
Differential Fault Analysis on DES Middle
Rounds

Matthieu Rivain

Oberthur Technologies & University of Luxembourg
m.rivain@oberthur.com

Abstract. Differential Fault Analysis (DFA) is a powerful cryptana-
lytic technique that disturbs cryptographic computations and exploits
erroneous results to infer secret keys. Over the last decade, many works
have described and improved DFA techniques against block ciphers thus
showing an inherent need to protect their implementations. A simple and
widely used solution is to perform the computation twice and to check
that the same result is obtained. Since DFA against block ciphers usually
targets the last few rounds, one does not need to protect the whole ci-
phering thus saving computation time. However the number of rounds to
protect must be chosen very carefully in order to prevent security flaws.
To determine this number, one must study DFA targeting middle rounds
of the cipher. In this paper, we address this issue for the Data Encryption
Standard (DES) algorithm. We describe an attack that breaks DES by
introducing some faults at the end of round 9, 10, 11 or 12, more or less
efficiently depending on the fault model and the round number.

1 Introduction

Fault analysis is a class of implementation attacks that consists in disturbing
cryptographic computations to recover secret keys. Among these attacks, one
merely identifies two families which differ in the information exploited to re-
cover the key. Differential Fault Analysis (DFA) [3] exploits the difference be-
tween correct and faulty results while other attacks focus on the behavior of the
corrupted computation, namely on whether the induced fault effectively pro-
vokes an erroneous result or not. Among them, one lists safe-error attacks [26]
on exponentiation algorithms as well as Ineffective Fault Analysis (IFA) [9, 23]
and Collision Fault Analysis (CFA) [16] against block ciphers implementations.

IFA and CFA consider an adversary that is able to set an intermediate vari-
able of its choice to a known value (usually to 0). If the result is erroneous
or if a fault is detected, the attacker knows that the intermediate variable was
different from the induced value. Obtaining this information for several encryp-
tions enables key-recovery. A simple way to thwart this kind of attack is to use
data masking [2,15] which is often applied to protect embedded implementation
against power analysis [18]. Indeed, masking ensures that no single intermedi-
ate variable provides information on the secret key. However, masking does not
ensure the result integrity and is hence ineffective against DFA [5].



DFA on block ciphers was first introduced by Biham and Shamir against
DES [3]. Since then, several DFA were proposed on AES [4,7,11,13,17,22,25] as
well as on other block ciphers such as IDEA [10] and CLEFIA [8,24]. These dif-
ferent works demonstrate the vulnerability of block ciphers towards DFA and the
subsequent need of including countermeasures to embedded implementations. A
straightforward way to protect any algorithm against DFA is to compute it twice
and check whether the obtained results are equal or not. Another similar solu-
tion is to verify the integrity of an encryption by a decryption and vice versa.
It is also possible to include redundancy and coherence checking at the opera-
tion level; the complexity-security ratio of such schemes is usually of the same
order than the one of computation doubling [19]. An advantage of computation
doubling is the scalability on the number of rounds to protect. In fact, most
of DFA techniques target the last few rounds of the block cipher. To thwart
these attacks, one only need to double the computation of these last few rounds
thus saving computation time. However, a question remains: how many rounds
should be protected to obtain a good security level towards DFA? To answer
this question, we need to investigate DFA on middle rounds of the cipher.

This issue has been addressed in [21] by Phan and Yen for the AES block
cipher. They apply block cipher cryptanalysis techniques to improve DFA on
AES and exhibit some attacks against rounds 7, 6 and 5. Concerning DES, the
original work by Biham and Shamir [3] described an attack that exploits a fault
corrupting either round 16, 15 or 14 (and equivalently the end of round 15, 14
or 13). In his PhD thesis [1], Akkar investigates the application of differential
cryptanalysis techniques to attack earlier rounds of DES. In a first place, the
considered attacker is assumed to be able to induce a differential of its choice in
the DES internal value at the end of some round. The last round key is recovered
by guessing every 6-bit parts independently and by selecting, for each subkey,
the candidate that produces the expected differential at the S-box output the
more frequently. The obtained attacks are quite efficient but, as mentioned by
the author, the fault model is not realistic. Akkar then applies this attack under
two more realistic fault models: a single bit switch at a fixed position (in the left
part of the DES internal state) and a single bit switch at a random position (in
the right part of the DES internal state). For the fixed position bit error model,
the attack needs a few hundred fault injections at the end of round 11 and it fails
on round 9 (the attack on round 10 is not considered). For the random position
bit error model, the attack needs a few dozen fault injections at the end of round
12 and it fails on round 11.

In this paper, we generalize and improve the attack described by Akkar in [1].
We consider various realistic fault models for an error induced in the left part of
the DES internal state, including the bit error model and the byte error model
with chosen error position or random error position. As we will argue, disturbing
the left part leads to better attacks than disturbing the right part. Moreover,
we use more accurate distinguishers than the one proposed in [1]. In the usual
(chosen position) byte error model, our attack recovers the whole last round key
with a 99% success rate using 9 faults on round 12, 210 faults on round 11 and



13400 faults on round 10. In the (chosen position) bit error model, these numbers
are reduced to 7, 11 and 290, respectively.

2 Data Encryption Standard

The Data Encryption Standard (DES) [12] is a block cipher that was selected
by the US National Bureau of Standards in 1976 as an official standard for data
encryption. DES uses a 56-bit key (usually represented on 64 bits including 8
parity check bits) and it operates on 64-bit blocks. It has an iterative structure
applying 16 times the same round transformation F which is preceded by a bit-
permutation IP and followed by the inverse bit-permutation IP−1. Every round
transformation is parameterized by a 48-bit round key kr that is derived from
the secret key through a key schedule process. To summarize, a ciphertext C is
computed from a plaintext P as follows:

C = IP−1 ◦
(
©16

r=1Fkr

)
◦ IP(P ) .

The round transformation follows a Feistel scheme, namely, the block is split
into two 32-bit parts L (the left part) and R (the right part), and F is defined
as:

Fkr (L,R) = (R,L⊕ fkr (R)) ,

where f is a function parameterized with a 48-bit key and operating on a 32-bit
block. This structure is illustrated on Fig. 1. In the sequel, the output block of

Fig. 1. Round transformation in the Feistel scheme.

the r-th round shall be denoted as (Lr, Rr). Defining (L0, R0) = IP(P ), we have
(Lr, Rr) = Fkr

(Lr−1, Rr−1) for every r ≤ 16 and C = IP−1(L16, R16).
The function f of the DES first applies an expansion layer E that expands

the 32 input bits into 48 output bits by duplicating 16 of them. The round key
is then introduced by bitwise addition afterward the block is split into eight
6-bit blocks, each entering into a different substitution box (S-box) Si producing
a 4-bit output. Finally, the 32 bits from the eight S-box outputs are permuted
through a bit-permutation P which yields the 32-bit output block.



In the sequel, Ei and P−1
i denote the i-th 6-bit coordinate of the expansion

layer E and the i-th 4-bit coordinate of the bit-permutation P−1, respectively.
Similarly, kr,i shall denote the i-th 6-bit part of a round key kr. We hence have
the equality:

P−1
i (fkr

(·)) = Si(Ei(·)⊕ kr,i) . (1)

3 Fault Models

Our attack consists in corrupting some bits of the left part of the DES internal
state at the end of the r-th round with r ∈ {9, 10, 11, 12}. We shall consider
different fault models depending on the statistical distribution of the induced
error. We first consider the bit error model : one and one single bit of the left
part is switched. We also consider the byte error model : one byte of the left
part is switched to a random and uniformly distributed value. Furthermore, the
fault position may be either chosen by the attacker or random among the 32
bit-positions or the 4 byte-positions of the left part.

In the sequel, L̃i and R̃i will respectively denote the corrupted value of the
left part Li and the right part Ri at the end of round i and C̃ = IP−1(L̃16, R̃16)
will denote the faulty ciphertext. We shall further denote by ε the induced error
that is defined as ε = Lr ⊕ L̃r.

4 Attack Description

4.1 General Principle

Let us denote by ∆ the bitwise difference between the correct value and the
corrupted value of the left part at the end of the fifteenth round: ∆ = L15⊕ L̃15.
Due to the Feistel scheme, we have the following relation:

R16 ⊕ R̃16 = fk16(L16)⊕ fk16(L̃16)⊕∆ . (2)

Based on (2), an adversary that knows ∆ can mount a key recovery attack.
The principle is to make a guess on the value of the round key k16. Then, given
a pair of ciphertexts (C, C̃), the attacker checks whether (2) is consistent for
this guess. If not, the guess is discarded. In this way, k16 is uniquely determined
using few pairs of ciphertexts. Due to the structure of f (see (1)), the attacker
does not need to guess the whole round key k16 but he can guess and check each
subkey k16,i independently. When an error is induced in the final rounds, the
differential ∆ (or at least a part of it) can be predicted according to the pair
(C, C̃) which enables the attack [3]. This is no more the case for an error induced
in a middle round; in that case the attack must be extended.

As noted in [1], if an error ε is induced in the left part at the end of the
thirteenth round then ∆ equals ε. Therefore, an attacker that is able to induce a
chosen (or at least known) error in L13 can apply the previous attack. For a fault
induced in the left part during an earlier round, the equality ∆ = ε does not hold



anymore. However the statistical distribution of ∆ may be significantly biased
(depending on the fault model and the round number). Indeed, as illustrated
in Fig. 2, a fault injection in the left part skips one round before propagating
through the function f . Besides, the error propagation path from Lr to L15

sticks through the function f only once for r = 12, twice for r = 11, etc.
This is quite low considering the slow diffusion of the function f . As a result,
a fault induced in Lr may produce a differential ∆ with a distribution that
is significantly biased. As described hereafter, this bias enables a key recovery
attack based on a statistical distinguisher.

(a) From L12 to L15. (b) From L11 to L15.

Fig. 2. Error propagation paths.

Remark 1. From Fig. 2, it can be noticed that the injection of an error ε in Lr

is equivalent to the injection of ε in Rr+1. This demonstrates the relevance of
attacking the left part rather than the right one. Besides, this explains why the
attack on the right part described in [1] is inefficient compared to the one on the
left part on the same round.



Let us define, for every i ∈ {1, · · · , 8}, the function gi as the prediction of
the i-th 4-bit coordinate of P−1(∆) according to a pair (C, C̃) and to a guess k
on the value of k16,i:

gi(C, C̃, k) = Si

(
Ei(L16)⊕ k

)
⊕ Si

(
Ei(L̃16)⊕ k

)
⊕ P−1

i

(
R16 ⊕ R̃16

)
.

From (1) and (2), it can be checked that, for the correct key guess, gi(C, C̃, k)
equals P−1

i (∆). On the other hand, for a wrong key guess, gi(C, C̃, k) can be
assumed to have a uniform distribution. This is a classical assumption in block
cipher cryptanalysis known as the wrong-key assumption.

Let us define, for every i ∈ {1, · · · , 8} and for every δ ∈ {0, · · · , 15}, the
probability pi(δ) as:

pi(δ) = Pr
[
P−1

i (∆) = δ
]

.

To summarize, according to the wrong-key assumption, we have:

Pr
[
gi(C, C̃, k) = δ

]
=
{

pi(δ) if k = k16,i
1
16 otherwise (3)

Provided that the distribution pi(·) is significantly biased, (3) clearly exhibits a
wrong-key distinguisher for k16,i.

4.2 Wrong-key Distinguishers

We define hereafter two possible distinguishers d(k) for a key candidate k which
are expected to be maximal for the correct key candidate k = k16,i. These
distinguishers take as input a set of N pairs (Cn, C̃n), 1 ≤ n ≤ N . The choice of
the distinguisher to use depends on the attacker’s knowledge of the fault model.

Likelihood distinguisher. The attacker is assumed to have an exact knowledge
of the fault model, namely he knows the distribution of ε. In that case, he can
compute (or at least estimate) the distribution pi(·) in order to use a maximum
likelihood approach. The likelihood of a key candidate k is defined as the product
of the probabilities pi

(
gi(Cn, C̃n, k)

)
for n = 1, · · · , N . For practical reasons, we

make the classical choice to use the logarithm of the likelihood, namely d(k) is
defined as:

d(k) =
N∑

n=1

log
(
pi

(
gi(Cn, C̃n, k)

))
.

Squared Euclidean Imbalance (SEI) distinguisher. The attacker does not
have a precise knowledge of the fault model and is hence not able to estimate
the distribution pi(·). In that case, an alternative strategy is to look for the
strongest bias in the distribution of gi(Cn, C̃n, k). This is done by computing
the squared Euclidean distance to the uniform distribution (known as squared
Euclidean imbalance), namely d(k) is defined as:

d(k) =
15∑

δ=0

(
#{n; gi(Cn, C̃n, k) = δ}

N
− 1

16

)2

.



4.3 Chosen Error Position Strategies

In a chosen error position fault model scenario, we further have to define a
strategy to choose the positions where to induce the errors.

Bit error model. In the bit error model, ε has a single bit to 1 which implies
that the function f in round r + 2 has one or two active S-boxes. That is, the
correct output and the corrupted output of f only differ for one or two S-boxes.
Indeed, as shown in Table 1, the expansion layer sends every input bit of f
in one or two S-boxes. In order to maximize the bias in the distribution of ∆,

Table 1. Destination S-boxes for the input bits of f .

bits 1,32 2,3 4,5 6,7 8,9 10,11 12,13 14,15

S-boxes 1,8 1 1,2 2 2,3 3 3,4 4

bits 16,17 18,19 20,21 22,23 24,25 26,27 28,29 30,31

S-boxes 4,5 5 5,6 6 6,7 7 7,8 8

the bit-positions should be chosen among the ones entering in a single S-box
hence slowing the error propagation. Our strategy is simply to first choose a
bit-position entering in S-box 1 only, then in S-box 2 only, and so on until S-box
8 and start over with S-box 1, etc.

Remark 2. Relation (3) implicitly assumes that the i-th S-box in the sixteenth
round is active, otherwise gi(C, C̃, k) equals 0 for every k. For a chosen position
bit error attack on round 12, each selected bit-position implies that two S-boxes
are inactive in round 16. However, the pair of inactive S-boxes differs for each
bit-position which ensures the soundness of the attack.

Byte error model. Concerning the byte error model, every input byte of f
is spread over four S-boxes. This can be checked from Table 2 that gives the
destination S-boxes of every input byte of f . As a result, a byte error in Lr

Table 2. Destination S-boxes for the input bytes of f .

bytes 1 2 3 4

S-boxes 8,1,2,3 2,3,4,5 4,5,6,7 6,7,8,1

always implies four active S-boxes in the output differential of f in round r + 2.
For the attacks in the chosen position byte error model, the four byte-positions
are hence equivalently chosen since they all induce the corruption of exactly four
S-boxes in round r + 2.



Remark 3. In a chosen error position attack, several fault models are involved
hence, for a given i, different distributions pi(·) are induced. Consequently, the
SEI distinguisher shall not be directly applied but the SEI of pi(·) shall be
estimated for every error position independently. The SEI distinguisher is then
defined as the sum of the SEIs for the different error positions.

Remark 4. In our attack simulations, we tried more specific strategies taking
into account the bias in the (pi(·))i distributions resulting from the different
bit-error positions. These strategies did not yield substantial improvements.

5 Attack Simulations

This section presents some experimental results. We performed attack simula-
tions for each of the fault models introduced in Sect. 3 with a fault induced at the
end of round 12, 11, 10 or 9. For every round number and every fault model, we
applied the likelihood distinguisher and the SEI distinguisher (see Sect. 4.2). For
the likelihood distinguisher, we empirically computed the distributions (pi(·))i

based on several1 ciphertexts pairs, each obtained from the correct and faulty
encryptions of a random plaintext2.

In what follows, we consider an attack successful when the whole last round
key is determined with a 99% success rate. This strong requirement is motivated
by the fact that, for a triple DES, too many key bits remain to perform an
exhaustive search once the last round key has been recovered. Therefore, one
shall fully determine the sixteenth round key before reiterating the attack on
the fifteenth and so on. Every subsequent attack on a previous round key can
be performed by using the same set of ciphertexts pairs and is expected to be
substantially more efficient since the error propagates on fewer rounds. This way,
if the last round key is recovered with a 99% success rate then the cipher can be
considered fully broken.

Fig. 3 shows the success rate (over 1000 simulations) of the different attacks
(chosen/random position bit/byte error, likelihood/SEI distinguishers) on round
12, 11 and 10. Fig. 4 shows the success rate (over 10 to 100 simulations) for the
attacks on round 9 in the bit error model. Attacks on round 9 in the byte error
model all required more than 108 faults. The numbers of faults required for a
99% success rate are summarized in Table 3.

Attack efficiency vs. round number. The attacks on rounds 11 and 12 are very
efficient: less than 25 faults are sufficient on round 12 while, on round 11, less than
100 faults are sufficient in a bit error model and less than 1000 faults are sufficient
in a byte error model. On round 10, the attacks are still fairly efficient: the best
attack (chosen position bit error model, likelihood distinguisher) requires 290
faults whereas the least efficient attack (chosen position byte error model, SEI
distinguisher) requires 26400 faults. It is on round 9 that the attacks become

1 107 for bit errors models and 108 for byte errors models.
2 Note that the value of the key does not change the (pi(·))i distributions.



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chosen pos.
Likelihood

Chosen pos.
SEI

Random pos.
Likelihood

Random pos.
SEI

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack on round 12 – Bit error model. Attack on round 12 – Byte error model.

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

101 102 103
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack on round 11 – Bit error model. Attack on round 11 – Byte error model.

101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack on round 10 – Bit error model. Attack on round 10 – Byte error model.

Fig. 3. Attacks on rounds 10, 11 and 12: success rate w.r.t. number of faults.



104 105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Attacks on rounds 9, bit error model: success rate w.r.t. number of faults.

Table 3. Number of faults to recover the 16-th round key with a 99% success rate.

bit error byte error

round distinguisher chosen pos. random pos. chosen pos. random pos.

12 Likelihood 7 11 9 17

SEI 14 12 17 21

11 Likelihood 11 44 210 460

SEI 30 71 500 820

10 Likelihood 290 1500 13400 18500

SEI 940 2700 26400 23400

9 Likelihood 3.4 · 105 2.2 · 107 > 108 > 108

SEI 1.4 · 106 > 108 > 108 > 108

quite costly since the most efficient attack in the bit error model (chosen position,
likelihood distinguisher) requires around 3.4 · 105 faults and all the attack in the
byte error model require more than 108 faults3.

Attack efficiency vs. fault model. As expected, we observe that, for a given
setting (random/chosen position, likelihood/SEI distinguisher), a bit error model
always leads to more efficient attacks than a byte error model. Similarly, a chosen
position usually leads to more efficient attacks than a random position. Some
exceptions are observed for the SEI distinguisher for which a random position
sometimes leads to more efficient attacks than a chosen position. The reason of
this phenomenon may be that in a chosen position bit (resp. byte) error model,
8 (resp. 4) different SEIs are estimated based on 8 (resp. 4) times less faults

3 The most efficient one (chosen position byte error model, likelihood distinguisher)
yielded a 0% success rate (over 10 attack simulations) for 108 faults.



than in the random position model where a single SEI is estimated (see Remark
3). As a result, these estimations are less precise which may render the attack
less efficient than in the random position model. In these cases, the attacker
can compute a single SEI based on all the faults, which amounts to perform the
attack in the random position model.

To summarize, we naturally have that a bit error is better than a byte error
and a chosen position is better than a random position. What was not a priori
straightforward is the superiority of the random position bit error model com-
pared to the chosen position byte error model. Except on round 12 where both
cases are almost equivalent, our results show that the attacks in the random po-
sition bit error model are significantly more efficient than the ones in the chosen
position byte error model.

Another interesting observation is that, in the bit error model, the ability
to choose the error position is more advantageous than in the byte error model.
This phenomenon results from the strategy for the choice of the bit-positions
(see Sect. 4.3) which selects 8 positions over 32 leading to more important bias
in the distributions pi(·) than the average case, whereas, in the chosen position
byte error model, the 4 byte-positions are equivalently used.

Likelihood vs. SEI. As expected, the likelihood distinguisher always leads to
more efficient attacks than the SEI distinguisher. It is interesting to note that
this difference of efficiency is always greater in a chosen position model than in
a random position model. Once again, this phenomenon results from the fact
that, for a chosen position model, several different SEIs are estimated based on
4 or 8 times less faults compared to the random position model where a single
SEI is estimated.

6 How Many Rounds To Protect ?

The question of the number of rounds to protect does not have a unique answer.
Indeed, the answer to this question depends on the ability of an attacker to
induce faults and on the number of correct and faulty ciphertexts pairs that he
can collect. Besides, more efficient attacks that those described in this paper
may exist.

What provide our paper are some lower bounds on the number of rounds
to protect. We have shown that in a realistic fault model, efficient DFA attacks
can be performed by inducing some faults until round 10. It seems therefore
reasonable to protect at least the last seven rounds of the cipher. However, this
may not suffice while considering a strong adversary model. We have shown that
in a chosen position bit error model, 3.4 ·105 faults induced at the end of round 9
are sufficient to recover the last round key with a 99% confidence. Consequently,
in order to thwart an adversary able to induce a single bit fault at a chosen
position and to gather about 105 ciphertexts pairs, one shall at least protect the
last eight rounds.



Attacks on initial rounds. As noted in [14], if an attacker has access to a de-
cryption oracle then any DFA attack can be transposed on the initial rounds of
the cipher. In fact, the attacker may obtain a faulty ciphertext C̃ from a plain-
text P by inducing a fault at the end of the first round. The plaintext P can
then be viewed as the faulty result of a decryption of C̃ for which a fault has
been induced at the beginning of the last round. The attacker then asks for the
decryption of C̃ which provides him with a plaintext P̃ . The pair (P̃ , P ) thus
constitutes a pair of correct and faulty results of the decryption algorithm with
respect to an error induced at the beginning of the last round. According to this
principle, any fault attack on an initial round of an encryption can be transposed
to a fault attack on a final round of a decryption, provided that the attacker has
access to a decryption oracle. In that case, the same number of rounds should
be protected at the beginning and at the end of the cipher in order to obtain an
homogenous security level. For a simple DES, based on our study, we recommend
to protect the whole cipher. For a triple DES, one can only protect some rounds
at the beginning of the first DES computation and some rounds at the end of
the last DES computation; the number of protected rounds being at least seven
according to our study.

7 Conclusion

In this paper, we have investigated differential fault analysis on DES middle
rounds. We have described a generic attack and we have demonstrated its ef-
ficiency under various realistic fault models. We have shown that DES can be
broken by inducing some faults at the end of rounds 12, 11, 10 and 9, more or
less efficiently depending on the round number and the fault model. Although
we focused on DES, our attack could be applied on any Feistel scheme.

References

1. M.-L. Akkar. Attaques et méthodes de protections de systèmes cryptographiques
embarqués. PhD thesis, Université de Versailles Saint-Quentin, Oct. 1er, 2004.

2. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in Com-
puter Science, pages 309–318. Springer, 2001.

3. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystem.
In B. Kalisky Jr., editor, Advances in Cryptology – CRYPTO ’97, volume 1294 of
Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

4. J. Blömer and J.-P. Seifert. Fault Based Cryptanalysis of the Advanced Encryption
Standard. In R. Wright, editor, Financial Cryptography – FC 2003, volume 2742
of Lecture Notes in Computer Science, pages 162–181. Springer, 2003.

5. A. Boscher and H. Handschuh. Masking Does Not Protect Against Differential
Fault Attacks. In Breveglieri et al. [6], pages 35–40.

6. L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, editors. Fault
Diagnosis and Tolerance in Cryptography – FDTC 2008. IEEE Computer Society,
2008.



7. C.-N. Chen and S.-M. Yen. Differential Fault Analysis on AES Key Schedule and
Some Countermeasures. In R. Safavi-Naini and J. Seberry, editors, Information
Security and Privacy - 8th Australasian Conference – ACISP 2003, volume 2727
of Lecture Notes in Computer Science, pages 118–129. Springer, 2003.

8. H. Chen, W. Wu, and D. Feng. Differential Fault Analysis on CLEFIA. In S. Qing,
H. Imai, and G. Wang, editors, Information and Communications Security, 9th
International Conference – ICICS 2007, volume 4861 of Lecture Notes in Computer
Science, pages 284–295. Springer, 2008.

9. C. Clavier. Secret External Encodings Do Not Prevent Transient Fault Analysis.
In Paillier and Verbauwhede [20], pages 181–194.

10. C. Clavier, B. Gierlichs, and I. Verbauwhede. Fault Analysis Study of IDEA. In
T. Malkin, editor, Topics in Cryptology – CT-RSA 2008, volume 4964 of Lecture
Notes in Computer Science, pages 274–287. Springer, 2008.

11. P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on A.E.S.
In J. Zhou, M. Yung, and Y. Han, editors, Applied Cryptography and Network
Security – ANCS 2003, volume 2846 of Lecture Notes in Computer Science, pages
293–306. Springer, 2003.

12. FIPS PUB 46-3. Data Encryption Standard (DES). National Institute of Standards
and Technology, Oct. 25, 1999.

13. C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and A. Sowa, editors,
Fourth Conference on the Advanced Encryption Standard (AES) – AES 4, volume
3373 of Lecture Notes in Computer Science, pages 27–41. Springer, 2005.

14. C. Giraud. Attaques de cryptosystèmes embarqués et contre-mesures associées.
Thèse de doctorat, Université de Versailles, Oberthur Card Systems, Oct. 2007.

15. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

16. L. Hemme. A Differential Fault Attack against Early Rounds of (Triple-)DES.
In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded
Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages
254–267. Springer, 2004.

17. C. H. Kim and J.-J. Quisquater. New Differential Fault Analysis on AES Key
Schedule: Two Faults Are Enough. In G. Grimaud and F.-X. Standaert, editors,
Smart Card Research and Advanced Applications, 8th International Conference –
CARDIS 2008, volume 5189 of Lecture Notes in Computer Science, pages 48–60.
Springer, 2008.

18. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

19. T. Malkin, F.-X. Standaert, and M. Yung. A Comparative Cost/Security Analysis
of Fault Attack Countermeasures. In L. Breveglieri, I. Koren, D. Naccache, and J.-
P. Seifert, editors, Fault Diagnosis and Tolerance in Cryptography – FDTC 2006,
volume 4236 of Lecture Notes in Computer Science, pages 159–172. Springer, 2006.

20. P. Paillier and I. Verbauwhede, editors. Cryptographic Hardware and Embed-
ded Systems – CHES 2007, volume 4727 of Lecture Notes in Computer Science.
Springer, 2007.

21. R. Phan and S.-M. Yen. Amplifying Side-Channel Attacks with Techniques from
Block Cipher Cryptanalysis. In J. Domingo-Ferrer, J. Posegga, and D. Schreck-
ling, editors, Smart Card Research and Advanced Applications, 7th International



Conference – CARDIS 2006, volume 3928 of Lecture Notes in Computer Science,
pages 135–150. Springer, 2006.

22. G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad. In C. Walter, Ç. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2003,
volume 2779 of Lecture Notes in Computer Science, pages 77–88. Springer, 2003.

23. B. Robisson and P. Manet. Differential Behavioral Analysis. In Paillier and Ver-
bauwhede [20], pages 413–426.

24. J. Takahashi and T. Fukunaga. Improved Differential Fault Analysis on CLEFIA.
In Breveglieri et al. [6], pages 25–34.

25. J. Takahashi, T. Fukunaga, and K. Yamakoshi. DFA Mechanism on the AES Key
Schedule. In L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert,
editors, Fault Diagnosis and Tolerance in Cryptography – FDTC 2007, pages 62–74.
IEEE Computer Society, 2007.

26. S.-M. Yen and M. Joye. Checking Before Output May Not Be Enough Against
Fault-Based Cryptanalysis. IEEE Transactions on Computers, 49(9):967–970,
2000.


