
Fault Attacks on RSA Signatures with Partially

Unknown Messages

Jean-Sébastien Coron1, Antoine Joux2, Ilya Kizhvatov1, David
Naccache3, and Pascal Paillier4

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi, l-1359 Luxembourg, Luxembourg

{jean-sebastien.coron,ilya.kizhvatov}@uni.lu
2 dga and Université de Versailles

uvsq prism 45 avenue des États-Unis, f-78035, Versailles cedex, France
antoine.joux@m4x.org

3 École normale supérieure
Département d’informatique, Groupe de Cryptographie

45, rue d’Ulm, f-75230 Paris Cedex 05, France
david.naccache@ens.fr

4 Gemalto, Cryptography & Innovation
6, rue de la Verrerie, f-92447 Meudon sur Seine, France

pascal.paillier@gemalto.com

Abstract. Fault attacks exploit hardware malfunctions to recover se-
crets from embedded electronic devices. In the late 90’s, Boneh, DeMillo
and Lipton [6] introduced fault-based attacks on crt-rsa. These at-
tacks factor the signer’s modulus when the message padding function is
deterministic. However, the attack does not apply when the message is
partially unknown, for example when it contains some randomness which
is recovered only when verifying a correct signature.
In this paper we successfully extends rsa fault attacks to a large class of
partially known message configurations. The new attacks rely on Cop-
persmith’s algorithm for finding small roots of multivariate polynomial
equations. We illustrate the approach by successfully attacking several
randomized versions of the iso/iec 9796-2 encoding standard. Practical
experiments show that a 2048-bit modulus can be factored in less than
a minute given one faulty signature containing 160 random bits and an
unknown 160-bit message digest.

Keywords: Fault attacks, digital signatures, rsa, Coppersmith’s the-
orem, iso/iec 9796-2.

1 Introduction

1.1 Background

rsa [21] is undoubtedly the most common digital signature scheme used
in embedded security tokens. To sign a message m with rsa, the signer

applies an encoding (padding) function µ to m, and then computes the
signature σ = µ(m)d mod N . To verify the signature, the receiver checks
that σe = µ(m) mod N. As shown by Boneh, DeMillo and Lipton [6] and
others (e.g. [18]), rsa implementations can be vulnerable to fault attacks,
especially when the Chinese Remainder Theorem (crt) is used; in this
case the device computes σp = µ(m)d mod p and σq = µ(m)d mod q
and the signature σ is computed from σp and σq by Chinese Remaindering.

Assuming that the attacker is able to induce a fault when σq is com-
puted while keeping the computation of σp correct, one gets σp = µ(m)d

mod p and σq 6= µ(m)d mod q and the resulting (faulty) signature σ sat-
isfies

σe = µ(m) mod p , σe 6= µ(m) mod q .

Therefore, given one faulty σ, the attacker can factor N by computing

gcd(σe − µ(m) mod N, N) = p . (1)

Boneh et al.’s fault attack is easily extended to any deterministic rsa
encoding, e.g. the Full Domain Hash (fdh) [5] encoding where σ = H(m)d

mod N and H : {0, 1}∗ 7→ ZN is a hash function. The attack is also
applicable to probabilistic signature schemes where the randomizer used
to generate the signature is sent along with the signature, e.g. as in the
Probabilistic Full Domain Hash (pfdh) encoding [11] where the signature
is σ‖r with σ = H(m ‖ r)d mod N . In that case, given the faulty value of
σ and knowing r, the attacker can still factor N by computing gcd(σe −
H(m ‖ r) mod N, N) = p.

1.2 Partially-Known Messages: The Fault-Attacker’s
Deadlock

However, if the message is not entirely given to the attacker the attack
is thwarted, e.g. this may occur when the signature has the form σ =
(m‖r)d mod N where r is a random nonce. Here the verifier can recover
r only after completing the verification process; however r can only be
recovered when verifying a correct signature. Given a faulty signature,
the attacker cannot retrieve r nor infer (m‖r) which would be necessary
to compute gcd(σe − (m‖r) mod N, N) = p.

In other words, the attacker faces an apparent deadlock: recovering
the r used in the faulty signature σ seems to require that σ is a correctly
verifiable signature. Yet, obviously, a correct signature does not factor
N . These conflicting constraints cannot be conciliated unless r is short

enough to be guessed by exhaustive search. Inducing faults in many sig-
natures does not help either since different r values are used in successive
signatures (even if m remains invariant). As a result, randomized rsa en-
coding schemes are usually considered to be inherently immune against
fault attacks.

1.3 The New Result

We overcome the deadlock by showing how to extract in some cases the
unknown message part (ump) involved in the generation of faulty rsa sig-
natures. We develop several techniques that extend Boneh et al.’s attack
to a large class of partially known message configurations. We nonetheless
assume that certain conditions on the unknown parts of the encoded mes-
sage are met; these conditions may depend on the encoding function itself
and on the hash functions used. To illustrate our attacks, we have chosen
to consider the iso/iec 9796-2 standard [16]. iso/iec 9796-2 is originally
a deterministic encoding scheme often used in combination with message
randomization (e.g. in emv [13]). The encoded message has the form:

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

where m = m[1] ‖m[2] is split into two parts. We show that if the un-
known part of m[1] is not too large (e.g. less than 160 bits for a 2048-bit
rsa modulus), then a single faulty signature allows to factor N as in
[6]1. The new method is based on a result by Herrmann and May [12] for
finding small roots of linear equations modulo an unknown factor p of N ;
[12] is itself based on Coppersmith’s technique [7] for finding small roots
of polynomial equations using the lll algorithm [19]. We also show how
to extend our attack to multiple umps and to scenarii where more faulty
signatures can be obtained from the device.

1.4 The iso/iec 9796-2 Standard

iso/iec 9796-2 is an encoding standard allowing partial or total message
recovery [16, 17]. The encoding can be used with hash functions H(m) of
diverse digest sizes kh. For the sake of simplicity we assume that kh, the
size of m and the size of N (denoted k) are all multiples of 8. The iso/iec
9796-2 encoding of a message m = m[1] ‖m[2] is

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16
1 In our attack, it does not matter how large the unknown part of m[2] is.

where m[1] consists of the k − kh − 16 leftmost bits of m and m[2] rep-
resents the remaining bits of m. Therefore the size of µ(m) is always
k − 1 bits. Note that the original version of the standard recommended
128 ≤ kh ≤ 160 for partial message recovery (see [16], §5, note 4). In [9],
Coron, Naccache and Stern introduced an attack against iso/iec 9796-
2; the authors estimated that attacking kh = 128 and kh = 160 would
require respectively 254 and 261 operations. After Coron et al.’s publica-
tion, iso/iec 9796-2 was amended and the current official requirement
(see [17]) is now kh ≥ 160. In a recent work Coron, Naccache, Tibouchi
and Weinmann successfully attack the currently valid version of iso/iec
9796-2 [10].

To illustrate our purpose, we consider a message m = m[1] ‖m[2] of
the form

m[1] = α ‖ r ‖α′ , m[2] = data

where r is a message part unknown to the adversary, α and α′ are strings
known to the adversary and data is some known or unknown string2.
The size of r is denoted kr and the size of m[1] is k − kh − 16 as required
in iso/iec 9796-2. The encoded message is then

µ(m) = 6A16 ‖α ‖ r ‖α′ ‖H(α ‖ r ‖α′ ‖data) ‖ BC16 (2)

Therefore the total number of unknown bits in µ(m) is kr + kh.

2 Fault Attack on Partially-Known Message iso/iec
9796-2

This section extends [6] to signatures of partially known messages en-
coded as described previously. We assume that after injecting a fault the
opponent is in possession of a faulty signature σ such that:

σe = µ(m) mod p , σe 6= µ(m) mod q . (3)

From (2) we can write

µ(m) = t + r · 2nr + H(m) · 28 (4)

where t is a known value. Note that both r and H(m) are unknown to
the adversary. From (3) we obtain:

σe = t + r · 2nr + H(m) · 28 mod p .

2 The attack will work equally well in both cases.

This shows that (r, H(m)) must be a solution of the equation

a + b · x + c · y = 0 mod p (5)

where a := t − σe mod N , b := 2nr and c := 28 are known. Therefore we
are left with solving equation (5) which is linear in the two variables x, y
and admits a small root (x0, y0) = (r, H(m)). However the equation holds
modulo an unknown divisor p of N and not modulo N . Such equations
were already exploited by Herrmann and May [12] to factor an rsa mod-
ulus N = pq when some blocks of p are known. Their method is based on
Coppersmith’s technique for finding small roots of polynomial equations
[7]. Coppersmith’s technique uses lll to obtain two polynomials h1(x, y)
and h2(x, y) such that

h1(x0, y0) = h2(x0, y0) = 0

holds over the integers. Then one computes the resultant between h1 and
h2 to recover the common root (x0, y0). To that end, we must assume
that h1 and h2 are algebraically independent. This ad hoc assumption
makes the method heuristic; nonetheless it turns out to work quite well
in practice. Then, given the root (x0, y0) one recovers the randomized
encoded message µ(m) and factors N by gcd.

Theorem 1 (Herrmann-May [12]). Let N be a sufficiently large com-

posite integer with a divisor p ≥ Nβ. Let f(x, y) = a+ b ·x+c ·y ∈ Z[x, y]
be a bivariate linear polynomial. Assume that f(x0, y0) = 0 mod p for

some (x0, y0) such that |x0| ≤ Nγ and |y0| ≤ N δ. Then for any ε > 0,
under the condition

γ + δ ≤ 3β − 2 + 2(1 − β)3/2 − ε (6)

one can find h1(x, y), h2(x, y) ∈ Z[x, y] such that h1(x0, y0) = h2(x0, y0) =
0 over Z, in time polynomial in log N and ε−1.

We only sketch the proof and refer the reader to [12] and [8] for more
details. Assume that b = 1 in the polynomial f (otherwise multiply f by
b−1 mod N) and consider the polynomial

f(x, y) = a + x + c · y

We look for (x0, y0) such that f(x0, y0) = 0 mod p. The basic idea
consists in generating a family G of polynomials admitting (x0, y0) as a
root modulo pt for some large enough integer t. Any linear combination

of these polynomials will also be a polynomial admitting (x0, y0) as a
root modulo pt. We will use lll to find such polynomials with small co-
efficients. To do so, we view any polynomial h(x, y) =

∑

hi,jx
iyj as the

vector of coefficients
(

hi,jX
iY j

)

i,j
and denote by ‖h(xX, yY)‖ this vec-

tor’s Euclidean norm. Performing linear combinations on polynomials is
equivalent to performing linear operations on their vectorial representa-
tion, so that applying lll to the lattice spanned by the vectors in G will
provide short vectors representing polynomials with root (x0, y0) mod pt.

We now define the family G of polynomials as

gk,i(x, y) := yi · fk(x, y) · Nmax(t−k,0)

for 0 ≤ k ≤ m, 0 ≤ i ≤ m − k and integer parameters t and m. For
all values of indices k, i, it holds that gk,i(x0, y0) = 0 mod pt. We first
sort the polynomials gk,i by increasing k values and then by increasing
i values. Denoting X = Nγ and Y = N δ, we write the coefficients of
the polynomial gk,i(xX, yY) in the basis xk′ · yi′ for 0 ≤ k′ ≤ m and
0 ≤ i′ ≤ m − k′. Let L be the corresponding lattice; L’s dimension is

ω = dim(L) =
m2 + 3m + 2

2
=

(m + 1)(m + 2)

2

and we have

det L = XsxY syN sN

where

sx = sy =

m
∑

k=0

m−k
∑

i=0

i =
m(m + 1)(m + 2)

6

and

sN =
t

∑

i=0

(m + 1 − i) · (t − i) .

We now apply lll to the lattice L to find two polynomials h1(x, y) and
h2(x, y) with small coefficients.

Theorem 2 (LLL [19]). Let L be a lattice spanned by (u1, . . . , uω).
Given the vectors (u1, . . . , uω), the lll algorithm finds in polynomial time

two linearly independent vectors b1, b2 such that

‖b1‖, ‖b2‖ ≤ 2ω/4(det L)1/(ω−1) .

Therefore using lll we can get two polynomials h1(x, y) and h2(x, y) such
that

‖h1(xX, yY)‖, ‖h2(xX, yY)‖ ≤ 2ω/4 · (det L)1/(ω−1) . (7)

Using Howgrave-Graham’s lemma (below), we can determine the required
bound on the norms of h1 and h2 to ensure that (x0, y0) is a root of both
h1 and h2 over the integers:

Lemma 1 (Howgrave-Graham [14]). Assume that h(x, y) ∈ Z[x, y]
is a sum of at most ω monomials and assume further that h(x0, y0) = 0
mod B where |x0| ≤ X and |y0| ≤ Y and ‖h(xX, yY)‖ < B/

√
ω. Then

h(x0, y0) = 0 holds over the integers.

Proof. We have

|h(x0, y0)| =
∣

∣

∣

∑

hijx
i
0y

i
0

∣

∣

∣
=

∣

∣

∣

∣

∑

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣

∣

∣

hijX
iY j

(x0

X

)i (y0

Y

)j
∣

∣

∣

∣

≤
∑

∣

∣hijX
iY j

∣

∣

≤
√

ω‖h(xX, yY)‖ < B

Since h(x0, y0) = 0 mod B, this implies that h(x0, y0) = 0 over the inte-
gers. ⊓⊔

We apply Lemma 1 with B := pt. Using (7) this gives the condition:

2ω/4 · (detL)1/(ω−1) ≤ Nβt

√
ω

. (8)

[12] shows that by letting t = τ · m with τ = 1 −
√

1 − β, we get the
condition:

γ + δ ≤ 3β − 2 + 2(1 − β)3/2 − 3β(1 +
√

1 − β)

m

Therefore we obtain as in [12] the following condition for m:

m ≥ 3β(1 +
√

1 − β)

ε
.

Since lll runs in time polynomial in the lattice’s dimension and coeffi-
cients, the running time is polynomial in log N and 1/ε.

2.1 Discussion

For a balanced rsa modulus (β = 1/2) we get the condition:

γ + δ ≤
√

2 − 1

2
∼= 0.207 (9)

This means that for a 1024-bit rsa modulus N , the total size of the
unknowns x0 and y0 can be at most 212 bits. Applied to our context, this
implies that for iso/iec 9796-2 with kh = 160, the size of the ump r can
be as large as 52 bits. Section 3 reports practical experiments confirming
this prediction. In [8] we provide a Python code for computing the bound
on the size of the unknown values (kr + kh) as a function of the modulus
size.

2.2 Extension to Several Unknown Bits Blocks

Assume that the ump used in iso/iec 9796-2 is split into n different
blocks, namely

µ(m) = 6A16 ‖α1 ‖ r1 ‖α2 ‖ r2 ‖ · · · ‖αn ‖ rn ‖αn+1 ‖H(m) ‖ BC16 (10)

where the umps r1, . . . , rn are all part of the message m. The αi blocks are
known. In [8], we show how to recover p from one faulty signature, using
the extended result of Herrmann and May [12]. It appears that if the total
number of unknown bits plus the message digest is less than 15.3% of the
size of N , then the umps can be fully recovered from the faulty signature
and Boneh et al.’s attack will apply again. However the number of blocks
cannot be too large because the attack’s runtime increases exponentially
with n.

2.3 Extension to Two Faults Modulo Different Factors

Assume that we can get two faulty signatures, one incorrect modulo p
and the other incorrect modulo q. This gives the two equations

a0 + b0 · x0 + c0 · y0 = 0 mod p
a1 + b1 · x1 + c1 · y1 = 0 mod q

with small unknowns x0, y0, x1, y1. We show in [8] that by multiplying the
two equations, we get a quadri-variate equation modulo N which can be
solved by linearization under the following bound:

γ + δ ≤ 1

6
∼= 0.167 .

This remains weaker than condition (9). However the attack is signif-
icantly faster because it works over a lattice of constant dimension 9.
Moreover, the 16.7% bound is likely to lend itself to further improve-
ments using Coppersmith’s technique instead of plain linearization.

2.4 Extension to Several Faults Modulo the Same Factor

To exploit single faults, we have shown how to use lattice-based techniques
to recover p given N and a bivariate linear equation f(x, y) admitting a
small root (x0, y0) modulo p. In this context, we have used Theorem 1
which is based on approximate gcd techniques from [15]. In the present
section we would like to generalize this to use ℓ different polynomials of
the same form, each having a small root modulo p. More precisely, let ℓ
be a fixed parameter and assume that as the result of ℓ successive faults,
we are given ℓ different polynomials

fu(xu, yu) = au + xu + cuyu (11)

where each polynomial fu has a small root (ξu, νu) modulo p with |ξu| ≤ X
and |νu| ≤ Y . Note that, as in the basic case, we re-normalized each poly-
nomial fu to ensure that the coefficient of xu in fu is equal to one. To avoid
double subscripts, we hereafter use the Greek letters ξ and ν to represent
the root values. We would like to use a lattice approach to construct new
multivariate polynomials in the variables (x1, · · · , xℓ, y1, · · · , yℓ) with the
root R = (ξ1, · · · , ξℓ, ν1, · · · , νℓ). To that end we fix two parameters m
and t and build a lattice on a family of polynomials G of degree at most m
with root R modulo B = pt. This family is composed of all polynomials
of the form

yi1
1 yi2

2 · · · yiℓ
ℓ f1(x1, y1)

j1 f2(x2, y2)
j2 · · · fℓ(xℓ, yℓ)

jℓ Nmax(t−j,0) ,

where each iu, ju is non-negative, i =
∑ℓ

u=1 iu, j =
∑ℓ

u=1 ju and 0 ≤
i+j ≤ m. Once again, let L be the corresponding lattice. Its dimension ω
is equal to the number of monomials of degree at most m in 2ℓ unknowns,
i.e.

ω =

(

m + 2ℓ

2ℓ

)

.

Since we have a common upper bound X for all values |ξu| and a common
bound for all |νu| we can compute the lattice’s determinant as

det(L) = XsxY syN sN ,

where sx is the sum of the exponents of all unknowns xu in all occurring
monomials, sy is the sum of the exponents of the yu and sN is the sum of
the exponents of N in all occurring polynomials. For obvious symmetry
reasons, we have sx = sy and noting that the number of polynomials of

degree exactly d in ℓ unknowns is
(

d+ℓ−1
ℓ−1

)

we find

sx = sy =
m

∑

d=0

d

(

d + ℓ − 1

ℓ − 1

)(

m − d + ℓ

ℓ

)

.

Likewise, summing on polynomials with a non-zero exponent v for N ,
where the sum of the ju is t − v we obtain

sN =
t

∑

v=1

v

(

t − v + ℓ − 1

ℓ − 1

)(

m − t + v + ℓ

ℓ

)

.

As usual, assuming that p = Nβ we can find a polynomial with the correct
root over the integers under the condition of formula (8).

Concrete Bounds: Using the notation of Theorem 1, we compute effec-
tive bounds on γ + δ = log(XY)/ log(N) from the logarithm of condition
(8), dropping the terms

√
ω and 2ω/4 which become negligible as N grows.

For concrete values of N , bounds are slightly smaller. Dividing by log(N),
we find

sx · (γ + δ) + sN ≤ βtω .

Thus, given k, t and m, we can achieve at best

γ + δ ≤ βtω − sN

sx
.

In [8], we provide the achievable values of γ + δ for β = 1/2, for various
parameters and for lattice dimensions 10 ≤ ω ≤ 1001.

Recovering the Root: With 2ℓ unknowns instead of two, applying
usual heuristics and hoping that lattice reduction directly outputs 2ℓ al-
gebraically independent polynomials with the prescribed root over the
integers becomes a wishful hope. Luckily, a milder heuristic assumption
suffices to make the attack work. The idea is to start with K equations
instead of ℓ and iterate the lattice reduction attack for several subsets of ℓ
equations chosen amongst the K available equations. Potentially, we can
perform

(

K
ℓ

)

such lattice reductions. Clearly, since each equation involves

a different subset of unknowns, they are all different. Note that this does
not suffice to guarantee algebraic independence; in particular, if we gen-
erate more than K equations they cannot be algebraically independent.
However, we only need to ascertain that the root R can be extracted from
the available set of equations. This can be done, using Gröbner basis tech-
niques, under the heuristic assumption that the set of equations spans a
multivariate ideal of dimension zero i.e. that the number of solutions is
finite.

Note that we need to choose reasonably small values of ℓ and K to be
able to use this approach in practice. Indeed, the lattice that we consider
should not become too large and, in addition, it should be possible to
solve the resulting system of equations using either resultants or Buch-
berger’s algorithm which means that neither the degree nor the number
of unknowns should increase too much.

Asymptotic Bounds: Despite the fact that we cannot hope to run
the multi-polynomial variant of our attack when parameters become too
large, it is interesting to determine the theoretical limit of the achievable
value of γ + δ as the number of faults ℓ increases. To that end, we assume
as previously that β = 1/2, let t = τm and replace ω, sx and sN by the
following approximations:

ω ∼= m2ℓ

(2ℓ)!
, sx

∼=
m

∑

d=0

dℓ (m − d)ℓ

(ℓ − 1)! ℓ!
, sN

∼=
t

∑

v=1

v
(t − v)ℓ−1(m − t + v)ℓ

(ℓ − 1)! ℓ!
.

For small ℓ values we provide in Table 1 the corresponding bounds on
γ + δ. Although we do not provide further details here due to lack of
space, one can show that the bound γ + δ tends to 1/2 as the number of
faults ℓ tends to infinity and that all γ + δ values are algebraic numbers.

ℓ 1 2 3 4 5 6 7 8 9 10

γ + δ 0.207 0.293 0.332 0.356 0.371 0.383 0.391 0.399 0.405 0.410

Table 1. Bound for the relative size γ +δ of the unknowns as a function of the number
of faults ℓ.

3 Simulation Results

Assuming that fault injection can be performed on unprotected devices
(see Section 4), we simulated the attack. In the experiment we generated

faulty signatures (using the factors p and q) and applied to them the at-
tack’s mathematical analysis developed in the previous sections to factor
N . For our experimental results of physical fault injection see Section 4.

3.1 Single-Fault Attack Simulations

We first consider a single-ump, single-fault attack when H = sha-1 i.e.

kh = 160. Using the sage library lll implementation, computations were
executed on a 2ghz Intel notebook.

modulus size k ump size kr m t lattice dim. ω runtime

1024 6 10 3 66 4 minutes
1024 13 13 4 105 51 minutes
1536 70 8 2 45 39 seconds
1536 90 10 3 66 9 minutes
2048 158 8 2 45 55 seconds

Table 2. Single fault, single ump 160-bit digests (kh = 160). lll runtime for different
parameter combinations.

Experimental results are summarized in Table 2. We see that for 1024-
bit rsa, the randomizer size kr must be quite small and the attack is less
efficient than exhaustive search3. However for larger moduli, the attack
becomes more efficient. Typically, using a single fault and a 158-bit ump,
a 2048-bit rsa modulus was factored in less than a minute.

3.2 Multiple-Fault Simulations

To test the practicality of the approach presented in Section 2.4, we have
set (ℓ, t, m) = (3, 1, 3) i.e. three faulty signatures. This leads to a lattice
of dimension 84 and a bound γ +δ ≤ 0.204. Experiments were carried out
with 1024, 1536 and 2048 bit rsa moduli. This implementation also relied
on the sage library [20] running on a single pc. Quite surprisingly, we
observed a very large number of polynomials with the expected root over
the integers. The test was run for three random instances corresponding
to the parameters in Table 3.

Three faults turn-out to be more efficient than single-fault attacks
(Table 3 vs. Table 2). In particular for a 1024-bit rsa modulus, the three-

3 Exhausting a 13-bit randomizer took 0.13 seconds.

modulus size k ump size kr runtime

1024 40 49 seconds
1536 150 74 seconds
2048 250 111 seconds

Table 3. Three faults, single ump, 160-bit digests (kh = 160). lll runtime for different
parameter combinations.

fault attack recovered a 40-bit ump r in 49 seconds4, whereas the single-
fault attack only recovered a 13-bit ump in 51 minutes.

4 Physical Fault Injection Experiments

We performed fault injection on an unprotected device to demonstrate the
entire attack flow. We obtain a faulty signature from a general-purpose
8-bit microcontroller running an rsa implementation and factor N using
the mathematical attack of Section 2.

Our target device is an Atmel ATmega128 [3], a very pupular risc
microcontroller (µc) with an 8-bit avr core. The µc was running an
rsa-crt implementation developed in C using the BigDigits multiple-
precision arithmetic library [4]. The µc was clocked at 7.3728 mhz using
a quartz crystal and powered from a 5V source.

We induced faults using voltage spikes (cf. to [1] and [2] for such at-
tacks on similar µcs). Namely, we caused brief power cut-offs (spikes)
by grounding the chip’s Vcc input for short time periods. Spikes were
produced by an fpga-based board counting the µc’s clock transitions
and generating the spike at a precise moment. The cut-off duration was
variable with 10ns granularity and the spike temporal position could be
fine-tuned with the same granularity. The fault was heuristically posi-
tioned to obtain the stable fault injection in one of the rsa-crt branches
(computing σp or σq). A 40ns spike is presented in Figure 1. Larger spike
durations caused a µc’s reset.

[8] provides more details on a 1536-bit rsa signature experiment con-
ducted using our setup.

5 Conclusion

The paper introduced a new breed of partially-known message fault at-
tacks against rsa signatures. These attacks allow to factor the modulus N

4 We estimate that exhaustive search on a 40-bit ump would take roughly a year on
the same single pc.

−2

0

2

4

−5

0

5

10

A
m

pl
itu

de
, V

0 100 200 300 400 500 600
0

0.5

1

1.5

Time, ns

Vcc

control

clock

Fig. 1. Spike captured with a dso: control signal from fpga, power supply cut-off, and
induced glitch in the clock signal.

given a single faulty signature. Although the attack is heuristic, it works
well in practice and paradoxically becomes more efficient as the modu-
lus size increases. As several faulty signatures are given longer umps and
longer digests become vulnerable.

References

1. J.-M. Schmidt and C. Herbst, A practical fault attack on square and multiply,
Proceedings of fdtc 2008, ieee Computer Society, 2008, pp. 53–58.

2. C.H. Kim and J.-J. Quisquater, Fault attacks for crt based rsa: new attacks, new

results, and new countermeasures, Proceedings of wistp 2007, lncs, vol. 4462,
Springer-Verlag, 2007, pp. 215–228.

3. ATmega128 datasheet,
www.atmel.com/dyn/resources/prod_documents/doc2467.pdf.

4. BigDigits multiple-precision arithmetic source code, Version 2.2. www.di-mgt.com.
au/bigdigits.html.

5. M. Bellare and P. Rogaway, The Exact security of digital signatures: How to sign

with rsa and Rabin, Proceedings of Eurocrypt 1996, lncs, vol. 1070, Springer-
Verlag, 1996, pp. 399–416.

6. D. Boneh, R.A. DeMillo and R.J. Lipton. On the importance of checking cryp-

tographic protocols for faults, Journal of Cryptology, Springer-Verlag, 14(2), pp.
101–119, 2001.

7. D. Coppersmith, Small solutions to polynomial equations, and low exponent vul-

nerabilities. Journal of Cryptology, 10(4), 1997, pp. 233–260.

8. J.S. Coron, A. Joux, I. Kizhvatov, D. Naccache and P. Paillier, Fault Attacks on

Randomized rsa Signatures. Full version of this paper. Available on eprint.iacr.

org.

9. J.-S. Coron, D. Naccache and J.P. Stern, On the security of rsa padding, Proceed-
ings of Crypto 1999, lncs, vol. 1666, Springer-Verlag, 1999, pp. 1–18.

10. J.-S. Coron, D. Naccache, M. Tibouchi and R. P. Weinmann, Practical cryptanal-

ysis of iso/iec 9796-2 and emv signatures, Proceedings of Crypto 2009, lncs,
Springer-Verlag, 2009, to appear. Full version: eprint.iacr.org/2009/203.pdf

11. J.S. Coron, Optimal security proofs for pss and other signature schemes, Proceed-
ings of Eurocrypt’02, lncs, vol. 2332, Springer-Verlag, 2002, pp. 272–287.

12. M. Herrmann and A. May, Solving linear equations modulo divisors: On factoring

given any bits, Proceedings of Asiacrypt 2008, lncs, vol. 5350, 2008, pp. 406–424.
13. emv Integrated circuit card specifications for payment systems, Book 2. Security

and Key Management. Version 4.2. June 2008. www.emvco.com.
14. N.A. Howgrave-Graham, Finding small roots of univariate modular equations re-

visited. In Cryptography and Coding, lncs, vol. 1355, Springer Verlag, 1997, pp.
131–142.

15. N.A. Howgrave-Graham, Approximate integer common divisors. In calc, pp. 51–
66. 2001.

16. iso/iec 9796-2, Information technology - Security techniques - Digital signature

scheme giving message recovery, Part 2: Mechanisms using a hash-function, 1997.
17. iso/iec 9796-2:2002 Information technology – Security techniques – Digital signa-

ture schemes giving message recovery – Part 2: Integer factorization based mech-

anisms, 2002.
18. M. Joye, A. Lenstra, and J-J.Quisquater , Chinese remaindering cryptosystems in

the presence of faults, Journal of Cryptology, 21(1), 1999, 27–51.
19. A. Lenstra, H. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational

coefficients. Mathematische Annalen, vol. 261, 1982, pp. 513–534
20. Sage, Mathematical Library. www.sagemath.org
21. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures

and public key cryptosystems, Communications of the acm, vol. 21, 1978, pp.
120–126.

