2 advantages. First, the RNS ability to execute
patterns like AB +CD in only one reduction, while both products are almost free, reduces the
time of point operations in ECC while it is useless for RSA (2.2). Second, ECC operations are
parallelizable, therefore we can deepen the pipelines while keeping a high rate occupation (3.2).

Our contribution : We present a complete redefinition of main module of Kawamura. Thanks
to it we can use elliptic curve and we reach high speed on a FPGA. We design the first ar-
chitecture to break 1 ms for 160 bit elliptic curve scalar multiplication over prime field of any
characteristic, even on a 130 nm node FPGA (the Altera Stratix family in our case). Our scal-
able architecture keeps its advantage even for larger groups (up to 512 bits). We also propose
an algorithm for RNS-Radix transformation that does not cost a single gate, and base choice
considerations for RNS use with elliptic curves.

Structure of the paper : The section 2 deals with mathematical backgrounds of RNS and
elliptic curves. The section 3 describes and analyses the choices that are made to improve Kawa-
mura’s architecture, and and the section 4 gives the results of implementations, and compares
it to other existing design. Design schemes are at the end of the paper.

2 Mathematical background

Notations : In all the paper, for a, b ∈ N, we denote by |a|b the result of a modulo b.

2.1 RNS

Overview : Let B = {m1, · · · ,mn} be a set of co-prime natural integers, and M =
∏n

i=1mi.
The residue number system (RNS) representation {X}B of X ∈ N such that 0 ≤ X < M is
the unique set of positive integers {x1, · · · , xn} with xi = |X|mi . This representation allows fast
arithmetic in Z/MZ since

{X � Y }B = {|x1 � y1|m1 , · · · , |xn � yn|mn
} (1)

for � ∈ (+,−,×, /), / being only available for Y coprime with M . The integer X is recovered
thanks to the Chinese remainder theorem :

X =

∣∣∣∣∣
n∑

i=1

|xi ×M−1
i |mi

×Mi

∣∣∣∣∣
M

where Mi =
M

mi
. (2)

Note that M−1
i is then well defined in Z/miZ. In the rest of the paper, B is called a RNS base

and the {mi}i=1,...,n are called channels of B, since every calculation are done independently
modulo these channels.

Algorithm 1 RedMontg(X, p,B, B̃)

Require: B and B̃ RNS bases with M > αp and M̃ > 2p
Require: p co-prime with M and M̃
Require: {X}B and {X}B̃ RNS representation of X < αp2 in B and B̃
Require: precalculations : {| − p−1|M}B ,{|M−1|M̃}B̃ and {p}B̃
Require: algorithm Bext(A,B1, B2) computing {|A|M2}B2 from {A}B1

Ensure: {S}B and {S}B̃ such that |S|p = |XM−1|p and S < 2p
1: Q← X × | − p−1|M in B
2: Q̃← Bext(Q,B, B̃)
3: R̃← X + Q̃× p in B̃
4: S̃ ← R̃×M−1 in B̃
5: S ← Bext(S, B̃, B)
6: return S and S̃

RNS Montgomery reduction algorithm : The Montgomery reduction application was
first introduced in [15] for the purpose of multiprecision arithmetic. The paper [1] presents an
adaptation in the context of RNS representation.

In the following we recall the main results of this last paper. Let p be a prime, α > 2
an integer, B and B̃ be two RNS bases with their channel products M and M̃ such that
M > αp and M̃ > 2p. For all input a < αp2 given in B and B̃ the Montgomery algorithm
computes S in B and B̃ such that S < 2p and |S|p = |a ×M−1|p. The factor M−1 is not a
concern if a lot of computation in modular arithmetic are to be done in a row, which is the
case in most applications related to cryptography. Actually, thanks to the use of Montgomery
representative φ(X) = |XM |p (see [15]), one only needs a transformation at the beginning of any
calculation φ(X) = RedMontg(X × |M2|p, p, B, B̃) and the corresponding invert transformation
φ−1(Y) = RedMontg(Y, p,B, B̃) at the end.

The base change Bext(X,B, B̃) is due to the fact that one can not divide by M in B.
The second base extension computes {S}B from {S}B̃ . Both are then available for another
computation. Unlike the multiprecision Montgomery algorithm, we can not execute the final
reduction, since it is not easy to know if S is more or less than p (comparison is a greedy
operation in RNS representation). The result S is then kept between 0 and 2p. The main
consequence is that M̃ has to be up to 2p. The choice of B depends on the maximal number we
wish to reduce. Proposition 1 shows that M̃ does not need to be more than M . Even if Q̃ is not
equal to Q but to |Q|M̃ , the algorithm still gives the correct output.

Proposition 1. Given α > 2, if M > αp and M̃ > 2p then RedMontg(X, p,B, B̃) gives the
correct output for every X between 0 and αp2.

Proof. Be X < αp2, M > αp and M̃ > 2p. Q = |XP−1|M , therefore Q < M . By Bext ,
Q̃ = |Q|M̃ . As XB̃ = |X|M̃ and p < M̃ , S̃ is equal to |(X + Qp)/M |M̃ . As Q < M , T =
(X + Qp)/M < 2p. Therefore S̃ = T , and as α > 2 S = T too. As T ≡ |XM−1|p, we can
conclude that S and S̃ are the expected results.

RNS base extension : The greediest steps of this algorithm are the two base extensions
Bext(X,B, B̃) and Bext(X, B̃,B). They are a classical O(n2) algorithm, where n is the RNS
base size, and the elementary operation is a modular multiplication/addition on a channel. The
main concern of every algorithm implementing Bext is to provide a way to compute the final
reduction by M , to calculate γ such that

X =
n∑

i=1

|xi ×M−1
i |mi

×Mi − γM. (3)

Once γ is calculated, X is easily recovered on every channel m̃i by multiplying and accumulating
the result. Three different algorithm are proposed by literature :

Algorithm 2 Montg − ladder(k,G,Cp,a4,a6)
Require: k ∈ N =

P
ki.2

i, G a point of Cp,a4,a6

Ensure: R = (k]G
1: R← O ; S ← G
2: for i from log2(k) to 0 do
3: if (ki = 0) then
4: R← 2R ; S ← R+ S
5: else
6: S ← 2S ; R← R+ S
7: end if
8: end for
9: return R

– a Mixed Radix System (MRS) approach [2] which natively avoids final reduction, but is
hard to implement in hardware because of the structure of the algorithm, but remains a
good alternative in software,

– an extra modulus approach proposed by Shenoy and Kumaresan [24]. The idea of this
algorithm is to have a me coprime with M and M̃ , and to use X[me] to compute γ. The main
drawback of this approach is that we need to keep |X|me

all along during the calculation,
while we just need it during the base extension,

– a floating point approach proposed by Posch and Posch [19], and improved by Kawamura
et al. [10]. The main idea is to transform the equation 3 as follow:

X =
n∑

i=1

Mξi
mi
−Mb

n∑
i=1

ξi
mi
cwith ξi = |xiM

−1
i |mi

(4)

The main drawback of the floating point approach is a potential emergence of an offset due to
the approximation while computing b

∑n
i=1 ξi/mic. In [10] ξi/mi is approximated by ξi/2r where

r is chosen as word depth in the proposed architecture. As mi is chosen as a pseudo-Mersenne
prime near 2r, the offset of the calculation may be easily limited to 1/2. In [10] is explained how
this possible error can be without consequences for the result, as soon as M̃ < 6p. The output
of RedMontg will be less than 3p, whatever the input is (proposition 1 is then easily adapted,
with M̃ > 6p and α > 3 the output of the algorithm 1 will be less than 3p).

2.2 Elliptic curves

Overview : In this paper, considered elliptic curves Cp,a4,a6 are seen as sets of couples (x, y) ∈
F2

p verifying the following equation, with p prime and extra conditions on a4 and a6 which are
not discussed here.

y2 = x3 + a4x+ a6 (5)

Together with the point at infinity O, Cp,a4,a6 is an abelian group. The composition law has a
geometric meaning described by the vertical and tangent. Some specific curve shapes (forms of
the equation) spare multiplications and reduction while computing P +Q and 2P over Cp,a4,a6

[9, 5].Nevertheless the Weierstrass form represents all elliptic curves over prime fields (through
isomorphism over F2

p). Other representations can only represent curves with subgroups (e.g order
4 for Edwards curves and Montgomery form, order 3 for Hessian curves...). Here we consider
general curves in Weierstrass form, given by 5.

Addition and doubling formulæ : The Montgomery ladder [9] algorithm is a SPA-resistant
square and multiply algorithm, computing [k]G over Cp,a4,a6 using one double and one add per
bit of k.

Moreover, one can use projective coordinates XP , YP , ZP of point P = xP , yP where xP =
XP /ZP and yP = YP /ZP when ZP 6= 0. With projective coordinates every point of the curve
has p − 1 different representation. This can be used to execute leak-resistant computation (by
changing the point representation before realizing the scalar multiplication) [4]. Point additions
and doubling are then computed without inversion in Fp.

Combined with algorithm 2, we can spare the computation of Y[k]G (y[k]G is recomputed at
the end of the algorithm if necessary). Formulæ for adding and doubling points optimized for
RNS are given in [20]. We briefly recall them in the following table.

P +Q 2P
A← ZPXQ +XPZQ E ← Z2

p

B ← 2XPXQ F ← 2XPZP

C ← 2ZPZQ G← X2
P

D ← a4A+ a6C H ← −4a6E
ZP+Q ← A2 −BC I ← a4E

XP+Q ← BA+ CD + 2xP−QZP+Q X2P ← FH + (G− I)2

Z2P ← 2F (G+ I)− EH

At the end of the scalar multiplication, an inversion is needed to recompute x[k]G = X[k]G/Zk[G].
In our results this final inversion is taken in account, considering that we use little Fermat’s the-
orem to compute the inversion (which is possible with our design, and does not cost any gate
except in the sequencer).

The main feature of RNS compared to classical representation is that multiplication is almost
free while all the computation complexity is on reduction. Therefore, it is interesting to find
AB+CD pattern in the addition and doubling law of the curve. This is done by the table given
above in 13 reductions for 1 Montgomery ladder step (1 point-addition and 1 point doubling).

2.3 Base choice

Our purpose is to use Kawamura’s base extension in a massively parallel architecture. A value
r is set as the word depth, and B and B̃ are chosen to be pseudo-Mersenne values mi = 2r − εi,
with εi < 2q and q < r/2. B̃ is chosen exactly the same manner. Regarding addition and
doubling formulæ, we can set α of algorithm 1 to 45. Indeed, the maximum value we have to
reduce is Z2P ← 2F (G + I) − EH. As F ,G,H and I are less than 3p, 2F (G + I) is at most
36p2. Since we can not afford to set negative input in RedMontg, and we are unable to verify
that 2F (G + I) > EH, we have to calculate (3p − E)H which is positive, and less than 9p2.
Therefore M > 45p. As it is shown in Radix-RNS transformation subsection, 2r is set as the
m0 value. In order to spare gates in our design, q has to be as small as possible. If the tar-
geted technology is a Stratix family FPGA, we will use 18 × 18 or 36 × 36 multipliers. Here
are the main features of chosen bases for the use of 18 × 18 and 36 × 36 multipliers (r is the
word size in bits, n is the number of parallel rower modules and q is the max size of the εi in bits) :

curve 160 192 256 384 512 160 192 256 384 512
r 17 18 18 18 18 34 33 33 36 35
n 10 11 15 22 29 5 6 8 12 15
q 7 7 8 8 9 5 6 6 7 8

3 Hardware architecture

3.1 Architecture overview

Already published architecture using RNS : Kawamura [10] proposed an architecture
suitable for RSA calculation using his base extension algorithm. His general architecture is the

same as ours and is given by the upper outline of the figure 1. He divided his design in multiple
”Rower” modules, which were in charge of calculating |

∑n
i=1(Mξi)/mi|mj

. and a ”Cox” module
in charge of calculating b

∑n
i=1(ξi/2r)c. “Cox” design is very simple (a small adder). In [16] an

improvement took the advantage of setting one cox per Rower. He then spared one cycle per
reduction, computing γ in the same cycle. The results were interesting, but the Rower pipeline
was not deep enough to reach high clock frequency (3 stages).

Improvements in our design : Our architecture is an improvement of Kawamura’s [10] [16]
which makes it

– suitable for elliptic curves,
– able to provide protections against side-channel attacks,
– designed to reach high clock frequencies.

The first limitation of Kawamura’s architecture is the usage of only one RAM per channel.
It only can execute a squaring, or multiply by a ROM data. This is not a limitation for RSA,
the exponentiation algorithm only executes a square and a multiply by a constant, and so does
the base reduction. This limitation is no more acceptable for elliptic curves. A general purpose
register file (GPRs) must be added in order to multiply 2 local variables. Also the needed
precalulation must be redefined. This point is focused in the subsection 3.3.

The second limitation of Kawamura’s architecture is the design of the pipeline core, which
executes the operation acc = |x× y + acc|mi

. Kawamura’s goal was to keep busy every pipeline
stage 100% of the cycles. To do so, he designed a 3 stage pipeline, and needed to use 3 times less
Rower than the number of channels he had in B and B̃. Our architecture increases the pipeline
depth to reach higher clock frequencies. We show that a 100% pipeline occupation is not really
necessary for elliptic curves : it is easy to keep a good pipeline occupation even with deeper
pipelines, with as many Rower as channels in B and B̃, and with less channels for elliptic curves
than for RSA (considering 160 bits curves versus 1024 bits bases for RSA). This point is focused
in the subsection 3.2.

Our architecture is showed on figure 1. It is the same as in [10] for the upper scheme part. Thus
the Rower design (lower part of the scheme) is completely different. It is mainly composed with
n parallel channels which execute acc = |x× y+ acc|mi

at each cycle and get operands and put
the result from/in one of the 16 General Purpose Registers (GPR). Therefore, our architecture
is able to compute a multiplication in Z/MZ at each clock cycle. Our Rower architecture is
described in 3.2.

We propose a RNS-Radix transformation in subsection 3.4, and eventually discuss about
consequences of our choice for resistance against side channel attacks in 3.5.

3.2 Pipeline Architecture

In order to get high speed, the Arithmetical and Logical Unit(ALU) must execute |r1 × r2|m
and accumulate the result at each clock cycle.

Considering this constraint, algorithm 3 computes the modular multiplication for any pseudo-
Mersenne number. The accumulation may be executed at every step of the algorithm. For every
value P ,Plsb are the r less significant bits of P , while Pmsb = bP/2rc.

As it is shown in algorithm 3 , there are in the proposed pipeline structure only 5 generic
operands:

– a r × r multiplier,
– a r × q multiplier,
– a q × q multiplier,
– 2 r modulo-adder taking two entries less than mi, (4 if we consider accumulation, see the

pipeline subsection)
– a r modulo-adder taking one over two entries less than mi, the other being less than 2r.

Algorithm 3 MM(r1, r2,mi)
Require: r1 and r2 < 2r

Require: mi = 2r − εi a pseudo-Mersenne number
Ensure: |r1 × r2|mi

1: P = r1 × r2
2: Q = Pmsb × εi R = |Plsb|mi

3: R = Qmsb × εi S = |Qlsb + Plsb|mi

4: T = |R+ S|mi

5: return T

Algorithm 4 3add(P,Q,R)
Require: P ,Q and R : vector(r)
Ensure: P +Q+R
1: X : vector(r) = P xor Q xor R
2: C : vector(r) = MAJ(P ,Q,R)
3: return X + 2C

The multipliers are not an issue for FPGA, since both Altera Stratix and Xilinx Virtex families
have got multiplier blocks. The following assumption are taken :

– A a× b multiplier will be implemented in a single FPGA DSP block, for every a and b < 36
, even if b is 9 bit wide.

– A a × b multiplier will be implemented in a single 9 × 9 blocks if both a and b are smaller
than 9.

These facts have been verified for every synthesis during this study.
Modular addition takes advantage on the fact that an addition by three operands of size r

only costs one LUT pass through and one addition of r + 1 operands, by using algorithm 4.
Then, if a and b are less than mi, |a+ b|mi

can be computed by computing in parallel r1 = a+ b
and r2 = a + b + εi and by considering the carry of r2 to choose the correct result. Figure 2
describes the adder design. If mi < a ≤ 2r, an extra addition a+ b+ 2εi is required.

Two pipeline architectures are proposed in this paper (figure 2). Both try to balance the
pipeline stages with one another, but make different assumptions :

– The first one makes the assumption that the a modular addition is twice faster than a
multiplication.

– The second one makes the assumption that a modular addition runs as fast as multiplication.

To increase the pipeline occupation, we overlap independent operations : for example, the
computation of B and C start before the one of A is finished. Then, the wait states of the
calculation of A, are taken up by B and C. This technique increases the pipeline occupation,
but may increase the number of needed general purpose registers. This is a trade-off. It is
analysed in the subsection 3.3.

On an Altera Stratix II chip, the maximum clock frequency of the 5 stage pipeline is 110
MHz, while the 6 stage reaches 158 MHz. At is is shown in subsection 3.3, the percentage of
idle states is respectively 95% and 90% for a pipeline of depth 5 and 6, and a design with 5
channels (for a 160 bit curve with a channel length of 33 bits). This is the worst case of this
study for pipeline occupation. We can then conclude that the 6 stage pipeline is the best choice
for Stratix II technology. This study has to be done again for each target technology (including
ASICs).

3.3 Memory

Precalculations and ROM content : The Rower main ROM is filled with the precalculated
values described in this subsection.

Algorithm 5 Reduction(GPR1, GPR2) on a single Rower
Require: X a value we wish to reduce GPR1 = |X|mi and GPR2 = |X|m̃i

Ensure: RedMontg(X, p,B, B̃) in GPR1 and GPR2

1: cycle 1 : GPR1 ← |GPR1 × p−1M−1
i |mi

2: wait 1 : wait for GPR1

3: cycle 1′ : out← GPR1

4: cycle 2 + j (j ∈ [0, · · · , n− 1]) : GPR1 accumulates |in×Mjp(MM̃i)
−1 +Mcox|m̃i

5: cycle 2 + n : GPR1 accumulates |GPR2 × (MM̃i)
−1|m̃i

6: wait 2 : wait for GPR1

7: cycle 3 + n : out← GPR1 and GPR2 ← |GPR1 × M̃i|m̃i

8: cycle 4 + n+ j (j ∈ [0, · · · , n− 1]) : GPR1 accumulates |in× M̃j +Mcox|mi

9: wait 3 : wait for GPR1

Not considering reduction, we need during the calculation the following 3 variables : a4, a6

and 3p : a4 and a6 to compute D and I, 3p to compute any subtraction (for example ZP+Q and
Z2P). To compute H it is possible to precompute −4a6. Eventually we need |M2|p to compute
Montgomery representatives. For computation we also need 0, 1 and −1 for every channel. For
radix-RNS transformation we need 2r and for RNS-radix we need 2−r and −2−r only on B̃ (see
subsection 3.4).

Algorithm 5 gives a fast version of the algorithm in our architecture. Cycle 1′ can be executed
with another instruction. During cycles 2 + j and 4 + n + j, the main bus is set to out[j] the
output of the jth channel. The needed precomputed values are

– for a channel mi of B (modulo mi) :
p−1M−1

i , M̃j for j ∈ [0; · · · ;n− 1].
– for a channel m̃i of B̃ (modulo m̃i) :
Mjp(MM̃i)−1 for j ∈ [0; · · · ;n− 1] , (MM̃i)−1.

For a FPGA implementation, all these values may be set in ROMs, a curve change can be
done by loading a different bitstream. Our results are given for fixed ROM. If it is necessary
to change the curve during runtime, or if an ASIC implementation is needed, user may choose
between 2 options :

– use RAMs instead of ROMs. This allows to change bases too, but all the values above have
to be computed.

– reduce the number of curve-dependant values. Only 5 precomputed values per channel are
needed : p, a4, a6, |M2|p and |−p−1|M . It costs 2 extra cycles and 2 extra wait per reduction.

For each Rower design, two extra small ROMs are needed, each one containing two values.
The ROMmi

holds mi and m̃i. The ROMcox holds the value |−MpM̃i
−1|m̃i

and |−M̃ |mi
when

the cox module set up the signal cox, these values are injected in the pipeline.

General purpose register file : Elliptic curves formulæ use local variables which have to
be multiplied with one another, contrary to RSA which only has to square or multiply by a
constant. That is why our architecture uses for every channel a general purpose register file
(GPRs). Since every local variable has to be evaluated in M and M̃ , one need twice as GPR as
the maximum of local variables.

As it is explained in the pipeline subsection, operations are overlapped : intermediate result
computation may start before the previous is finished. This may implicate an increase of the
number of needed registers.

The following table shows that 16 GPR are enough : local variables are limited to 7 and
reductions are at least executed by 2, most of time by 3. An 8th local variable is taken by xG

the exponentiated point abscissa. This leads to a pipeline fill rate of 90% for the 6 stage pipeline
and 16 GPR per channels. This is a good trade-off.

step calculation living variables
1 A B C XP ZP A B C
2 D ZP+Q XP ZP A B C D ZP+Q

3 XP+Q E F XP E F ZP+Q XP+Q

4 G H I E F G H I ZP+Q XP+Q

5 X2P Z2P X2P Z2P ZP+Q XP+Q

3.4 Radix-RNS transformation

The RNS representation is not practical for using outside the design. Moreover, there is no need
for extra material either to transform a number X from its classical multiprecision representation
(Xn−1, · · · , X0) where X =

∑n−1
i=0 Xi2i) to its RNS representation (x1,...xn), nor the contrary.

Using our architecture, the Radix-RNS transformation is trivial, if the sequencer can set up the
main bus to the Xi values, and |2r|mi

is in ROM.
For RNS-Radix transformation, the main idea is to set the channel m0 of B to 2r. If it is so,

X0 = x0. To find X1, all we need to do is to compute X ← (X − x0)/2r. As 2r is not co-prime
with M , this computation is done over B̃, and the use of Bext(X, B̃,B) gives X1 ← x0. By
repeating this operation we compute X2, · · · , Xn.

This algorithm is not the most efficient but does not cost a single gate in our architecture.
It never costs more than 0.3% of the total scalar multiplication time.

3.5 Side channel attacks

Our architecture supports an inherent capability to treat simple power analysis (SPA), or dif-
ferential power analysis (DPA) and fault threats. Indeed, the Montgomery ladder is particularly
efficient to counter both side channel attacks and fault attacks (no operation is dummy). Our
finite state sequencer does not have any branch capability, bits of k are only read at the begin-
ning of each Montgomery-ladder step to invert registers. Therefore no information leaks from
the computation time.

Moreover, randomness can be introduced at the very beginning of the algorithm by changing
G representation, replacing (xG, 1) by (xG×a1, a1) and O = (a2, 0), where a1 and a2 are random
values. This countermeasure avoids Fouque’s attacks [6] on collisions. The only SPA vulnerability
is address-bit SPA attack [12], which is difficult to realize on real design. Moreover, to be DPA
resistant k may be added with a3×#Cp,a4,a6 where a3 is a random value. The impact on speed is
log(a3)/log(p) on the speed. There is no impact on the design size. More robust randomizations
of k are also possible.

4 Result and comparison

In this section we give the overall results, and compare it to different architecture given in the
open literature.

4.1 Results

Our target technology is the Altera Stratix family. This choice has very few impact on results
compared to Xilinx Virtex family [18]. We chose Altera because of the availability of the Quartus
toolchain during the study. Among all the Altera products, we focus on 2 generations. First
Stratix are the Altera FPGA at the 130 nm process node. The Xilinx equivalent is the Virtex
II-pro. We also have fit our design in the Stratix II generation FPGA (the 90 nm process node),
much more efficient. The equivalent is the Virtex IV by Xilinx.

We randomly chose elliptic curves of the following size : 160, 192, 256, 384 and 512 bits. No
restriction were given for p, a4 and a6 but to be a valid elliptic curve. The result given below
does not depend on the effective choice of p but only on log2(p). The number of Rower n as well

as the word depth r are also given. These values are the most efficient considering the curve
size.

For every fit we give the considered FPGA family and the exact reference of the chip. The
maximum reachable frequency as well as the computation time for a whole scalar multiplication
[k]G are given. The size of the exponent k is the same as the size of p. The final inversion, the
y[k]G recalculation, the Radix-RNS and RNS-Radix transformations are included in the result.

Eventually the FPGA occupation is given. The Stratix FPGA are composed by logic elements
(LE). LE are equivalent to the Look-Up Table (LUT) of the Virtex II-pro. Therefore a Virtex II-
pro slice counts for two LE. No equivalent to the slice exists in the Stratix family. On the Stratix
II family Altera introduced the Altera Logic Module (ALM), the Virtex IV slice equivalent. The
number of used DSP blocks (multipliers) is also given. Altera gives the DSP occupation in
numbers of 9× 9 multipliers used. Stratix and Stratix II DSP blocks can indeed be configured
as one 36× 36 multiplier, two 18× 18 or eight 9× 9 multipliers.

Family curve model n r size DSP frequency speed
Stratix 160 EP1S20F484C5 5 34 11431 LE 74 92.6 0.57 ms

192 EP1S30F780C5 6 33 12480 LE 80 89.6 0.72 ms
256 EP1S60F780C5 8 33 16200 LE 125 90.7 1.17 ms
384 EP1S80F1020C5 11 36 25279 LE 176 90.0 2.25 ms

512 3 EP1S80F1020C5 15 35 48305 LE 176 79.6 4.03 ms
Stratix II 160 EP2S30F484C3 5 34 5896 ALM 74 165.5 0.32 ms

192 EP2S30F484C3 6 33 6203 ALM 92 160.5 0.44 ms
256 EP2S30F484C3 8 33 9177 ALM 96 157.2 0.68 ms
384 EP2S60F484C3 11 36 12958 ALM 177 150.9 1.35 ms
512 EP2S60F484C3 15 35 17017 ALM 244 144.97 2.23 ms

The results given above show some properties of the chosen design. First the maximum
frequency hardly falls with the size of the design. Indeed, no carry is propagated on the whole
size of the operands due to RNS. The critical path is then not related to the design structure.
For some fit it is in the sequencer, and for some other in a Rower. No further instruction has
been given to the fitter except the pursuit of the maximal frequency.

As speed was our main concern, no RAM blocks were used. If size is a matter, ROMs and
GPR may be fitted in RAM blocks, to spare logic. The Stratix family lacks some DSP for
512 bit curves, while Stratix II have far enough resources to fit for any cryptographic size (the
EP2S60F484C3 is a middle size matrix in the Stratix 2 family).

4.2 Comparison

In this subsection we compare our design with other papers in the open literature. Our archi-
tecture supports any elliptic curve over Fp and is resistant to side channel attacks. We compare
it with 3 papers we consider significant:

– the first one is another design based on RNS. In this paper, modular multiplication is realized
through an Horner scheme. To our knowledge it is the only implementation using RNS for
curves. It is realized by Schinianakis et al [23]. It is implemented on an ASIC and on a
FPGA.

– the second one is described in [11], and is based on a multi-precision algorithm. The main idea
is an important work on the pipeline architecture for the classical multiprecision algorithm
and on long word additions, through carry-look adder. It is realized on a Virtex II-pro.
The scalar multiplication is based on a NAF recoding. This is to our knowledge the fastest
implementation of elliptic curve scalar multiplication with generic curves. It outperforms
every implementation given in [13] and is as fast as [21] using less resources.

3 the EP1S80 does not have enough DSP blocks, multipliers are fitted in the LE blocks, and frequency
falls.

– the third one is described in [7]. The design is specific to a particular curve, p being a pseudo
Mersenne value. The main idea is a dual clock design, according DSP blocks to run at their
maximum speed in Virtex 4 design, 500 MHz. It is the fastest FPGA implementation of
elliptic curve scalar multiplication over Fp, but with restrictions on p.

paper curve FPGA family FPGA model size freq.(MHz) speed
This work 160 any Stratix EP1S20F484C5 11431 LE 92.6 0.57 ms

256 any Stratix EP1S60F780C5 16200 LE 90.7 1.17 ms
160 any Stratix II EP2S30F484C3 6203 ALM 165.5 0.32 ms
256 any Stratix II EP2S30F484C3 9177 ALM 157.2 0.68 ms

[23] 160 any Virtex XCV1000E-8 21000 LUT 58 1.77 ms
256 any Virtex XCV1000E-8 36000 LUT 39.7 3.95 ms

[11] 160 any Virtex II-pro XC2VP30 2171 sl. 72 1 ms
256 any Virtex II-pro XC2VP30 3529 sl. 67 2.27 ms

[7] 224 NIST Virtex 4 XC4VFX12 1580 sl. 487 0.36 ms
256 NIST Virtex 4 XC4VFX12 1715 sl. 490 0.49 ms

As a conclusion, our implementation is largely faster and smaller than [23]. Architecture [11]
has got a better time surface trade-off (the ratio is about 1.5 if we consider that a Virtex 2 pro
slice is equal to 2 Stratix LE, slices having not correspondant in Stratix products). Nevertheless
it does not compute k[G] as fast as ours, even on comparable technologies. It is eventually
not resistant against side channel attacks. An overhead is needed to be SPA resistant. Ours is
natively SPA resistant.

Architecture described in [7] is faster and presents a better size-area tradeoff regarding to
ours (assuming that a Stratix II ALM and a Virtex IV slice are equivalent, and only considering
slices). Guneysu’s work only computes [k]P over NIST curves, using pseudo-mersenne p. We can
consider that using pseudo mersenne primes reduces the time complexity by a factor between
2 and 1.68 if lazy reduction is used. Then we can see that our results is competitive in term of
latency regarding to his for 224 bit, and becomes better for 256 bits. Moreover, Guneysu’s clock
speed (500 MHz) is particularly high and may represent an obstacle for industrial integration,
and for an ASIC implementation (making the multipliers work twice as fast as the rest of the
design would be impossible). Of course it is difficult to realize a fair comparison at this point
since the two designs do not target the same curves, but RNS is a competitive alternative for
general Fp curves, especially for high security levels.

5 conclusion

In this paper is presented a hardware architecture realizing elliptic curve scalar multiplica-
tion over any curve in Fp, which uses RNS representations to speed up the computation. RNS
supports a wide parallelization capability for arithmetic in Fp. The overhead given by the el-
ementary operation (|a × b|m) is well pipelineable, even with large pipelines (6 stages), and
contrary to RSA, the inherent parallelism of elliptic curve operations allows to easily fill the
pipeline. Capability to support high clock frequency does not fall with the curve size.

In our future work, we will study other technologies like ASICs (with the usage of RAMs in-
stead of the actual ROMs, other curve shapes, or other operations in elliptic curve cryptography,
like pairings.

Acknowledgement : we would like to thank the anonymous referees for their detailed review of
this paper and their helpful suggestion. Thanks to David Lubicz, Sylvain Duquesne and Jeremie
Detrey for their contribution to this work.

Fig. 1. General architecture and focus on the Cox and Rower design

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

cox row1 row2

sequencer

command

in
out

main bus

rown

sequencer

cox

ROM

main bus registers out

ALU

cox

main bus

ROMcoxROMmi

Fig. 2. 5 and 6 stage pipeline, and an adder modulo mi

a b εi

|a+ b|mi

εi εi

εi εi

Mcox Mcox

in1 in1 in2in2

out

out

References

1. Jean-Claude Bajard, Laurent-Stphane Didier, and Peter Kornerup. An rns montgomery modular
multiplication algorithm. IEEE Transactions on Computers, 47(7):766–776, 1998.

2. Jean-Claude Bajard, Laurent Imbert, Pierre-Yvan Liardet, and Yannick Teglia. Leak resistant
arithmetic. In Cryptographic Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture
Notes in Computer Science, pages 116–145. Springer Berlin / Heidelberg, 2004.

3. Lu Chen, Chen Yanpu, , and Bian Zhengzhong. An implementation of fast algorithm for elliptic
curve cryptosystem over GF(p). Journal of Electronics (China), 21(4):346–352, July 2004.

4. Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryptosystems.
In CHES, pages 292–302, 1999.

5. Harold Edwards. A normal form for elliptic curves. Bull. Amer. Math. Soc. 44, 2007.
6. Pierre-Alain Fouque and Frédéric Valette. The doubling attack - hy upwards is better than down-

wards. In CHES, pages 269–280, 2003.
7. Tim Güneysu and Christof Paar. Ultra high performance ecc over nist primes on commercial

fpgas. In CHES ’08: Proceeding sof the 10th international workshop on Cryptographic Hardware
and Embedded Systems, pages 62–78, Berlin, Heidelberg, 2008. Springer-Verlag.

8. Kimmo U. Jarvinen and Jorma O. Skytta. High-speed elliptic curve cryptography accelerator for
koblitz curves. Field-Programmable Custom Computing Machines, Annual IEEE Symposium on,
0:109–118, 2008.

9. Marc Joye and Sung-Min-Yen. The montgomery powering ladder. In CHES ’02: Proceedings of the
Third International Workshop on Cryptographic Hardware and Embedded Systems.

10. Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo. Cox-rower architecture
for fast parallel montgomery multiplication. In Advances in Cryptology EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 523–538. Springer Berlin / Heidelberg, 2000.

11. Nele Mentens. Secure and Efficient Coprocessor Design for Cryptographic Applications on FPGAs.
PhD thesis, Ruhr-University Bochum, 2007.

12. Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power analysis attacks of modular
exponentiation in smartcards. In CHES, pages 144–157, 1999.

13. Guerric Meurice de Dormale and Jean-Jacques Quisquater. High-speed hardware implementations
of elliptic curve cryptography: A survey. J. Syst. Archit., 53(2-3):72–84, 2007.

14. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances
in Cryptology—CRYPTO ’85, volume 218 of Lecture Notes in Computer Science, pages 417–426.
Springer-Verlag, 1986, 18–22 August 1985.

15. Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44:519–521, 1985.

16. Hanae Nozaki, Masahiko Motoyama, Atsushi Shimbo, and Shin-ichi Kawamura. Implementation of
rsa algorithm based on rns montgomery multiplication. In CHES ’01: Proceedings of the Third In-
ternational Workshop on Cryptographic Hardware and Embedded Systems, pages 364–376, London,
UK, 2001. Springer-Verlag.

17. National Institute of Science and Technology. The digital signature standard. Technical report,
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf.

18. White Paper. Stratix vs. virtex-ii pro fpga performance analysis. Technical report,
www.altera.com/literature/wp/wpstxvrtxII.pdf.

19. Karl C. Posch and Reinhard Posch. Modulo reduction in residue number systems. IEEE Trans.
Parallel Distrib. Syst., 6(5):449–454, 1995.

20. M. Ecegovac S. Duquesne, J.C. bajard. Combining leak-resistant arithmetic for elliptic curves define
over Fp and rns representation.

21. K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. Reconfigurable modular
arithmetic logic unit for high-performance public-key cryptosystems. In Reconfigurable Computing:
Architectures and Applications, volume 3985 of Lecture Notes in Computer Science, pages 347–357.
Springer Berlin / Heidelberg, 2006.

22. Akashi Satoh and Kohji Takano. A scalable dual-field elliptic curve cryptographic processor. IEEE
Transactions on Computers, 52:449–460, 2003.

23. Dimitrios M. Schinianakis, Apostolos P. Fournaris, Harris E. Michail, Athanasios P. Kakarountas,
and Thanos Stouraitis. An rns implementation of an fpelliptic curve point multiplier. Trans. Cir.
Sys. Part I, 56(6):1202–1213, 2009.

24. P. P. Shenoy and R. Kumaresan. Fast base extension using a redundant modulus in rns. IEEE
Trans. Comput., 38(2):292–297, 1989.

25. Robert Szerwinski and Tim Gayneysu. Exploiting the power of GPUs for asymmetric cryptography.
In Cryptographic Hardware and Embedded Systems CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 79–99. Springer Berlin / Heidelberg, 2008.

