
On Tamper-Resistance from a Theoretical Viewpoint
The Power of Seals?

Paulo Mateus1 and Serge Vaudenay2

1 SQIG /Instituto de Telecomunicações - IST/TULisbon
1049-001 Lisboa, Portugal, http://sqig.math.ist.utl.pt

pmat@math.ist.utl.pt

2 EPFL
CH-1015 Lausanne, Switzerland

http://lasecwww.epfl.ch
serge.vaudenay@epfl.ch

Abstract. Tamper-proof devices are pretty powerful. They can be used to have
better security in applications. In this work we observe that they can also be ma-
liciously used in order to defeat some common privacy protection mechanisms.
We propose the theoretical model oftrusted agentto formalize the notion of pro-
grammable secure hardware. We show that protocols not using tamper-proof de-
vices are not deniable if malicious verifiers can use trusted agents. In a strong key
registration model, deniability can be restored, but only at the price of using key
escrow. As an application, we show how to break invisibility in undeniable signa-
tures, how to sell votes in voting schemes, how to break anonymity in group/ring
signatures, and how to carry on the Mafia fraud in non-transferable protocols.
We conclude by observing that the ability to put boundaries in computing de-
vices prevents from providing full control on how private information spreads:
the concept of sealing a device is in some sense incompatible with privacy.

1 Introduction

Tamper-proof hardware devices have been used quite massively in industrial and com-
mercial applications. There exists a wide spectrum of tamper-proof devices, ranging in
their price and security, from simple smartcards to the IBM 4758, which has several
physical penetration sensors, including temperature, radiation, pressure, etc. Clearly,
people are currently surrounded by devices (aimed at) instantiating trusted agents. Peo-
ple wear smart cards, secure tokens, their PCs have Trusted Computing Platforms, their
media readers have secure hardware to deal with DRMs, their iPhones have a self-
blocking secure hardware, passports have secure RFID tags, etc.

So far, secure hardware devices have been used to implement some strong security
protocols with the hypothesis that they are tamper-resistant. The idea of using tamper-
proof devices to realize cryptographic functionalities goes back (at least) to 1986 [10].
Due to existence of all side channel attacks, whether tamper resistance is possible in
practice is still an open question. Current allegedly tamper-resistant devices are (at least)
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trusted by banks, mobile telephone operators, companies selling access control devices,
software companies, media content providers, hardware manufacturers, governments,
and so on. It is unlikely that none of these organizations would ever try to take any
malicious advantage out from their devices. So, assuming some adversaries would use
tamper-proof devices for attacks is a legitimate assumption. In this paper we show how
to make several privacy attacks using trusted tamper-proof devices.

In this work, we formalize the notion of programmable secure hardware by intro-
ducing thetrusted agent model. Informally speaking, the trusted agent model consists
in assuming that it is possible to acquire a trusted device (agent) that runs honestly a
known program in a secure environment (tamper proof) without any way of running an-
other program. At the first time it is switched on, we can load a code whose digest will
be permanently displayed. Later, we can interact with the device through the interface
defined by this program only. Quite importantly, every output will be appended to the
digest of the original program so that someone looking at the display is ensured that the
output is produced by a device having been set up with a program of displayed digest.
We show that within this model, it is possible

– to transfer proofs of zero-knowledge protocols after completion (in particular: to
transfer the verification of an invisible signature);

– to register rogue public keys and prove the ignorance of a secret key (which then can
be used to break anonymity in ring signatures or non-transferability mechanisms);

– to sell ballots in e-voting systems.

In a nutshell, for any interactive proof protocol, we can load the verifier algorithm in a
trusted agent and make a malicious verifier relay protocol messages between the prover
and the trusted agent. Afterward completion, the agent ends up in a state which tes-
tifies that the proof protocol was correctly run and provide some kind of forensic ev-
idence. Clearly, such a honest device could be used to defeat the invisible signature
paradigm [6] when maliciously used. One could say that this trivial attack could be
defeated by classical non-transferability techniques like having a Public Key Infras-
tructure (PKI) for verifiers [2,11,15,16]. However, this would work only if the prover is
convinced that the verifier possesses himself a secret key. A trusted agent could still be
maliciously used to register a key whose secret part would be ignored by the verifier.
Later, the agent could prove that the verifier must ignore the secret key and continue to
defeat non-transferability. Finally, the only key registration model which could fix this
would imply some kind of key escrow: some information making the registrating au-
thority able to impersonate the verifier would eventually have to leak in order to thwart
the previous attack. Key escrow however leads us to other privacy concerns.

Another possible use of registering a public key whose secret component is sealed
in a trusted tamper-proof hardware would be to break anonymity in group signatures or
ring signatures [23]. Interestingly, it makes it possible toprove ignorance. It could also
be used in voting systems and open the door to vote selling.

While it is debatable if the trusted agent model is realizable or not, assuming it
cannot be used by adversaries is a much greater error than assuming that it can. For this
reason, we believe that cryptographers should mind the proposed trusted agent model
when designing future protocols.
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Related work.Classical ZK proof systems fulfill a privacy property calleddeniabil-
ity [21] stating that the verifier cannot prove knowledge to a third party after interact-
ing with the prover. That is, the verifier cannot transfer the proof upon completion.
The more general concept ofnon-transferabilityis also central in some cryptographic
schemes, such as invisible signatures [6]3 that use interactive verification in order to
prevent the signature to be authenticated to an unauthorized third party. A different way
to enforce deniability of a signature is to use a group or ring signature [23] between the
signing party and the verifier. In this case, the signer can deny the signature by claiming
that it was computed by the other party.

Several flaws have been found to non-transferability protocols, and improvements
have been proposed (see e.g. [2,11,15,16]). The attacks are focused in adversaries that
are online with the verifier during the interaction period. For offline attacks, it is ac-
cepted that the protocols are secure. However, herein we will present an offline attack
that will render several non-transferability protocols useless under the assumption that
the participants can trust tamper-proof devices.

The idea of using tamper-proof hardware to transfer proofs of ZK protocols was
first introduced in the context of quantum memory [18,19].

In general, setup phases in cryptographic protocols is a critical issue. Participants
are often assumed to securely register their public keys, although doing so is not trivial.
Key setup is a problem for the Universal Composability (UC) framework by Canetti [3].
For instance, the key registration model by Barak, Canetti, Nielsen and Pass [1] as-
sumes that the secret key of honest participants is safely stored by the key registration
authority. In [22], Ristenpart and Yilek considered several variants of key registration
protocols and have shown tricky interference with the security in several group signa-
ture protocols. They noticed that security proofs often assume that all participants send
their secret keys to a trusted authority in a KOSK model (as forKnowledge Of Secret
Key) although some signature schemes could still be secure in a less demanding key
registration process such as producing a self-signed certificate for the public key, what
they call the POP (as forProof Of Possession). Our results show that POP is either not
enough in the trusted agent model, or compromises some other cryptographic property.

Katz [17] used another approach consisting in assuming the existence of tamper-
proof hardware tokens. These tokens could be used to achieve commitment, thus any
well-formed functionality. Contrarily to these hardware tokens, we assume that trusted
agents are private (namely: their holders do not give them to another user) and display
the initial code (or its digest) so that any other party can trust that it is in a state which is
a consequence of having set it up with this code. The question whether a tamper-proof
hardware can be trusted to run what it is supposed to is discussed e.g. in [14].

In [21], Pass introduced the notion of deniable zero-knowledge which is immune
to offline proof transfer. ZK in the standard model is essentially deniable. However,
zero-knowledge in the common reference string (CRS) model is not always deniable.

3 As suggested by several authors, we use the term ofinvisible signatureto designate what is
more often calledundeniable signaturesince the termundeniableis a little confusing, espe-
cially when we introduce the notion of deniability.
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Structure of the paper.The paper is organized as follows, in Section 2 we introduce the
trusted agent model and the nested trusted agent model. In Section 3 we study denia-
bility. We show that deniability is impossible if honest participants do not use trusted
agents but the malicious verifier does. We show that deniability is possible when the
prover uses trusted agents. In other cases, it is impossible in the nested trusted agent
model, and possible in the trusted agent model. Section 4 studies a key registration
model. It shows that key registration with key escrow makes non-transferability possi-
ble. We provide examples of malicious use of trusted agents in Section 5. Finally, we
draw some conclusions in Section 6.

2 The Trusted Agent Model

Multiparty computation model.In a multiparty setting, several participants or function-
alities4 run different algorithms and can communicate using pairwise communication
channels. Channels are assumed to be secure in the sense that leakage or corruption
in transmitted messages can only be made by one of the two end participants on this
channel. We consider a static adversarial model in which participants are either honest
or corrupted. Honest participants run predefined algorithms whereas corrupted partici-
pants may run arbitrary algorithms and talk to an (imaginary) adversary to collude. We
use calligraphic characters (e.g.,PV or FTA) to denote participants and functionalities
and capital characters (e.g.,V or M) to denote the algorithms they run. By convention
we will denote with a star∗ the corrupted participants in a static model. Sometimes, a
participantP invoking a functionalityO will be referred toP querying anoracleO and
we will write P O for this type of communication. Later, a trusted agent will be defined
by a functionality and used as an oracle. At the beginning, an arbitrary environmentE
sends input to all participants (including the adversary and functionalities) and collect
the output at the end.

We stress that we do not necessarily assume that malicious participants have the
same privileges as honest participants, which means that they can have access to differ-
ent sets of functionalities. For instance, a malicious participant may use a trusted agent
as a tool for cheating while we would not want a honest one to need an extra device.

Recall that an interactive machine is a next-message deterministic function applied
to a currentview. The view of the algorithm is a list containing all inputs to the machine
(including the random coins) and all messages which have been received by the machine
(with a reference to the communication channel through which it was delivered so that
they can see which ones come from a trusted agent). The view is time dependent and
can always be expanded by adding more messages.

We denote byP ↔ V two interactive algorithmsP andV interacting with each
other, following a given protocol. When there is a single message sent by e.g.P to V,
we say that the protocol is non-interactive and we denote it byP→ V. If OP (resp.
OV ) is the list of functionalities that participantPP (resp.PV ) may invoke when running
the algorithmP (resp.V) we denote byPOP ↔ VOV the interaction. More precisely,
we denote byPOP(rOP)(xP; rP) ↔ VOV (rOV)(xV ; rV) the experiment of runningP with

4 Following the traditional terminology of universal composability [3], a functionality is a virtual
participant performing honestly a specific cryptographic task.
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input xP and random coinsrP with access toOP initialized with random coinsrOP and
interacting withV with inputxV and random coinsrV with access toOV initialized with
random coinsrOV. We denote byViewV(POP(rOP)(xP; rP)↔VOV (rOV)(xV ; rV)) thefinal
viewof V in this experiment, i.e.xV , rV and the list of messages from eitherP or OV .

The trusted agent model.We assume that it is possible to construct a trusted device
(agent) that runs honestly a known program (a minimal boot loader) in a secure en-
vironment (tamper proof) without any way of running another program. Moreover we
assume that the device’s memory is private, and that the only way to interact with the
device is by using the interface defined by the program. A device is attached to a par-
ticipant called itsholder. He entirely controls the communication with it. The holder
may however show the display of the device to another participant which would give
him some kind of evidence of the outcome produced by a trusted agent. Below, we
model trusted agents in a similar way as Katz’s secure tokens [17]. Differences will be
discussed in the full version of the paper.

We consider (probabilistic) interactive Turing machines with four kinds of tapes:
the input tape, the working tape, the output tape, and the random tape. We define their
stateby the state of the automaton and the content of the working tape. We consider
a programming language to specify thecodeof the transition function of the Turing
machine and itsinitial state. All trusted agents are modeled by a functionalityFTA. To
access to a particular trusted agent, we use asid value. For each usedsid, FTA stores
a tuple in memory of form(sid,P , r,C,state,out), whereP identifies the holder of the
trusted agent,r denotes its random tape,C the loaded code to be displayed,state its
current state, andout its output tape.FTA treats the following queries.

Query SEND(sid,m) from participant P : If there is a tuple(sid,P ′, . . .) registered
with a participantP ′ 6= P , ignore the query. Otherwise:

– If there is a tuple with correct participant, parse it to(sid,P , r,C,state,out) and
setin to the value ofm.

– If there is no tuple registered, interpretmas a codeC. Extract from it the value
state of its initial state. Then setin andout to the empty string. Pick a stringr of
polynomial length at random. Then, store a new tuple(sid,P , r,C,state,out).

Then, define a Turing machine with codeC and initial statestate, random tape set
to r, input tape set toin, and output tape set toout. Then, reset all head positions
and run the machine until it stops, and at most a polynomial number of steps. Set
state to the new state value, setout to the content of the output tape, and update the
stored tuple with the new values ofstate andout.
Note that the registered(sid,P , r,C) are defined by the first query and never changed.

Query SHOWTO(sid,P ′) from participant P : If there is no tuple of form(sid,P ,
r,C,state,out) with the correct(sid,P ), ignore. Otherwise, send toP ′ the pair
formed by the codeC and the contentout.

Here, the holderP asks for the creation of a new trusted agent by invoking a fresh
instancesid of the functionality which becomes an agent. The holder is the only par-
ticipant who can send messages to the agent. The holder can define to whom to send
response messages by theSHOWTO message. (Incidentally, the holder can ask to see
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the output message himself.) The response message (asdisplayedon the device) con-
sists of the originally loaded codeC and the current outputout. Since the channel from
FTA to P ′ is secure,P ′ is ensured that some instance ofFTA (i.e. some trusted agent)
was run with codeC and produced the resultout. Showing a trusted agent may pro-
vide a simple way to authenticate some data. By convention, we denote by[C : out]
an incoming message fromFTA composed by a codeC and a valueout. The action of
checking[C : out] means that the receiver checks that it comes formFTA, thatC matches
the expected code, and thatout matches the expected pattern from the context.

One important property of this functionality is that it is well-formed. We say that a
list of oraclesO is well-formedif for any pair(P0,P1) of participants and any algorithm
M with access toO, there exists an algorithmS with access toO such that the two
following experiments are indistinguishable from the environment:

1. P0 runsMO andP1 runs an algorithm doing nothing.
2. P0 runs and algorithm defined by

– for any incoming messagem from P 6= P1, P0 sends[P ,m] to P1;
– for any incoming message[P ,m] from P1, P0 sendsm to P ;
– upon message[out,m] from P1, the algorithm ends with outputout.

The participantP1 runsSO .

Typically, Semulates the algorithmM by treating all messages forwarded byP0 and by
usingP0 as a router. This means that the output ofO is not modified if the algorithmM
is run byP0 or byP1. Informally, being well-formed means that the distribution of roles
among the participants does not affect the behavior ofO. An example of a functionality
for which this isnot the case is a key registration functionality who registers the name
of the sending participant and reports it to a directory. So, the adversary could check
if the key was registered byP0 or by P1 and tell it to the environment. As forFTA, it
checks that messages come from the same holder but his identity has no influence.

Relevance of the model in practice.Our model for trusted agent could easily be imple-
mented (assuming that tamper-resistance can be achieved) provided that we could trust a
manufacturer and that nobody could counterfeit devices. Obviously this is a quite strong
assumption but this could make sense in applications where there is a liable entity which
must be trusted. For instance, digital payment relies on trusted agents issued by a liable
bank: credit cards have a tamper-proof embedded chips and e-banking is often based
on trusted secure tokens such as secureID. Nation-wide e-governance could be based
on protocols using trusted agents. It is already the case for passports, ID documents, or
health cards with tamper-proof RFID chips. In this paper, we demonstrate that such de-
vices can be used for malicious reasons and not only to protect the user against attacks.
We show in Appendix A that our trusted agent model can perform bit commitment.
Following Katz’s reasoning [17], since we can realize commitments in theFTA-hybrid
model we can also realize many protocols which suffer from being impossible to realize
in the bare model. Namely, we can realize any well-formed functionality [5].

Nested trusted agents.Regular trusted agents run Turing machines which cannot in-
teract with other functionalities during their computation time. We can consider more
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general trusted agents who can use external oracles. Typically, we will consider gener-
alized trusted agents (which we callnestedtrusted agents) who can become the holder
of another trusted agents. To take an example, a (human) holder may communicate with
a trusted agent “of depth 2” modeled by the functionalityF 2

TA. The participant may then
receive[C : out] messages fromF 2

TA (if the holder asked to) or from the functionality
F 1

TA of regular trusted agents (upon the request by the nested trusted agent).
Formally, if O is a list of functionalities, we consider the functionalityF O

TA which
looks like FTA with the difference that the running codeC can now send messages to
all functionalities inO. Note that ifO = ⊥ this means that no oracle is used and then,
F O

TA is the regularFTA functionality. WhenO designates a trusted agent functionality,
we assume thatF O

TA keeps a record of which instancesid of F O
TA queries which instance

sid′ of O so that only the holder deviceF O
TA(sid) can communicate to a designated

trusted agentO(sid′), just like for human holders. Equivalently, we can say thatF O
TA

works by cloning itself in clonesF O
TA(sid).

We defineF 0
TA =⊥ (this is a dummy functionality doing nothing) andF n

TA = F F n−1
TA

TA

iteratively. We haveF 1
TA = FTA. We further defineFNTA = F FNTA

TA . That is, instances
of FNTA can invokeFNTA. We obtain a hierarchy of functionalities starting with⊥ and
FTA and ending withFNTA. To simplify, we considerF n

TA as a restricted usage ofFNTA

for all n. That is, holders load nested trusted agents with codes which are clearly made
for an agent of a given depth. A participant receiving a message[C : out] from FNTA

can see that it is from a trusted agent of depth bounded byn.

3 Forensic Attacks Based on a Trusted Witness (Deniability Loss)

We recall here the definitions of a hard predicate and a zero-knowledge argument of
knowledge system [12,13]. We slightly adapt it so that the prover and the verifier can
talk to a specific list of oracles (typically: trusted agents). If a list is specified as⊥ or
unspecified, we consider that no oracle is used. Quite importantly, we do not necessarily
assume that honest and malicious verifiers have access to the same oracles.

Definition 1 (Hard predicate). Let R(x,w) be a predicate relative to astatementx
and awitnessw. We say thatR is a hard predicate if (1) there is a polynomial-time
Turing machineA such thatA(x;w) yields 1 if and only ifR(x,w) and (2) there is no
probabilistic polynomial-time Turing machineB such that for anyx, B(x; r) returnsw
such thatR(x,w) with non-negligible probability (over the random coinsr).

Definition 2 (Zero-knowledge argument).Let R(x,w) be a predicate relative to a
statementx and a witnessw, OP,OV ,O∗

V be three lists of oracles initialized using a
list of random coinsrI . An argument of knowledgefor R relative to (OP,OV) is a
pair (POP,VOV ) of polynomial-time interactive machinesPOP(x,w; rP) andVOV (x,z; rV)
such that:x is a common input;P has a secret inputw; V has an auxiliary inputz and
produces a binary output (accept or reject); and, moreover, the system fulfills the fol-
lowing properties:

– Completeness: for any rI , rP, rV ,x,w,z such thatR(x,w) holds, the outcome of in-
teractionPOP(x,w; rP)↔VOV (x,z; rV) makesV accept.
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– Soundness: there exists a polynomial-time algorithmE (calledextractor) which is
given full black-box access5 to the prover such that for anyx andz, any polynomial-
time algorithmP∗ with access toOP, if the probability (over all random coins)
that P∗OP(x; rP) ↔ VOV (x,z; rV) makesV accept is non-negligible, thenEP∗(x; r)
producesw such thatR(x,w) with non-negligible probability (overr).

The argument system is calledzero-knowledge(ZK) relative toO∗
V (or O∗

V -ZK) if for
any polynomial-time algorithmV∗O∗V with access toO∗

V there exists a polynomial-time
algorithmSO∗V (calledsimulator), which could be run by the verifier, such that for anyx,
w, andzsuch thatR(x,w), the experiments of either computingViewV(POP(x,w; rP)↔
V∗O∗V (x,z; rV)) or runningSO∗V (x,z; r) produce two random (over all random coins) out-
puts with indistinguishable distributions.

As shown by the following classical lemma, our definition of zero-knowledge is essen-
tially deniablebecause the simulator can be run by the verifier [21]. This means thatV∗
cannot produce somey which could serve to feed a malicious proverP∗.6

Lemma 3. Let (POP,VOV ) be an argument of knowledge system forR. The system is
O∗

V -ZK if and only if for any polynomial-time algorithmV∗O∗V producing a final out-
put y, there exists a polynomial-time algorithmSO∗V which could be run by the ver-
ifier such that for anyx, w and z such thatR(x,w), the experiments of either running
POP(x,w; rP)↔V∗O∗V (x,z; rV) and getting the final outputy ofV∗ or runningSO∗V (x,z; r)
produce two random outputs with indistinguishable distributions.

In the next lemma, we show that if the honest verifier has access toOV , a malicious
verifierV∗ holding a nested trusted agentNOV can defeat deniability.

Lemma 4 (Transference Lemma).Let OP,OV be any oracle lists. We assumeOV is
well-formed. LetNOV be a nested trusted agent withOV embedded. Let(POP,VOV ) be an
argument of knowledge forR. We assume thatV only receives messages from eitherOV

or the proverPP. There exists a non-interactive argument of knowledge(QOP,NOV ,W)
for R and a malicious verifierV∗NOV producing a final stringy such that the random
variables

ViewW

(
POP(x,w; rP)↔V∗NOV (x; rV)→W(x; rW)

)
and

ViewW

(
QOP,NOV (x,w; rP)→W(x; rW)

)

are indistinguishable.

Proof. We define a codeC implementing the algorithmVOV to be run byNOV . The code
terminates the protocol by yielding either “x accepted” or “ abort”.

5 This means thatE can callP∗ as a subroutine, choose all inputs including the random tape (i.e.
it has “rewindable access”), see all outputs including queries to the oracles invoked byP∗ and
simulate their responses.

6 This notion of deniability is sometimes calledself-simulatability[1] to avoid confusion with
other notions of deniability which are used in encryption or signature.
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To constructQOP,NOV , we first loadNOV with the sameC. Then, we simulate the
protocol betweenPOP andNOV . Finally,Q sendsSHOWTO PW wherePW is the partic-
ipant runningW. To defineW, we just make it check that the message is[C : x accepted]
with the correctC and x and that the message comes from a trusted agent. Clearly,
(QOP,NOV ,W) is an argument of knowledge forR: it is complete, and for soundness we
observe that ifW accepts, then it must have received[C : x accepted] from a trusted
agent who thus must have run the codeC and complete the proof verification. This

means that from the maliciousQ∗OP,NOV interacting withNOV we can first extract an
algorithmP∗OP to complete the proof withVOV and then extract a witness.

To constructV∗N, we simply letV∗ loadNOV with C and relay messages between
POP andNOV . Finally,V∗ sendsSHOWTO PW. Clearly,ViewW(POP ↔V∗N ↔W) and
ViewW(QOP,N ↔W) are identically distributed. ut
For OV =⊥, this result tells us that we can make any argument of knowledge non-
interactive by using a trusted agent. In other words, a malicious verifierV∗ equipped
with a trusted agentO, after interacting with the proverP, can behave as a proverQ to
transfer non-interactively the argument of knowledge to any verifierW offline. This is
done by simply certifying a correct execution ofV by O. Clearly, trusted agents make
the whole notion of NIZK pretty simple to achieve. This further leads us to making
deniable zero-knowledge collapse.

Theorem 5. Let OP,OV be any oracle lists. We assumeOV is well-formed. LetNOV be
a nested trusted agent withOV embedded. LetRbe any hard predicate. No argument of
knowledge(POP,VOV ) for R such thatV only receives messages fromOV or the prover
PP is NOV -ZK.

In particular, ifO is a trusted agent, no(P,V) argument forR is O-ZK. In clear, if a ma-
licious verifier can use a trusted agent but the honest participants do not, the argument
system is not zero-knowledge.

Proof. Let (POP,VOV ) be aNOV -ZK argument of knowledge for a relationR such that
V only receives messages fromOV or the proverPP. We defineV∗,Q,W by Lemma 4.
Due to Lemma 3, there must exist a simulatorSNOV making a stringy without interact-
ing with POP. This string is indistinguishable from the one generated byV∗N after the
interaction withPOP, so it must be accepted byW. Since(QOP,NOV ,W) is an argument
of knowledge forR, we can use an extractor onSNOV to get a witnessw for x. This
contradicts thatR is hard. ut

Our result shows the inadequacy of deniable zero-knowledge as soon as adversaries
can use trusted agents. It does not mean that deniable zero-knowledge is impossible
in this model since honest participants could also use trusted agents to protect against
transference attacks.

Indeed, if the prover uses a trusted agent which can directly send messages to the
verifier (which is excluded in the hypothesis of Theorem 5), then it is possible to realize
deniable zero-knowledge as depicted in Figure 1.7 The codeC makesFTA waits for

7 More formally: we can realize, in the sense of the universal composability framework, a zero-
knowledge functionalityFZK in theFTA-hybrid model.
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Trusted Agent Prover Verifier

witness: w common: 1λ,x aux.: z

C←−−−−−−−−−−−−−
b = R(x,w)

x,w←−−−−−−−−−−−−−
output (b,x)

[C:b,x]−−−−−−−−−−−−−→ (SHOWTO PV)
[C:b,x]−−−−−−−−−−−−−→ check trusted agent

checkC,x andb = 1

Fig. 1. UC-realization of theFZK in theFTA-hybrid model.

(x,w), computesb = R(x,w), and outputs(b,x). Clearly, for this protocol to work it is
essential that in the last step, the message[C : b,x] reachesV from the prover’s TA via an
authenticated channel. The protocol is sound, because if the TA yields[C : 1,x], it must
be the case that it receivedw such thatR(x,w) = 1 and the extractor can see messages
from P to it. Moreover, it is deniable, becauseViewV(PFTA(x,w; rP)↔V∗(x,z; rV)) =
〈x,z, rV ,FTA : [C : 1,x]〉 and this string could be forged fromx,z, rV by the verifier run-
ningS(x,z; rV).

If the prover uses no oracle, the situation is more complicated. Actually, in the asym-
metric case where the verifier uses a nested trusted agent of depthn but the malicious
verifier uses a nested trusted agent of higher depth, no zero-knowledge is feasible due
to Th. 5. Note that the attack in Th. 5 requires an oracleNOV for V∗ with higher depth
thanOV for V. In fact, in symmetric cases where both verifiers use a nested TAF n

TA

with same depthn, zero-knowledge is possible.8 In symmetric cases where verifiers use
FNTA (i.e. nested trusted agents of unbounded depth), no zero-knowledge is possible
sinceF FNTA

TA = FNTA. Feasible ZK results are summarized in the following table.

oracle forP oracle forV oracle forV∗ feasibility comment
none none none yes classical situation
none F n

TA F n
TA yes

none F n
TA F n+1

TA no Th. 5
none FNTA FNTA no Th. 5
FTA any any yes Fig. 1, V receives messages

from the prover’s TA

4 Attacks Based on Public Key Registration Shift

ZK protocols have the property that a verifier cannot simulate a proveraftercompletion
of the attack. Nevertheless, the verifier could still play theMafia fraudattack [9]. In-
deed, if a third party, say Eve, and the verifierV∗ are online,V∗ may just relay messages

8 We can show this by havingV make a commitment (using a TA) to a random challenge prior
to aΣ-protocol so that we transform a honest-verifier zero-knowledge protocol into a full zero-
knowledge one.
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between the prover and Eve while Eve may play a role of a honest verifier. This type
of attack is addressed by a stronger notion of non-transferability. More concretely, we
define non-transferability based on [20].

Definition 6. Let OP,OV ,O∗
V ,O∗

W be some lists of oracles. Let(POP,VOV ) be an inter-
active argument of knowledge for a relationR in the key registration model. We as-
sume that the verifierPV is designated by a reference given as an extra common input.
We say that the argument is non-transferable relative toO∗

V |O∗
W if, for any malicious

(polynomial-time) verifierV∗O∗V run byPV , and any polynomial-timeW∗O∗W interacting
with V∗ and not run byPV , there exists a simulatorSO∗V run byPV such that for anyx,
w andzsuch thatR(x,w) the random variables (over all random coins)

ViewW∗(POP(x,PV ,w; rP)↔V∗O∗V (x,PV ,z; rV)↔W∗O∗W(x; rW))

andViewW∗(SO∗V (x,z; r)↔W∗O∗W(x; rW)) are indistinguishable.

Thanks to Lemma 3, by using a dummyW∗ receiving a single messagey and do-
ing nothing else we can see that for anyO∗

W, non-transferability relative toO∗
V |O∗

W
impliesO∗

V -zero-knowledge. Hence, non-transferability is a stronger notion than zero-
knowledge (thus deniability).

Interestingly, the protocol of Fig. 1 using no key registration is non-transferable
since for anyV∗ we can simulate the fact that the algorithm receives the string[C : 1,x]
without the help of the prover. But maybe this is not the ideal non-transferable protocol
that we want to use because it requires a secure channel from the prover’s TA to the
verifier. So, in what follows we assume that the prover uses no trusted agent.

A classical technique to achieve such a strong non-transferability uses proofs to
a designated verifierV. This verifier is designated by its public key. That is, the ver-
ifier holds a public/private key pair(k,s). One way to make interactive proofs non-
transferable consists of replacing the proof of knowledge for secretw by a proof of
knowledge of eitherw or s. This way, a malicious verifier trying to transfer the proof
to someone else will not prove knowledge ofw since the verifier is assumed to holds.
This works because the verifier is not able to deny knowings.

Practically, non-transferability strongly relies on the key setup assumption. To for-
malize this, we use a key registration model. IfP wants to register a public keyk, he
runs the(Reg,Dir) registration protocol with the registration authority. We model the
key registration authority by a new functionalityF Dir

CA which registers(P ,k) in a direc-
tory. We assume that this functionality is first set up with coinsrD. An instance of the
functionality is referred to bysid.

Query REGISTER(sid) from P : launch aDir protocol session to interact withP . If an
outputk is produced, store(P ,k). Ignore any furtherREGISTER(sid) query.

Query CHECK(sid,P ,k) from P ′: if (P ,k) is stored, sends(sid,yes) to P ′. Otherwise
sends(sid,no) to P ′.

In [22], Ristenpart and Yilek define several key registration models. They consider an
arbitrary key registration protocol(Reg,Dir) in which Reg(k,s; rR) is run by any reg-
istrant participantP with secret keys willing to register a public keyk (e.g. generated
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by some algorithmG) andDir(rD) is run by a certificate authority which is assumed to
be trusted. Several examples of key registration protocols are defined in [22]. ThePlain
protocol simply consists of sending a public key fromReg to Dir. TheKosk protocol
(as forKnowledge Of Secret Key) consists of sending a public key joined with the secret
key fromReg to Dir so that the directory authority can check that the registrant knows
a secret key consistent with the registered public key. This quite strong model has a
brother protocol consisting of making the authority generate the key pair and sending it
to the registrant. This protocol is calledKRK as forKey Registration with Knowledgein
[1]. This is the model that could be used when discussing about identity-based protocols
because of their intrinsic escrow property. TheSPop protocol (as forSignature-based
Proof of Possession) consists of sending a public key as a self-signed certificate. The
Dir protocol first checks the signature before accepting the public key. This is indeed
what is used in many practical cases to register a key in a Public Key Infrastructure
(PKI). However, theSPop protocol is a pretty weak proof of possession while theKosk
protocol leads to important privacy concerns due to key escrow. We enrich this list with
a ZKPop protocol which is an arbitrary zero-knowledge proof of knowledge for the
secret key attached to the public key.

Our point is that if proving ignorance ofs is doable forV∗ then the transference
attack could still apply with this construction. More formally, in a protocol whereV
receives messages from the prover andOV only, with O∗

W = OV , if V∗ acts as a relay
between the prover andW∗ and is able to register a public key generated byW∗ without
knowing the secret key, thenV∗ literally transfers the proof toW∗. We have thus to
check which registration model makes it possible forV∗ to register a public keyk while
being able to prove ignorance of the secret keys. This is clearly the case of thePlain
andZKPop models: sinceV∗ andW∗ are colluding,V∗ can just relay messages between
the registering authority andW∗ and learns nothing abouts. In theSPop model (where
V∗ acting the same would have to learn more than the public key to register), we have to
assume that a self-signed certificate does not provide any extra information to simulate a
malicious prover to show that the proof is transfered. On the other side, this is clearly not
the case of protocols based on key escrow such as theKosk or KRK models. Indeed, key
escrow surprisingly helps privacy by restoring non-transferability in the trusted agent
model.

Theorem 7. Let O∗
V ,O∗

W be two lists of oracles. In the key registration model using

Kosk there exists some argument of knowledge(P,VF Dir
CA ) which is non-transferable

relative toO∗
V |O∗

W.

Consequently,(P,VF Dir
CA ) is aO∗

V -ZK even whenO∗
V includes trusted agents.

Proof. We use aΣ protocol defined by four algorithmsP1(x,w; rP) = (a, t), P2(t,e) = z,
Extract(x,a,e,z,e′,z′) = w, andSimulate(x,e; r) = (a,z), a bitlength̀ (λ) defining the
domain fore, and a polynomially computable predicateV0(x,a,e,z). Following [7], the
Σ protocolP(x,w; rP)↔V(x; rV) works as follows: the prover runsP1(x,w; rP) = (a, t)
and sendsa to V; The verifier picks a random bitstringe of `(λ) bits and sends it to
P; The prover runsP2(t,e) = z and sendsz to V; The verifier accepts if and only if
V0(x,a,e,z) holds. Following the definition ofΣ-protocols, the verifier always accept

12



Prover Verifier

private witness: w common input: 1λ,x,PV auxiliary input : ε
random coins: rP = e2||r1||r2 random coins: rV = rs||rR||e

G(1λ; rs) = (kV ,sV)
REGISTER(sid)

CHECK(sid,PV ,kV)
sid,kV←−−−−−−−−−−−−−−−− Reg(kV ,sV ; rR)

if answersno, abort
P1(x,w; r1) = (a1, t)

Simulate(kV ,e2; r2) = (a2,z2)
a1,a2−−−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−−−
e1 = e⊕e2, P2(t,e1) = z1

e1,z1,e2,z2−−−−−−−−−−−−−−−−→ checkV0(x,a1,e1,z1)
checkV0(kV ,a2,e2,z2)
checke1⊕e2 = e

Fig. 2. A non-transferable ZK proof system.

if R(x,w) holds and the protocol is correctly executed;Extract(x,a,e,z,e′,z′) must re-
turns a witnessw′ such thatR(x,w′) whenever the conditionse 6= e′, V0(x,a,e,z), and
V0(x,a,e′,z′) are satisfied (this is thespecial soundnessproperty); and for anyx ande,
Simulate(x,e; r) = (a,z) should define a random(a,e,z) triplet such thatV0(x,a,e,z)
holds with same distribution as the triplets generated by the honest run of the protocol
(this is thespecial zero-knowledgeproperty).

We modify the protocol of [8] as depicted on Fig. 2. Relative to theKosk key reg-
istration model, obtain a non-transferable argument of knowledge. IfV∗ does not send
any validkV binded toPV to P, the simulation is trivial since it does not usew. Other-
wise,V∗ must have sent somekV together withsV to F Dir

CA . A simulator forV∗ could
then usesV to simulateP in the OR proof. ut

In this construction based on key escrow, the registering authority could abuse the
protocol and make a cheating prover to the designated verifier. We further show that
this (bad) property is necessary for any(P,VF Dir

CA ) protocol which is non-transferable.

Theorem 8. Let OP,OV be two lists of oracles. We assume thatOV is well-formed and
that PV can only receive messages from eitherOV , F Dir

CA , or PP. LetPD be an authority
who runs an emulatorD for theF Dir

CA functionality for a given protocol(Reg,Dir). Let

(POP,VOV ,F Dir
CA ) be an argument of knowledge forRwhich is non-transferable relative to

⊥ |OV . We letṼOV (x,PV ,z; rV) denote the protocol who simulatesVOV F Dir
CA (x,PV ,z; rV)

with all messages forPD andPP sent to the same counterpart. There exists an algorithm
D∗OP(x,z; r) such that for anyrI , x, z, D∗OP ↔ ṼOP accepts with high probability.

This means that if an interactive proof using well-formed oracles for the verifier is non-
transferable and with the property that the registering authority cannot cheat with the
verifier, then the verifierPV must receive messages from an oracleOP, e.g. using a TA.
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Proof. We letW∗OV = ṼOV be run by a participantPW with PV as counterpart. Here,
V∗ is “router” who “reroutes” the requests byW∗ to the registration authority toPD

and others toPP. Clearly,POP ↔ V∗F Dir
CA ↔W∗OV makesW∗ always accept sinceOV

is well-formed. Thanks to the definition of non-transferability, there is a simulatorS

such that the view fromW∗ to eitherPOP ↔ V∗F Dir
CA ↔W∗OV or SF Dir

CA ↔W∗OV are
indistinguishable. We can thus defineD∗ = SF Dir

CA so thatD∗ ↔ Ṽ accepts with high
probability. ut

5 Malicious Applications

5.1 Shedding Light on Invisible Signatures (Invisibility Loss)

Undeniable signatures (akainvisible signatures) were invented by Chaum and van Antwer-
pen in [6] and have two basic features: (i)interactive verification, that is, the verifica-
tion process is interactive and so the signer can choose who can verify his signature; (ii)
disavowal protocolwhich allows the signer to prove that a given signature is a forgery.
The first feature enables the signer to restrict the verification of the signature to those he
wishes to. If the document leaks, a third party would not be able to verify the signature
alone.

More formally, an invisible signature scheme is defined by two algorithms and a
relationR: algorithmSetup(1λ;Ks) = Kp is making keys and algorithmSign(m,Ks; r) =
s is making signatures. The relationR(x,w) with witnessw= Ks defines valid signatures
x = (m,s,Kp). The scheme also comes with two ZK proof of knowledge protocols

(PConfirm(x,Ks; rP),VConfirm(x; rV)) and (PDeny(x,Ks; rP),VDeny(x; rV))

for the relationsR and¬R, respectively. Besides the zero-knowledge proof of knowl-
edge properties, the scheme requires signature to beexistentially unforgeableandinvis-
ible. Several definitions for invisibility exist in the literature. The weakest one requires
the existence of a simulatorS(m,Kp; r) = s that makes strings look like signatures, such
that no algorithm based onKp only can distinguish betweenSign and S. This does
not prevent from transferability issues. Clearly, a verifierV∗ for (Confirm or Deny)
equipped with a trusted agentO could transfer a proof universally from Lemma 4 to
any offlineW. Somehow, this malicious verifier would remove the “invisibility shield”
on the signature which would then become visible.

There are some invisible signature schemes featuring non-transferability proper-
ties [20]. They however require verifiers to be given public and privates keys as well.
We have seen how to defeat this protection in Section 4.

5.2 Selling Votes (Receipt-Freeness Loss)

Another application where transferring the protocol to a trusted agent would be dan-
gerous is for e-voting: clearly, a trusted agent casting a ballot on behalf of a malicious
elector could later testify the ballot content and receipt-freeness would be broken. E-
democracy could collapse due to corruption with the help of trusted agents.
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5.3 Denying Ring Signatures (Anonymity Loss)

Ring signatures were proposed by Rivest, Shamir and Tauman [23] to allow members
of a certain group to sign a message without conveying any information on who inside
the group signed the message. Informally, the ring signature works as follows. A signer
creates a “ring” of members including himself. Each ring member1≤ i ≤ n has a public
ki and secret keysi . The public key specifies a trapdoor permutation and the secret key
specifies the trapdoor information needed to compute its inverse. The signing process
generates a ciphertext that could have been generated by anyone knowing at least one
secret key. The verification process only requires the knowledge of the public keys. This
way, the signer can hide in a ring that he created himself. Ring signature can be used
e.g. for whistleblowing in order to protect the signer. Ring signatures can be used as a
countermeasure to spamming. The idea is to have every email sent together with a ring
signature of a ring consisting of the senderP and the receiverV. The reason to have
email signed by the sender is to authenticate its origin and moreover, to make the email
somehow binding. The reason to have the receiver in the ring is to prevent him from
exhibiting the signed email to a third partyW∗. In such a case, the email could have
been forged by the receiverV∗ so the sender can deny it.

If one member, say Victor, of the ring can prove the ignorance of his own secret
key, then he can show that he was not able to sign any message with the ring signature,
that is, he denies the signature. One way for Victor doing this in thePlain registration
model is to take some pseudorandom generatorπ, some seedx and publish as public
key k = π(x). In this way he could present the pseudorandom generator and the seed
to a third partyW∗ and convince him that he was not able to use the ring signature,
since he did not know the secret key. To fix this, the key registration model should at
least mandate the use of a proof of possession of a secret key, e.g. using self-signed
certificates like theSPop or ZKPop protocol.

To defeat this, Victor owning a trusted agent could have his agent to simulate a
key registration process so that only the agent would know the secret key. The attack
could be more vicious here since the agent could still be used to sign messages in a
ring. The only difference is that the agent would keep record of all signed messages
and could, upon request, certify that a message was signed or not. The signature by the
trusted agent of the certificate together with its code is an evidence to anyone trusting
the agent.

In [22], Ristenpart and Yilek proved that ring signatures could guaranty anonymity
for rings larger than 2 even when the adversary can select the keys under the key reg-
istration model using anSPop protocol. Clearly, this result is no longer valid in the
trusted agent model.

Once again, the attack relies on the public key registration issue, and the only way
to thwart it seems to use key escrow: theKosk protocols. This however enables the
registration authority to forge a ring signature with a ring consisting of honestP andV:
havingV ’s secret key makes it possible to impersonateP toV. Finally, it seems that we
either have to choose between having signatures deniable or forgeable.

We could still fix this problem by making honest participants use trusted agents to
help registering keys in aKosk-like model still ensuring privacy: a trusted agent could
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simulateDir runningKosk. The certificate from the trusted agent could then be sent to
D to register. Again, this fix is void if malicious registrants use nested trusted agents.

6 Conclusions

We have defined the Trusted Agent Model. In the past, several cryptographic protocols
requiring trusted agents have been proposed but researchers prefer to develop protocols
without them. However it does not prevent tomaliciously usesuch devices if they exist.
We devised scenarii in which adversaries equipped with such devices could defeat sev-
eral cryptographic properties, e.g. invisibility in invisible signatures, receipt-freeness in
e-voting, or anonymity in ring signatures. Fundamentally, these failures come from the
strange nature of deniability in protocols. We have shown that deniability is not pos-
sible for regular protocols (namely, protocols not using trusted agents) if adversaries
can use trusted agents. Deniability becomes possible again if honest and corrupted ver-
ifiers can use trusted agents. It collapses again if the malicious verifier can use a nested
trusted agent of depth higher than the one the honest verifier is using. It can be restored
again in a key registration model. We can even achieve non-transferability which is a
stronger form of deniability, but this comes at the price of key escrow: if a protocol
is non-transferable, then the key registration authority has the privilege to create mali-
cious provers. Namely, non-transferability requires giving the authority some piece of
information which could be used to cheat with proofs, which is pretty bad for privacy.
An ultimate solution consists of making the proving part trivial by having proofs (resp.
signatures) assessed by a trusted agent instead of running a protocol with the prover.

Although our “attacks” are pretty trivial, we think the issue of malicious use of
trusted devices in practice has been overlooked so far. Clearly, these devices could de-
feat some privacy protocols. To the authors it does not seem acceptable on one hand, to
accept tamper-proof hardware, and on the other hand, assume that adversaries cannot
use such hardware and its properties to perform attacks.

Probably, the most interesting question that this paper opens is whether privacy is
a self-contradicting concept or not. As shown herein, as soon as we place boundaries
around devices, we can no longer control how private data spreads, so boundaries are
somehow harming privacy. On the other hand, privacy strongly relies on setting bound-
aries on data.
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A Secure Commitment Using Trusted Agents

We consider theFcom functionality9 defined by

Query COMMIT(sid,P ,P ′,b) from P : recordb, send the message[receipt,sid,P ,P ′]
to P ′, and ignore any futureCOMMIT queries.

Query OPEN(sid) from P : if no valuebwas recorded, ignore. Otherwise, send[open,sid,b]
to P ′.

Here is a protocol to realize this ideal functionality using trusted agents:

– To emulateCOMMIT(sid,P ,P ′,b) by P , participantP sets a codeC as detailed be-
low, makes the queriesSEND(sid,C) to FTA, thenSEND(sid,b), thenSHOWTO(sid,P ′).
ParticipantP ′ gets a message[C : receipt,N], checks that it comes fromFTA, that
C is correct (as defined below), and storesN.

– To emulateOPEN(sid), P queriesSEND(sid, /0) to FTA and finallySHOWTO(sid,P ′).
ParticipantP ′ gets a message[C : open,N′,b′], checks that it comes fromFTA, that
C is still correct, and thatN = N′. The valueb′ is revealed.

The codeC takes a first messageb as input, picks a random nonceN, storesN and
b, and responds by(receipt,N). Then it waits for a dummy message and responds by
(open,N,b).

Given a static adversaryA interacting withP , P ′ andFTA in the real world, we
define a simulatorS interacting withP , P ′ andFTA in the ideal world so that for any
environmentE interacting withP , P ′ andA resp.S , the real and ideal views ofE are
indistinguishable. Therefore, the protocol UC-realizesFcom in theFTA-hybrid model.

Indeed, whenP andP ′ are both honest or both corrupted, constructing the simulator
is trivial. WhenP is honest butP ′ is corrupted, the[C : receipt,N] message toP ′ can
be perfectly simulated from the[receipt,sid,P ,P ′] by picking a fresh nonceN and
maintain a table ofsid↔N pairs. The[C : open,N′,b′] message can be simulated upon
message[open,sid,b] from Fcom by looking up at the table for the correctN′ and setting
b′ = b. Thanks to the trusted agent property and theC code there must be an appropriate
pair. WhenP is corrupted andP ′ is honest, the messages toFTA with correct codeC
can be perfectly simulated from the messageCOMMIT(sid,P ,P ′,b) resp.OPEN(sid)
to Fcom.

9 The functionalityFmcom [4] could be used as well.
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