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Abstract. Using a Physically Unclonable Function or PUF to extract
a secret key from the unique submicron structure of a device, instead
of storing it in non-volatile memory, provides interesting advantages
like physical unclonability and tamper evidence. However, an additional
Helper Data Algorithm (HDA) is required to deal with the fuzziness of
the PUF’s responses. To provide a viable alternative to costly protected
non-volatile memory, the PUF+HDA construction should have a very
low overhead. In this work, we propose the first HDA design using soft-
decision information providing an implementation that occupies 44.8%
less resources than previous proposals. Moreover, the required size of the
used PUF can be reduced upto 58.4% due to the smaller entropy loss.
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1 Introduction

The theoretical study of a cryptographic scheme aims to provide a well defined
and quantitative understanding of its security. However, when the scheme enters
the practical domain, more parameters join in the game. A security application
does not only need to be as secure as possible, but also as inexpensive, fast,
power-efficient and flexible as possible, which often means that the security is
reduced in order to improve these practical characteristics. Moreover, the vast
expansion of physical attacks on cryptographic implementations has shown that
certain assumptions upon which the theoretical security of a scheme is based
do not necessarily hold in practice, e.g. the existence of secure key storage. Pri-
vate keys often need to be stored in publicly accessible devices, e.g. smart cards
or RFID-tags, allowing adversaries to physically attack the implementation [1].
Tampering attacks [2, 3], in which an attacker physically invades the device in
order to extract sensitive information, are among the strongest known physical
attacks and are in general always able to obtain the private key if no specific
countermeasures are taken. Advanced techniques to detect and/or resist tam-
pering in integrated circuits (e.g. [4, 5]) are indispensable in security-sensitive
applications, but unavoidably add to the overhead of the security aspect.



Among the proposed tampering countermeasures, Physically Unclonable Func-
tions or PUFs [6] take a special place because of their interesting properties and
the cost-effective solutions they offer. A PUF implements a functionality that is
highly dependent on the exact physical properties of the embedding device, down
to a submicron level. PUFs on integrated circuits (ICs) take advantage of the
intrinsic physical uniqueness of the device caused by unavoidable random deep-
submicron manufacturing variations, which makes their behavior unique and
unclonable. Moreover, since tampering attacks are bound to alter the physical
integrity of the chip, they will also change the PUF’s behavior [7] and PUFs can
hence be used as a tamper detection mechanism. Their instance-specific unique
behavior and their anti-tampering properties make PUFs on ICs ideal construc-
tions for secure key storage, i.e. the PUF responses can be used to generate a
unique and physically unclonable device key [8]. In addition, since the unique
PUF behavior arises automatically, no non-volatile memory is needed for storing
a key. A number of possible PUF implementations on ICs have been proposed,
based on delay measurements [9, 10] and power up values of memory elements [11,
12]. In the latter category, SRAM-based PUFs exhibit convenient qualities: the
power up states of SRAM cells are dependent on intrinsically present manufac-
turing variability which increases with shrinking technology nodes, SRAM cells
are small, commonly used and available early in a new manufacturing process.

Since a PUF evaluation implies a physical measurement, the extraction of
a key from the responses is not straightforward. Physical measurements are
susceptible to noise and the measured random variables often come from a non-
uniform source. On the other hand, we expect cryptographic keys to be highly
reliable and to have full entropy to be secure. In order to bridge this gap, Helper
Data Algorithms (HDAs) have been introduced [13, 14], which are able to trans-
form noisy and non-uniform variables into reliable and uniformly distributed bit
strings using public helper data. This helper data, although it can be made pub-
lic without disclosing any information about the extracted key, will always leak
some entropy on the PUF responses. In short, one always needs to input more
entropy into a HDA than the actual extracted key will contain, since part of it
is leaked by the helper data. This entropy loss is a function of the noise levels of
the input, and is an important characteristic of a HDA which should be mini-
mized. In case of an SRAM PUF, the amount of entropy loss in the HDA relates
directly to the number of SRAM cells needed in the PUF to extract a key and
hence the size of the PUF on silicon. Since it is in our interest to minimize the
implementation cost of the key storage, we would like this number to be as small
as possible. The HDA itself also causes an overhead cost and its implementation
should hence also be resource-optimized.

Contributions. In this work, we propose a new low-overhead design for a HDA
that uses available soft-decision information. A practical FPGA implementation
of the design is provided with a considerably lower implementation cost than pre-
vious HDA implementations [15], concerning both the required PUF size (58.4%
smaller) and the resource usage of the HDA (44.8% smaller).

Related Work. SRAM PUFs were introduced in [11] and similar constructions
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are studied in [16, 17, 12]. They provide a practical PUF implementation because
of the ease of use and general availability of SRAM cells on regular silicon de-
vices. The concept of HDAs has been introduced as shielding functions in [14]
and fuzzy extractors in [13]. A first efficient implementation on FPGA of a HDA
for key extraction was proposed in [15]. We will refer regularly to this work
and compare our results. The use of soft-decision information to improve perfor-
mance is a long known result in channel coding and its usefulness for HDAs was
first demonstrated in [18]. To the best of our knowledge, this work is the first to
propose an efficient HDA implementation using soft-decision information.

2 Preliminaries

2.1 Helper Data Algorithms

A noisy and partially random variable, like a PUF response or a biometric, is
often referred to as a fuzzy secret. Helper Data Algorithms (HDAs) are used to
extract cryptographic keys from fuzzy secrets, and have been introduced as fuzzy
extractors in [13] or shielding functions in [14]. We will use the formal definition
of a fuzzy extractor from [13]:

Definition 1 (Fuzzy Extractor). A (m,n, δ, µ, ε)-fuzzy extractor is a pair of
randomized procedures, generate (Gen) and reproduce (Rep):

1. The generation procedure Gen on input X ∈ {0, 1}m outputs an extracted
string S ∈ {0, 1}n and helper data W ∈ {0, 1}∗.

2. The reproduction procedure Rep takes an element X ′ ∈ {0, 1}m and a bit
string W ∈ {0, 1}∗ as inputs. The correctness property of fuzzy extractors
guarantees that if the Hamming distance dist [X;X ′] ≤ δ and S, W were
generated by (S,W )← Gen(X), then Rep(X ′,W ) = S.

3. The security property guarantees that for any distribution D on {0, 1}m of
min-entropy µ, the string S is nearly uniform even for those who observe
W : if (S,W ) ← Gen(X ← D), then it holds that the statistical distance
∆ [(S,W ); (U ← Un,W )] ≤ ε, with Un the uniform distribution on {0, 1}n.

The used notions of min-entropy and statistical distance are described in Ap-
pendix A. The correctness property of fuzzy extractors takes care of possible
noise in the fuzzy secret. As long as the distance between the fuzzy secret during
generation and reproduction is limited, the same extracted output can be ob-
tained. This is also known as information reconciliation. The security property
tells us that the extracted output is very close to uniform as long as the fuzzy
secret contains a sufficient amount of min-entropy, even when the helper data
is observed. This is called privacy amplification. The important contribution of
HDAs is the ability to extract a private key from a fuzzy secret if a public helper
channel is available. It is however important to guarantee the integrity of the
helper data [19]. The information reconciliation and privacy amplification func-
tionality of a HDA are typically implemented by two separate algorithms. We
elaborate on a common construction for both:
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(a) Classical helper data algorithm using
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(b) Proposed soft-decision helper data al-
gorithm. The additional soft-decision in-
formation, available as the bit error prob-
abilities pe, is transfered as helper data.

Fig. 1. Constructions of a helper data algorithm.

Information Reconciliation with the Code Offset Technique [13]. A binary linear
block code C with parameters [n, k, d] contains code words of length n, dimension
k and minimal Hamming distance d and is able to correct at least t = b(d−1)/2c
bit errors occurring in a single code word. The code offset technique picks a uni-
formly random code word, denoted as C ← C, in the generation phase and
calculates the offset between the fuzzy secret X and C: ω = X ⊕ C. This offset
ω is made publicly available as helper data. In the reproduction phase, a new
version X ′ of the fuzzy secret is measured and C ′ = X ′ ⊕ ω is calculated. If
dist [X;X ′] ≡ dist [C;C ′] ≤ t then C ′ can be corrected to C: C = Correct(C ′),
which allows the reproduction of X = C ⊕ ω. As observed in [13], publishing ω
amounts to a min-entropy loss of n−k, i.e. H̃∞ (X|ω) = H∞ (X)−n+k. We aim
to minimize this loss while maintaining an acceptable level of error-correction.

Privacy Amplification with Universal Hash Functions [20]. A universal hash fam-
ily H with parameters [a, b] is a set of functions {hi : {0, 1}a → {0, 1}b} such
that the collision probability on two distinct inputs is at most 2−b for a ran-
domly picked function from H: Pr (hR(x) = hR(x′)) ≤ 2−b,∀x 6= x′ ∈ {0, 1}a
and hR ← H. The left-over hash lemma [21] states that universal hash functions
can act as a “magnifying glass” for randomness: when taking a random variable
with limited min-entropy as input, the output distribution will be close to uni-
form. Upon generation, a function hσ ← H is randomly selected and applied
to X to obtain a random output S = hσ(X). The index σ is made available as
helper data such that the same hash function can be used in the reproduction
procedure to reproduce S from X ′ after information reconciliation.

Complete helper data algorithm. Using the two techniques mentioned above, a
complete HDA can be constructed, as shown in Figure 1(a). The helper data
W consists of the code offset ω and the hash function index σ: W = (ω, σ).
The two main blocks to be implemented in order to perform this HDA are an
error-correcting decoder and a universal hash function. In this work, we carefully
select the parameters of these blocks and provide a resource-optimized design
and implementation for reconfigurable hardware devices.
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2.2 Soft-Decision Error Correction

A classic method to increase the performance of an error-correcting decoder, and
hence decrease the code redundancy (n − k), is using soft-decision information
in the decoding algorithm. This technique could equivalently lower the entropy
loss of a HDA. Soft-decision decoding is possible when reliability measures for
received bits are available, which is called the soft-decision information. Two
well known soft-decision decoding algorithms are the Viterbi algorithm for con-
volutional codes [22] and the belief propagation algorithm for LDPC codes [23].
However, both types are inappropriate for use in the code offset technique since
they require very long data streams to work efficiently while the length of a fuzzy
secret is often limited. We would like to use a soft-decision decoding algorithm
for rather short linear block codes (n ≤ 28) in order to maintain efficiency. We
discuss two such decoders:
Soft-decision Maximum-Likelihood Decoding (SDML) is a straightforward algo-
rithm that selects the code word that was most likely transmitted based on the
bit reliabilities. SDML achieves the best error-correcting performance possible,
but generally at a decoding complexity exponential in the code dimension k.
Repetition codes (k = 1) can still be efficiently SDML decoded. Conversely, if
k = n, SDML decoding degenerates to making a hard decision on every bit in-
dividually based on its reliability, and if k = n − 1, the block code is a parity
check code and SDML decoding is done efficiently by flipping the least reliable
bit to match the parity. This last technique is known as Wagner decoding [24].
Generalized Multiple Concatenated Codes (GMC). An r-th order Reed-Muller
code RMr,m, is a linear block code with parameters n = 2m, k =

∑r
i=0

(
m
i

)
and d = 2m−r. It is well known that RMr,m can be decomposed in the con-
catenation of two shorter inner codes, RMr−1,m−1 and RMr,m−1, and a simple
length-2 block code as outer code. This decomposition can be applied recursively
until one reaches RM0,m′ , which is a repetition code, or RMr′−1,r′ (or RMr′,r′),
which is a parity check (or degenerated) code, all of which can be efficiently soft-
decision decoded with SDML. This technique, known as Generalized Multiple
Concatenated decoding (GMC) [25], yields a much lower decoding complexity
then SDML, but only a slightly decreased error-correcting capability.

2.3 SRAM PUFs and Soft-Decision Helper Data

Extensive experiments in [11] show that the power up value of a randomly se-
lected SRAM cell is random over {0, 1}, but tends to take the same value at
every power up. This is due to the random manufacturing mismatch between
the electrical parameters defining the cell’s behavior. The power up values of
SRAM cells can hence be used as PUF responses, and the function taking an
SRAM cell’s address as challenge and returning its power up value as response
is called an SRAM PUF. Occasionally, a cell is encountered with no distinct
preference toward 0 or 1, introducing noisy bits.

Previous proposals concerning key extraction from an SRAM PUF [11, 15]
assume that the bit error probability of a response is constant, i.e. every re-
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sponse bit has the same probability of being measured incorrectly. However,
experimental data shows that this is not quite the case, as most cells only very
rarely produce a bit error while a minority of cells are faulty more often. In fact,
the error probability of a randomly selected cell is itself a random variable drawn
according to a certain distribution, and hence not a constant value. A theoretical
derivation of this distribution, based on a model for the manufacturing variabil-
ity in SRAM cells, was given in [18] and is summarized in Appendix B. It is
clear that using a block code adapted to the average bit error rate, as in [11,
15], is overly pessimistic for the majority of the bits, as most of them have an
error probability much smaller than the average. The distribution of the error
probability in both cases is shown in Figure 2, and from Figure 2(b) it is clear
that in this case, around 60% of the bits have an error probability which is
smaller than the assumed fixed average. A construction that takes into account
the specific error probability of the individual bits would achieve a better overall
performance, needing less redundancy and hence causing a smaller min-entropy
loss. This is precisely what soft-decision decoding achieves. A HDA based on
soft-decision decoding in the code-offset technique is shown in Figure 1(b).

In Section 3.1 we present a hardware design for an information reconciliation
algorithm that uses the individual error probabilities of the response bits as soft-
decision information. The bit error probability is measured during the generation
phase and made publicly available as helper data. It is hence important to know
the min-entropy leakage caused by revealing the error probabilities. It turns
out that revealing Pe does not leak any min-entropy on the response X, i.e.
H̃∞ (X|Pe) = H∞ (X). A proof for this statement is given in [18]. Measuring
the bit error probability amounts to performing multiple measurements of every
response bit and estimating the most-likely value, which could be inefficient. Our
simulations show that an estimate based on a limited amount of measurements,
in the order of 10 to 100, already greatly improves the decoder performance.
Moreover, this measurement should be performed only once for every PUF.
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Fig. 2. Distributions of the bit error probability as assumed respectively in [18] and [11,
15]. The expected value for Pe is set equal for both cases: E [Pe] = 15%.
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3 Designing a Soft-Decision HDA for FPGA

This section provides the main contribution of this work, i.e. a low-overhead
design of a soft-decision helper data algorithm for a reconfigurable hardware
device. A first efficient HDA implementation for FPGAs was given in [15]. We
will build upon this work and try to improve their results. Sections 3.1 and 3.2
describe the respective design choices for the information reconciliation and the
privacy amplification algorithm that we choose to implement.

3.1 Soft-Decision Information Reconciliation Design

The code offset technique as described in Section 2.1 is an efficient technique for
turning an error-correcting decoder into an information reconciliation algorithm.
As motivated in Section 2.3, we will use a soft-decision decoder to reduce the
min-entropy loss of the information reconciliation.
Representing the Soft-Decision Information. As stated in Section 2.3 and shown
in Fig. 1(b), the error probability pei of an individual SRAM cell i will be used
as soft-decision helper data. In general, pei takes real values in ]0, 1

2 [ and we
need to determine a way of representing pei

in binary format, such that it can
be efficiently used in a soft-decision decoder. We denote a codeword C from a
block code C of length n as C = (C0, . . . , Cn−1), an n-bit SRAM PUF response
as X = (X0, . . . , Xn−1) and the corresponding vector with error probabilities as
pe = (pe0 , . . . , pen−1). When receiving an n-bit possibly noisy code word C ′ =
X ′⊕ω, with ω the code offset helper data as defined in 2.1, a soft-decision decoder
tries to find the corrected code word C∗ which maximizes the (log-)likelihood:

C∗ = argmax
C ∈ C

n−1∏
i=0

(1− pei
)(C
′
i⊕Ci) · p(1⊕C′i⊕Ci)

ei ,

= argmax
C ∈ C

n−1∑
i=0

(−1)Ci · (−1)C
′
i ·
(
logβ(1− pei)− logβ(pei)

)
,

with β > 1 a design parameter. For convenience, we work with the log-likelihood
and choose the soft-decision helper data si of an SRAM PUF response bit i to
be:

si
def= blogβ(1− pei

)− logβ(pei
)c, (1)

which is a deterministic function of the error probability and an integer ap-
proximation of the magnitude of the log-likelihood of bit i. For a noisy PUF
response X ′, the soft-decision information that enters the decoder is calcu-
lated as: Li = (−1)X

′
i⊕ωi · si. The decoder tries to find the code word C∗ =

argmaxC ∈ C
∑n−1
i=0 (−1)Ci · Li. In the remainder of the text, si and Li will be

represented by 8-bit signed (2’s-complement) integers ∈ [−128, 127]. The log-
base β is a design parameter that is chosen large enough to avoid overflows in
the decoder algorithm, but as small as possible to keep the approximation error
small.
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Algorithm 1 SDML-DECODE-Repetitionn(L) with soft output
L∗ :=

∑n−1
i=0 Li

return (L∗, . . . , L∗)n

Algorithm 2 GMC-DECODE-RMr,m(L) with soft output
define F (x, y) := sign (x · y) ·min {|x| , |y|}
define G(s, x, y) := b 1

2
(sign (s) · x+ y)c

if r = 0 then
L∗ = SDML-DECODE-Repetition2m(L)

else if r = m then
L∗ = L

else
L

(1)
j = F (L2j−1, L2j), ∀j = 0 . . . 2m−1 − 1

L(1)∗ = GMC-DECODE-RMr−1,m−1(L(1))

L
(2)
j = G(L

(1)∗
j , L2j−1, L2j), ∀j = 0 . . . 2m−1 − 1

L(2)∗ = GMC-DECODE-RMr,m−1(L(2))

L∗ =
(
F (L

(1)∗
0 , L

(2)∗
0 ), L

(2)∗
0 , . . . , F (L

(1)∗
2m−1−1

, L
(2)∗
2m−1−1

), L
(2)∗
2m−1−1

)
end if
return L∗

Choosing a Soft-Decision Decoder Algorithm. Among the linear block codes,
Reed-Muller codes have a relatively high error-correcting performance similar
to BCH codes, and are easier to decode. As explained in Section 2.2, there ex-
ists also a relatively efficient algorithm for soft-decision decoding of Reed-Muller
codes based on GMC. Bösch et al. [15] demonstrate that using code concatena-
tion, where the decoded words from an inner code form a code word from an
outer code, can substantially reduce the min-entropy loss. A balanced concate-
nation of two different codes, e.g. a repetition code and a Reed-Muller code, will
achieve a better performance than the case were only a single code is considered.
Taking all this into account, we decide to implement a soft-decision decoder as
a concatenation of a SDML repetition decoder for the inner code and a GMC
Reed-Muller decoder for the outer code.

SDML repetition decoding of soft-decision information L amounts to calcu-
lating L∗ =

∑n−1
i=0 Li. The most-likely transmitted code word was all zeros if

L∗ > 0 and all ones if L∗ < 0. Moreover, the magnitude of L∗ gives a reliability
for this decision which allows to perform a second soft-decision decoding for the
outer code. Algorithm 1 outlines the simple operation for the SDML decoding
of a repetition code. As an outer code, we use a RMr,m code and decode it with
an adapted version of the soft-decision GMC decoding algorithm as introduced
in [25]. The soft-decision output of the repetition decoder is used as input by
the GMC decoder. The operation of the GMC decoder we use is given by Algo-
rithm 2. Note that this a recursive algorithm, calling itself twice if 0 < r < m.
Decoder Design. We propose a hardware architecture to efficiently execute the
soft-decision decoders given by Algorithms 1 and 2. Since our main design goal
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is providing an as small as possible HDA implementation, we try to minimize
the used hardware resources. As a general architecture, we opt for a highly serial
execution of the algorithms using a small 8-bit custom datapath. Looking at the
algorithms, we identify the following major operations:

– Algorithm 1 performs a summation of n 8-bit integers. We implement this
serially using an 8-bit signed accumulator.

– To evaluate the function F (x, y) in Algorithm 2, we propose a 3-cycle ex-
ecution. In the first two cycles, x + y and x − y are computed and their
signs c+ and c− are stored. In the third cycle, the output is computed as
F (x, y) = c+ · (x · (c+ 6= c−) + y · (c+ = c−)). This last operation amounts
to choosing between x and y and possibly changing the sign based on the
values of c+ and c− and can be done with an adder/subtracter with one of
the inputs set to zero.

– For G(s, x, y) in Algorithm 2, we propose a 2-cycle execution. In the first
cycle, the sign of s is loaded and in the second cycle, G(s, x, y) can be
calculated as an addition or subtraction of x and y based on sign (s), followed
by a bit shift.

To be able to execute these operations, we propose the arithmetic unit (AU)
depicted in gray in Figure 3. The signed adder/subtracter can change the sign
of any of its inputs, or put them to zero. The sign bits of the two previous AU
outputs are used as control signals. The AU is combined with an input and
output dual port register file into a custom 8-bit datapath as shown in Figure 3.
Dual port register files can be efficiently implemented on an FPGA using SRAM-
based Lookup Tables (LUTs). The depth of the register files depends on the
choice of the decoder parameters. The algorithm execution is controlled by an
FSM applying the consecutive algorithm steps that are stored as microcode.
An operational example of a soft-decision decoder using this design is presented
in Section 4, providing detailed implementation parameters and performance
results.
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Fig. 3. Details of the soft-decision decoder architecture. The datapath consists of an
Arithmetic Unit (AU) and an input and output register file. The controller contains
the microcode to execute the decoder algorithm.
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3.2 Privacy Amplification Design

In Section 2.1, it was mentioned that privacy amplification amounts to applying
a universal hash function. Krawczyk [26] proposed an LFSR-based Toeplitz uni-
versal hash algorithm which performs the multiplication of a random Toeplitz
matrix with the hash argument. As Krawczyk already showed, this algorithm can
be efficiently implemented in hardware, since the columns of the pseudorandom
Toeplitz matrix can be generated by an LFSR, and the resulting product of each
column with the hash input is accumulated to calculate the full matrix product.
This construction is shown in Figure 4(a) and was implemented on an FPGA
in [15]. However, the need for an LFSR and an accumulator register of the same
size as the key (e.g. 128 bit) and an input register of the argument size (e.g.
64 bit) yields a relatively expensive implementation on an FPGA, when regular
flip-flops are used to implement them. This is because the number of available
flip-flops on typical FPGAs is rather low. In [15], this results in the hash al-
gorithm occupying the major part of the used resources for the HDA. More
resource-efficient methods for implementing shift registers on FPGAs exist [27],
however, they cannot be used directly in Krawczyk’s algorithm, since parallel
access to all the bits in the LFSR is required. The implementation from [27]
only allows parallel access to every 16th bit of the LFSR state. We reworked
the algorithm such that it can be executed in a serial way, using the resource-
efficient shift register implementations. This required some modifications to the
datapath, but the functional behavior of the algorithm is preserved. The basic
idea behind the serialization is that, in stead of accumulating an entire 128-bit
product in every cycle, only a partial product (using the accessible bits) is calcu-
lated and accumulated in 16-bit rotation shift registers. The resulting datapath
is shown in Figure 4(b). This drastically decreases the resource usage of the
FPGA implementation as shown by the implementation results in Section 4.
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64-bit Shift Reg.
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128-bit Register
(Accumulator)

Message In

Hash Out

128 x 2-bit AND
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(a) The fully parallel datapath
as proposed in [26] and imple-
mented in [15].
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tation with 16-bit shift registers.

Fig. 4. Datapath for (64-bit in/128-bit out) Toeplitz hash implementation.
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4 Implementation Parameters and Results

In this section, details of a full HDA implementation are provided and compared
to the results from [15]. In order to make a fair comparison, the same values for
the average bit error probability (15%), the amount of min-entropy in the SRAM
PUF responses (78%) and for the decoder failure rate (≤ 10−6) are chosen.
Determining the decoder parameters. We simulated our decoder proposal in soft-
ware with SRAM PUF responses sampled according to the proposed distribution
from [18]. The bit error probabilities are estimated from 64 measurements. We
compared the number of SRAM PUF response bits that were necessary to obtain
d128/0.78e = 171 non-redundant bits after decoding with a failure rate ≤ 10−6

for different parameters (n, r,m) of the decoder. The best decoder we tested is
the one with code parameters (n = 3, r = 2,m = 6) and the design parameter
β = 1.8, and uses d171/22e × 3× 64 = 1536 SRAM PUF response bits.
FPGA implementation. We described our design in VHDL and synthesized and
implemented it on a Xilinx Spartan-3E500 FPGA using Xilinx ISE Design Suite
10.1. The implementation results concern the routed netlist. The functional cor-
rectness and the cycle count is tested by applying test benches with ModelSim.
Soft-Decision Decoder: The decoder takes 192 × 8-bit log-likelihoods as in-
put and every three consecutive values are accumulated (repetition decoded) to
obtain 64 × 8-bit inputs for the RM2,6-decoder which outputs a 64-bit error-
corrected code word. To execute Algorithm 2, the input and output register file
size are respectively set to 64 × 8-bit and 32 × 8-bit. The instructions to carry
out Algorithm 2 are stored as embedded microcode. The FPGA implementation
occupies 164 slices and 2× 16-kbit Block RAMs. The critical path is 19.9ns and
one complete decoding cycle (input + decode + output) finishes in 1248 cycles.
LFSR-based Toeplitz hash: The universal hash function accepts 64-bit mes-
sage blocks and hashes them in a 128-bit value. Our implementation occupies
59 slices. The critical path is 9.2ns and one complete hash cycle (input seed +
input message + hash + output) finishes in 432 cycles.
Complete HDA: The complete HDA executes the decoder d171/22e = 8 times
and hashes the 8 corrected 64-bit words into a 128-bit key. The implementation
of the full HDA + control occupies 237 slices and 2 × 16-kbit Block RAMs for
the microcode. The critical path is 19.9ns and the complete key generation (ini-
tialize + 8× decode and hash + output) finishes in 10298 cycles.
Discussion with respect to previous results. The two main parameters we want to
optimize are the SRAM usage of the SRAM PUF and the resource overhead of
the HDA implementation. Table 1 compares our implementation results (1) to
two different implementations from [15]: (2) the implementation with the lowest
SRAM usage, implementing a concatenation of a Golay[24,13] code and a Rep-
etition[11,1] code1 and (3) the implementation with the lowest HDA resource
overhead, implementing a concatenation of a RM1,4 code and a Repetition[11,1]
1 We remark that a decoder with an even lower SRAM usage than (2), but still higher

than our implementation, is proposed in [15], based on BCH codes. However, no
implementation is provided and no fair comparison can be made.
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code. It is clear from Table 1 that our soft-decision based implementation out-
performs the previous implementations on both characteristics. The construction
proposed in this section uses 58.4% less SRAM bits and over 44.8% less slices
than the respective optimized implementations from [15]. These improvements
come at the cost of an increased helper data size (×3.6) and the need to perform
multiple measurement during generation to obtain the soft-decision information.
On the other hand, more helper data is not necessarily a problem in many appli-
cations, since the helper data can be (externally) stored and transfered in plain
without revealing information about the key, only its integrity should be guar-
anteed. The actual PUF+HDA implementation, e.g. residing on an embedded
device, remains small. Measuring the error probability of the SRAM PUF cells
can be done together with the regular functional testing of the IC right after
manufacturing. Performing 10 to 100 measurements can be done relatively fast.
Even when very few (< 10) measurements are available, the reconfigurable de-
coder allows to use stronger codes and remains more efficient than hard decision
decoding. We also note that an average error of 15%, as assumed here and in [15]
is very safe. Experiments on SRAM PUFs show error probabilities as low as 5%,
requiring less initial measurements for the soft-decision decoder to be effective.

Table 1. Implementation and performance results on a Xilinx Spartan-3E500 FPGA
compared to the results from [15]. The given results concern HDA implementations
which take SRAM PUF response bits with a 15% average error probability and 78%
min-entropy as an input and produce a full-entropy 128-bit key with failure rate≤ 10−6.

(1) The soft-decision HDA implementation as proposed in this section.
(2) The HDA implementation from [15] with the lowest SRAM usage.
(3) The HDA implementation from [15] with the lowest HDA resource overhead.

(1) (2) (3)

Slices 164 580 110
Decoder Block RAMs 2 ?∗ ?∗

(1 round) Cycles 1248 1716 855
SRAM Usage 192 bit 264 bit 176 bit

Toeplitz Hash Slices 59 327 319
(1 round) Cycles 432 96 64

Slices 237 ≥ 907 ≥ 429
(Spartan-3E500) (5.1%) (≥ 19.5%) (≥ 9.2%)

Complete HDA Block RAMs 2 ?∗ ?∗

(Spartan-3E500) (10%) (?∗) (?∗)
Critical Path 19.9 ns 6.6 ns 5.7 ns

Rounds 8 14 35
Cycles 10298 ≥ 24024 ≥ 29925

128-bit
Performance

205 µs ≥ 159 µs ≥ 171 µs
Key Extraction @ 50.2 MHz @ 151.5 MHz @ 175.4 MHz

SRAM Usage 1536 bit 3696 bit 6160 bit
Helper Data Size 13952 bit 3824 bit 6288 bit

∗ The results from [15] for (2) and (3) do not include the resources for the controller,
hence the number of Block RAMs needed for algorithm control cannot be compared.
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5 Conclusion

The bit error probability of an SRAM PUF is not a constant value, but a ran-
dom variable for every individual response bit. This observation suggests the
use of soft-decision information to lower the min-entropy loss of the helper data
algorithm, resulting in a more efficient use of the SRAM PUF. We propose a
design of a soft-decision helper data algorithm and implement it on an FPGA.
A soft-decision Reed-Muller decoder is implemented using a small custom 8-bit
datapath which can be easily reconfigured to work with different code parame-
ters depending on the noise levels. The privacy amplification is performed by a
serialized LFSR-based Toeplitz hash implementation that makes optimal use of
the available FPGA resources. Both constructions constitute to a HDA which
has a considerably lower implementation overhead than previous proposals and
can even be of independent interest in other domains. The drawbacks of having
to store more helper data and having to perform multiple initial measurements
are no issue in many applications and should be considered as trade-offs. In any
case, this work presents a new direction in the exploration of the design space
of efficient helper data algorithms.
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A Measures of Randomness

We briefly describe some concepts from information theory which are used to
quantify the notion of the amount of randomness present in a measured variable,
i.e. statistical distance and min-entropy. Let X and Y be two (discrete) possibly
correlated random variables taking values from a set S. We define:

– The statistical distance between (the distributions of) X and Y as:
∆[X;Y ] def= 1

2

∑
s∈S |Pr (X = s)−Pr (Y = s) |.

– The min-entropy of (the distribution of) X as:
H∞ (X) def= − log2 max {Pr (X = s) : s ∈ S} .

– The average conditional min-entropy [13] of (the distribution of) X given Y
as: H̃∞ (X|Y ) def= − log2Ey

[
2−H∞(X|Y=y)

]
.

B SRAM PUF Response Model and Distribution

As is clear from the construction of an SRAM PUF as described in Section 2.3,
and also in [11], the generation of an SRAM PUF response bit is determined
by the stochastic mismatch of the electrical parameters in an SRAM cell. A
simple model for this mismatch is proposed in [18] and summarized here. Let M
and N be two normally distributed random variables with respective probability
density functions ϕµM ,σM

and ϕ0,σN
. ϕµ,σ is the probability density function of

a normal distribution with mean µ and standard deviation σ. A value mi ←M
is i.i.d. sampled every time a new SRAM cell i is manufactured and represents
the random device mismatch in the cell caused by manufacturing variation. A
value n(j)

i ← N is i.i.d. sampled at the j-th power up of cell i and represents
the amplitude of the stochastic noise voltage acting on cell i at the time of the
power up. The power up state of SRAM cell i after the j-th power up is denoted
as x(j)

i ∈ {0, 1}, and it is assumed that x(j)
i is fully determined by mi and n

(j)
i :

x
(j)
i =

{
0 , if mi + n

(j)
i > T ,

1 , if mi + n
(j)
i ≤ T ,

(2)

with T a threshold parameter for a specific SRAM technology.
The power up behavior of an SRAM cell i is described by the probability

pxi
that this cell powers up as ’1’, and the related probability pei

that this cell
produces a bit error. Both parameters are themselves random variables. They
are sampled for a particular SRAM cell at manufacturing time according to their
respective distributions:

pdfPr
(x) =

λ1 · ϕ
(
λ2 − λ1 · Φ−1(x)

)
ϕ (Φ−1(x))

, and

pdfPe
(x) = pdfPr

(x) + pdfPr
(1− x),

with λ1 = σN/σM and λ2 = (T −µM )/σM and ϕ = ϕ0,1. The derivation of these
distributions and an experimental validation thereof are given in [18].
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