
Programmable and Parallel ECC Coprocessor
Architecture: Tradeoffs between

Area, Speed and Security

Xu Guo1, Junfeng Fan2, Patrick Schaumont1 and Ingrid Verbauwhede2

1Bradley Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA 24061, USA

2ESAT/SCD-COSIC, Katholieke Universiteit Leuven and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{xuguo,schaum}@vt.edu,{Junfeng.Fan,Ingrid.Verbauwhede}@esat.kuleuven.be

Abstract. Elliptic Curve Cryptography implementations are known to
be vulnerable to various side-channel attacks and fault injection attacks,
and many countermeasures have been proposed. However, selecting and
integrating a set of countermeasures targeting multiple attacks into an
ECC design is far from trivial. Security, performance and cost need to be
considered together. In this paper, we describe a generic ECC coproces-
sor architecture, which is scalable and programmable. We demonstrate
the coprocessor architecture with a set of countermeasures to address a
collection of side-channel attacks and fault attacks. The programmable
design of the coprocessor enables tradeoffs between area, speed, and se-
curity.

1 Introduction

Elliptic-curve cryptography (ECC) is the algorithm-of-choice for public-key cryp-
tography in embedded systems. Performance, security and cost are the three
important dimensions of ECC implementations. ECC accelerators should sup-
port multiple security and performance levels, allowing the system to adjust
its security-performance to application-specific needs [1]. To achieve these goals,
much research has been conducted targeting different aspects, and most research
topics fall into two categories: efficient implementations and security analysis.

The computational intensive kernel of ECC is well suited for hardware accel-
eration, and many Hardware/Software (HW/SW) codesigns have been proposed
to evaluate the tradeoffs between cost and performance. The challenge is how
to perform optimizations at multiple abstraction levels (e.g. how to devise more
efficient scalar multiplication algorithms or how to minimize the communication
overhead for the HW/SW interface) and how to map the ECC system archi-
tecture to various platforms (e.g. resource-constrained 8-bit platforms or more
powerful 32-bit microprocessor with bus systems).

For security analysis, ECC implementations are known to be vulnerable
to various side-channel attacks (SCA), including power analysis (PA) attacks,

2 Xu Guo et al.

electromagnetic attacks (EMA) and fault attacks (FA). Since Kocher et al. [2]
showed the first successful PA attacks, there have been dozens of proposals for
new SCA attacks and countermeasures. These attacks and countermeasures all
tend to concentrate on a single abstraction level at a time [7]. For example, the
Smart Card software is developed on fixed hardware platforms, so the results
in that area are software-based solutions. At the same time, many special cir-
cuit styles [32,33] have been developed to address PA at the hardware level.
Such circuit-level solutions are treated independently from the software-level
solutions.

From the above descriptions, we have found two gaps in current ECC re-
search. First, security has been generally treated as a separate dimension in
designs and few researchers have proposed countermeasures targeting at system
integration. For example, some of the fault attack countermeasures or fault de-
tection methods are just like software patches applied to the original algorithms
(e.g. perform Point Verification (PV) [23] or Coherence Check [3,34] during com-
putation). The fault model is hypothesized without considering how to introduce
faults in an actual platform. Further, the impact of circuit-level PA countermea-
sures on area, performance and power consumption in large designs remains
unclear. Second, most published papers proposed their own attacks with corre-
sponding countermeasures and very few researchers discussed countermeasures
targeting multiple attacks. Since a cryptosystem will fail at its weakest link [4]
it is not surprising to see how a given countermeasure can actually introduce
a new weakness, and thus enable another attack [5]. Although there has been
some effort to connect the PA and FA countermeasures [6], solutions at system
integration level are unexplored.

Therefore the question now becomes how to fill both of the gaps in one system
design. Specifically, we try to move these two research topics to the next step by
building a flexible ECC coprocessor architecture with the ability to consider effi-
ciency and security simultaneously and provide a unified countermeasure which
can be easily integrated into system designs.

The contributions of this research are three-fold. First, we propose a generic
programmable and parallel ECC coprocessor architecture. The architecture is
scalable and can be adapted to different bus interfaces. Since it is programmable,
both of the efficient ECC scalar multiplication algorithms and algorithmic level
countermeasures can be uploaded to the coprocessor without hardware modifi-
cations. Second, after review of the security risks for ECC implementations, we
suggest a set of countermeasure to protect the the coprocessor against different
types of passive attacks and fault injection attacks. Finally, we implement a pro-
grammable and parallel ECC coprocessor on an FPGA to show the feasibility of
the method. The implementation is scalable over area, cost, and security. The
resulting platform allows us to quantify and compare the performance overhead
of various algorithmic-level countermeasures.

The remainder of this paper is as follows. Section 2 gives a brief description of
ECC implementation and related attacks with corresponding countermeasures.
Our proposed generic programmable and parallel coprocessor architecture will be

Programmable and Parallel ECC Coprocessor Architecture 3

discussed in section 3. The unified countermeasure is analyzed in section 4. The
FPGA implementation of our proposed architecture with unified countermeasure
is described in section 5. Section 6 concludes the paper.

2 ECC Background

2.1 Implementation of ECC over GF(2m)

A non-supersingular elliptic curve E over GF (2m) is defined as the set of solu-
tions (x, y) ∈ GF (2m)×GF (2m) of the equation:

E : y2 + xy = x3 + ax2 + b , (1)

where a, b ∈ GF (2m), b 6= 0, together with the point at infinity.
A basic building block of ECC is the Elliptic Curve Scalar Multiplication

(ECSM), an operation of the form K · P where K is an integer and P is a
point on an elliptic curve. A scalar multiplication can be realized through a
sequence of point additions and doublings (see Fig.1). This operation dominates
the execution time of cryptographic schemes based on ECC.

ECC Scalar Multiplication

(double-and-add-always)

Input: P, K={kn-1,..,k0}

Output: Q=K•P

1: Q[0] P

2: for i=n-2 to 0 do

3: Q[0] 2Q[0]

Q[1] Q[0] + P

Q[0] Q[ki]

Return Q[0]

ECC Scalar Multiplication

(Montgomery Ladder)

Input: P, K={kn-1,..,k0}

Output: Q = K•P

1: Q[0] P, Q[1] 2P;

2: for i=n-2 to 0 do

3: Q[1-ki] Q[0] + Q[1]

Q[ki] 2Q[ki]

Return Q[0]

Fig. 1. Elliptic Curve Scalar Multiplication (ECSM) algorithms.

2.2 Types of Attacks

Several kinds of attacks on cryptographic devices have been published. They can
be categorized into two types: passive attacks and active attacks [15]. Passive
attacks are based on the observation of side-channel information such as the
power consumption of the chip or its electromagnetic emanations. Examples of
passive attacks include Simple Power Analysis (SPA), Differential Power Anal-
ysis (DPA), Simple Electromagnetic Analysis (SEMA) and Differential Electro-
magnetic Analysis (DEMA). On the other hand, active attacks, including fault
injection attacks, deliberately introduce abnormal behavior in the chip in order
to recover internal secret data.

4 Xu Guo et al.

As mentioned earlier, a cryptosystem will fail at its weakest link and one
countermeasure against one SCA attack may benefit another attack. Therefore,
in this paper we want to consider active as well as passive attacks, and define
a unified countermeasure that resists a collection of published attacks. Before
proposing our unified countermeasure we first review the known security risks of
ECC, as well as the corresponding countermeasures. A brief discussion of each
attack and corresponding countermeasure will be provided in section 4.2.

Passive Attacks

(SPA/DPA, SEMA/DEMA Attacks)

w/ Countermeasures

Active Attacks

(Fault Attacks)

w/ Countermeasures

Elliptic Curve

Scalar Multiplication

(ECSM)

Curve Parameters

Base Point

Scalar K

Coordinate

Field

Randomize the base point [16].

Randomize the scalar.

Randomize the projective coordinate.

Invalid Curve Attacks [3,20,23]

Permanent Faults Injection [20]

Check curve parameters and the base point

[3,20].

Sign Change Attacks [21]

Avoid the use of y-coordinate

(e.g. Montgomery ladder ECSM) [21].
ECSM Configuration Phase

ECSM Computation Phase

(Classic left-to-right binary algorithm [16])

Transient Faults Injection [20]

Coherence check (relationship between

intermediate results) [20].

Safe Error Attacks [22]

Avoid safe errors occurred in the final

results calculation.

Doubling Attacks [19]

Reduce the possibility of collisions and

increase the number of required samples.

Differential Fault Attacks [23]

Point Verification of input (or base) points

and output points [23].

Twist Curve Attacks [24]

Simply include intermediate y value for

final results calculation.

Use Montgomery Ladder with

Double-and-add always method [9].

SPA Attacks [9]

SEMA Attacks [17]

Use multiple independent

processing elements that randomly

proceed [18].

SEMA Attacks [17]

DEMA Attacks

Input: P E,

K = {kn, , k0} {0,1}
n

Output: R = K•P

R = .

for j from n down to 0 do

R = 2 R.

if kj = 1 then R = R + P.

return R

DPA Attacks [16]

DEMA Attacks [17]

Fig. 2. Summary of attacks and corresponding countermeasures on ECC.

As shown in Fig. 2, we divide all the countermeasures into two categories:
protection at the ECSM configuration phase and computation phase. Most fault
injection attacks are specific to the ECC algorithm and most of them are com-
bined with passive attacks. Besides, some of the active attacks are very powerful.
Even if countermeasures of standard passive attack are used, attackers can still
easily retrieve the secret scalar K with only a few power traces (e.g. two power
traces for the doubling attacks [19]).

3 Proposed Programmable and Parallel Coprocessor
Architecture

Integration of various countermeasures into an existing ECC coprocessors can
be very challenging. First, for many proposed ECC coprocessors with single dat-

Programmable and Parallel ECC Coprocessor Architecture 5

apath, the added countermeasures will sometimes largely sacrifice its efficiency.
Second, the research of side-channel attacks keeps on evolving. Thus, how to
devise a flexible ECC coprocessor which can support security updates is also
very important. Therefore, a novel generic ECC coprocessor architecture design
is proposed to solve the above problems. The architecture of this coprocessor is
shown in Fig. 3 and all the design considerations will be discussed below.

CPU
(Main Control)

Software Driver

Bus Interface

Programmable & Parallel ECC Coprocessor

Bus System

CPU Instruction Decoder

FSM

ST0

ST2

ST1ST3

(Sub-Control)

FSM1

ST0

ST2

ST1ST3

ECC

datapath_1

Finite

Field

ALU

Function Descriptions:

System

SW Driver:

HW/SW IF:

send scalar K and receive

results

interface for the INS decoder

and bus

ECC

Coprocessor

INS Decoder: perform data transfers

INS Sequencer: generate instructions for

point operations

Datapath: field arithmetics

Local

Storage

INS Sequencer

(Sub-Control)

FSM1

ST0

ST2

ST1ST3

ECC

datapath_N

Finite

Field

ALU

Local

Storage

INS Sequencer

Fig. 3. The structure of generic programmable and parallel ECC coprocessor.

The hardware/software partitioning method adopted in this design is trying
to offload the field arithmetic operations from the CPU and execute them in a
dedicated ECC coprocessor [13,14]. For traditional ECC coprocessor designs, all
other higher level point operations, such as point addition/doubling, are imple-
mented in software running on CPU. However, this partitioning may result in
a HW/SW communication bottleneck since the lower-level field multiplication
function will always be called by upper-level point operations, including a large
amount of instruction and data transfers.

Targeting the above communication bottleneck problem we tried to optimize
the HW/SW boundary in two steps: reducing data transfers as well as acceler-
ating instruction transfers. As a result, the CPU is only in charge of sending ini-
tialization parameters and receiving final results, and the instruction sequencer
will issue all the required instructions for a full ECSM. A further optimization
has been made to make the ECC coprocessor programmable, which is out of two
concerns. First, in general the field operations can already be very fast (a digit-
serial multiplier with digit size of 82 can finish one multiplication in GF (2163)
in 2 clock cycles [11]) and big performance gain of the whole ECC system can
only be obtained if new point operation algorithms are proposed. In this case,
by fixing the lowest level field operations in hardware, updating an ECC system

6 Xu Guo et al.

is just replacing the software assembly codes in the instruction sequencer with
the new point operation algorithms without the need to rewrite the HDLs and
synthesize the whole design. Second, this method can also enable the integration
of the latest countermeasures against side-channel attacks for security updates.

3.1 Programmability

For our proposed structure, the CPU (main control) is not only able to send
data/instructions through the bus, like the controller in most of the HW/SW
codesigns, but also to program the instruction sequencer as a sub-controller in
the coprocessor. The coprocessor consists of a CPU instruction decoder and sin-
gle/multiple ECC datapaths, and each ECC datapath is composed of an instruc-
tion sequencer, a dedicated instruction decoder, ALU and local memory. Each
ECC datapath can be programmed to carry out field operations independently.

However, the design of an instruction sequencer in the ECC datapath can be
tricky. Since we have defined it to support the programmable feature, the direct
use of hardware FSMs does not work. Another option is using a microcoded
controller. However, the design of a dedicated controller with FSMs to dispatch
instructions from microcoded controller itself can still be complex and inflexible.
Finally, we come to a solution by customizing an existing low-end microcontroller
to meet our requirements.

This programmable architecture gives us the freedom to efficiently utilize var-
ious countermeasures against different side-channel attacks. For example, we can
program the sub-controller component so that it performs Montgomery ladder in
order to thwart SPA attacks. We can easily add base point randomization to it in
order to thwart DPA attacks. Finally, if the implementation requires resistance
to fault attacks, we can update the program in the sub-controller to add coher-
ence check [3] and so on. In short, the flexibility of programmable sub-controller
makes the coprocessor able to update with the latest countermeasures.

3.2 Scalability

As shown in Fig.3, our proposed generic coprocessor architecture is scalable
for parallel implementations because the ECC datapath can execute the scalar
multiplication almost independent of the bus selections and CPU. Once the
CPU sends the scalar K to each ECC datapath to initialize the computation,
the datapath will work independently. The scalability here means the maximum
number of independent ECC datapaths attached to the CPU instruction decoder
is purely dependent on the bus latency. As shown in Fig.4, the CPU can control
one ECC coprocessor with N datapaths, and N point multiplications can be
performed at the same time.

According to the iteration structure shown in Fig. 4, we can derive an equa-
tion to express the relation between the maximum number of parallel ECC dat-
apaths and bus latency. The basic idea is to overlap the communication time
with the computation time. Here, we assume the bus latency is T delay cycles
per transfer, and scalar K and results (X , Y) each needs the same M times

Programmable and Parallel ECC Coprocessor Architecture 7

Send K1 ECSM on ECC datapath_1

Send K2

Send KN

ECSM on ECC datapath_2

ECSM on ECC datapath_N

Receive (X1, Y1) Receive (X2, Y2) Receive (XN, YN)

Iteration Starts

Iteration Ends

on CPU

on Coprocessor

Fig. 4. Exploration of the parallelism within the proposed generic coprocessor archi-
tecture.

bus transfers (including both instruction and data transfers), and the ECSM on
one ECC datapath requires T comp cycles to complete, so the effective maximum
number, N max , of parallel ECC datapath can be expressed as

Nmax = (Tcomp/MTdelay) + 1. (2)

Due to this massive parallel architecture, we can get the fastest implemen-
tation with T avg min = 3MTdelay cycles. This means for the fastest ECC co-
processor configuration with maximum number of parallel ECC datapath, the
minimum computation time in average is only related to the bus latency. The
system configuration for meeting this upper bound is to make the ECSM com-
putation time be exactly overlapped with the communication time. For actual
operations shown in Fig. 4, let the CPU keep sending scalar K and initiating
ECSM until the first ECSM computation ends and then start to receive results.
Also, we can have tradeoff designs between area and speed with different number
of parallel ECC datapath to fit for different embedded applications, and then we
can get the computation time in average, T avg as

Tavg =
(2N + 1)MTdelay + Tcomp

N
. (3)

4 Selection of Countermeasures

Indeed, one can not simply integrate all the countermeasures targeting different
attacks, as shown in Fig. 2, to thwart multiple attacks due to complexity, cost
and the fact that a countermeasure against one attack may benefit another one
[5]. For example, the double-and-add-always method to prevent SPA can be used
for Safe Error attacks [22]. Unified countermeasures to tackle both the passive
and active attacks are attractive. Kim et al. proposed a unified countermeasure
for RSA-CRT [25]. Baek et al. extended Shamir’s trick, which was proposed for
RSA-CRT, to secure ECC from DPA and FA [6]. However, Joye showed in [26]
non-negligible portion of faults was undetected with the unified countermeasure
and settings in [6].

In this paper, we suggest a set of existing countermeasures to thwart both
passive and active attacks on ECC. Especially, we focus on ECC over binary

8 Xu Guo et al.

extension field. We try to take into account as many attacks/countermeasures
as possible. Three countermeasures are selected.

1. Montgomery Ladder Scalar Multiplication [9]. The Montgomery
Powering Ladder, shown in Fig. 1, performs both point addition and poing dou-
bling for each key bit. In theory, it is able to prevent SPA and TA.

2. Random Splitting of Scalar [27]. This method randomly splits K =
K1 + K2, and performs Q1 = K1 · P and Q2 = K2 · P . Eventually, K · P is
calculated as Q1 + Q2.

3. Point Verification [3,23]. PV checks if a point lies on an curve or not.
Let E : y2 + xy = x3 + ax2 + b be an elliptic curve defined over GF (2m), one
can check the validity of a point P (xp, yp) by simply verifying the equation
y2

p + xpyp = x3
p + ax2

p + b.

4.1 Security Analysis of the Proposed Unified Countermeasure

SPA/SEMA attacks [9,17] use a single measurement to guess the secret bits. The
use of Montgomery Scalar Multiplication computes point addition and doubling
each time without depending on the value of each bit of scalar K. Therefore, it
is secure against SPA attacks. For SEMA, though in [28] the authors indicated
that this can also resist SEMA, we think it is too early to conclude that since in
[17] the capability of multi-channel EMA attacks has not been comprehensively
investigated.

DPA/DEMA attacks [16,17] use statistical models to analyze multiple mea-
surements. The random scalar splitting was proposed in [27] and the idea behind
it is very similar to Coron’s [16] first countermeasure against DPA. As for DEMA,
the random splitting of K can be considered as a signal information reduction
countermeasure [17] against statistical attacks, including DEMA.

Doubling attacks [19] explore the operand reuse in scalar multiplication for
two ECSMs with different base point. Borrowing the authors’ analysis on Coron’s
first countermeasure in [19], the random splitting of 163 bit scalar K can simply
extend the search space to 281 (birthday paradox applies here), which is enough
to resist the doubling attack.

Safe Error attacks [22] introduce safe errors when redundant point operations
are used (e.g. double-and-add-always ECSM). No safe errors can be introduced
based on our proposed scheme. In order to pass the PV, the outputs from the
coordinate conversion must be correct, which means both intermediate results
P1 and P2 must be used in order to calculate the y value at the last step of
coordinate conversion. So, no safe errors can be introduced in either P1 or P2.

Invalid Curve attacks [20,23] need to compute the ECSM on a cryptograph-
ically weaker group. When using López-Dahab coorindates and Montgomery
Scalar Multiplication, all the curve parameters will be used for calculating the
final results in affine coordinates. So, if any of the curve parameters is changed
in order to force the computation on a weaker elliptic curve, it cannot pass the
final point verification.

Programmable and Parallel ECC Coprocessor Architecture 9

Differential Fault attacks [23] try to make the point leave the cryptographi-
cally strong curve. The use of PV at the final step is the standard countermeasure
to resist this kind of attacks.

Permanent Faults Injection attacks [20] target the non-volatile memory for
storing the system parameters. All the curve parameters and base points in our
design can be hardwired to prevent malicious modifications. If needed, the curve
parameters can also be made flexible as well, but then their integrity will need
to be verified. This can be done, for example, using a hash operation.

Transient Faults Injection attacks [20] try to modify the system parameters
when they are transferred into working memory. By using the random scalar
splitting scheme (K = K1 + K2) the final results have to be obtained through
two steps of point operations. For the first step, we use López-Dahab projective
coordinates and Montgomery Scalar Multiplication to get two results for K1 · P
and K2 · P. If transient faults are inserted during this step, before coordinate
conversion the invariant relation of intermediate point Q[0] and Q[1] (see Fig.
1) will be destroyed. As a result, K · P=(K1 · P + K2 · P) cannot pass the final
PV since the errors will propagate in the affine point addition.

Twist Curve attacks [24] apply to the case when performing Montgomery
Scalar Multiplication, the y-coordinate is not used. However, for our case, to
obtain the final results both x and y are needed for final affine point addition.

Sign Change attacks [21] change the sign of a point when the scalar is encoded
in Non-adjacent form (NAF). The point sign change implies only a change of
sign of its y-coordinate. The use of Montgomery Scalar Multiplication and López-
Dahab coordinates can resist this attack.

4.2 Map the Unified Countermeasure to the Coprocessor

In Fig. 5, the dataflow of the ECSM using our proposed unified countermeasures
is illustrated. After randomly splitting the scalar K into K1 and K2 on the CPU,
K1 and K2 will be sent to the ECC coprocessor. Then, the calculation of K1

· P and K2 · P are processed concurrently, and after that the two intermedi-
ate resulting points in Affine Coordinate from both datapaths will be added,
generating K · P. The point verification will be performed before the output is
generated.

4.3 Operation Modes

In order to support the countermeasures suggested above, it is obvious that
two point multiplications have to be computed with an extra final affine point
addition. Both introduces performance overhead. Therefore, we can make the
ECC coprocessor work under different operation modes. Below, four modes have
been defined with different security requirements:

1. Normal Operation Mode. Two ECC datapaths can calculate different K and
return two separate point multiplication results. Note that this normal mode can
also implement the basic duplication [31] or concurrent processing comparison
[3] to detect faults by sending the same K to the two datapaths.

10 Xu Guo et al.

CPU ECC Datapath_1 ECC Datapath_2

Split K = K1 + K2

Send K1

Send K2

K1

K2if K1i =1

Madd, Mdouble

else

Madd, Mdouble
if K2i =1

Madd, Mdouble

else

Madd, Mdouble

loop for

K1

loop for

K2

Wait until both datapaths complete

Send K2.x to DP1

Send K2.y to DP1

Receive Res.y

Receive Res.x

MXY

MXY

Point Addition in

Affine Coordinate

Projective

Coordinate

Affine

Coordinate

CPU INS Decoder

Point Verification (PV)

of final point

K·P.x

K·P.y

Check curve equation

y
2+xy = x

3+ax
2+b

K1

K2

K·P.x

K·P.y

K1.x

K1.y

Coordinate

Conversion

Fig. 5. Dataflow of ECSM with splitting K and PV countermeasures.

2. Safe Mode with the splitting K countermeasure. Two ECC datapaths com-
pute the split K values in projective coordinate and then perform one affine
point addition in the end. PV is not used here.

3. Safe Mode with the PV countermeasure. Based on the normal operation
mode, we can add the PV to both datapaths before outputting the final results.

4. Safe Mode with both splitting K and PV countermeasures. This is the
operation mode with the highest security level described in Fig. 5.

Combining the aforementioned programmable feature with the above defined
four operation modes, we can customize a protocol of how to efficiently select
modes to reduce the performance overhead.

5 FPGA Implementation

In order to prove the feasibility of the proposed generic ECC coprocessor archi-
tecture and give a concrete example with quantitative experimental results, we
have also built the generic coprocessor on an FPGA based SoC platform.

When comparing the actual implementation in Fig. 6 with the generic archi-
tecture in Fig. 3, the CPU becomes the 32-bit MicroBlaze, PLB bus is used, the
instruction sequencer is replaced with programmable Dual-PicoBlaze microcon-
trollers, the finite field ALU is implemented with addition, multiplication and
square function units, and the 163-bit register array is used as local storage.

Programmable and Parallel ECC Coprocessor Architecture 11

MicroBlaze
(Main Control)

Randomly split:

K = K1 + K2

PicoBlaze_1

(Sub-Control)

Xilinx PLB IPIF

Programmable & Parallel ECC Coprocessor

Processor Local Bus (PLB)

MicroBlaze Instruction Decoder

FSM

ST0

ST2

ST1ST3

ECC datapath_1 for K1

FSM1

ST0

ST2

ST1ST3

PicoBlaze_2

MUL

SQR

ADD

Register

Array

PicoBlaze_3

(Sub-Control)

ECC datapath_2 for K2

FSM1

ST0

ST2

ST1ST3

PicoBlaze_4

MUL

SQR

ADD

Register

Array

Fig. 6. Block diagram of the proposed ECC SoC architecture on FPGA.

There are many design options for ECC implementations, and different ap-
proaches differ in the selection of coordinate system, field and type of curves
[8]. In our design we will use Montgomery Scalar Multiplication and López-
Dahab projective coordinates [9]. For hardware implementations of the lowest
level field arithmetic, the field multiplication is implemented both as bit-serial
[10] and digit-serial multipliers [11] with different digit sizes; the field addition is
simply logic XORs; the field square is implemented by dedicated hardware with
square and reduction circuits [12]; the field inversion consists of a sequence of
field multiplications and squares based on Fermat’s Theorem [12].

For the implementation of the instruction sequencer, 8-bit PicoBlaze mi-
crocontrollers are used. The PicoBlaze has a predictable performance. It takes
always two clock cycles per instruction. It costs 53 slices and 1 block RAM on the
Virtex-5 XC5VLX50 FPGA. The use of PicoBlaze as a new control hierarchy was
first proposed in [29] and based on that we in [30] proposed a Dual-PicoBlaze
based design to achieve a high instruction rate of 1 instruction per cycle by
interleaving instructions from two PicoBlazes. However, by applying the Dual-
Picoblaze architecture we can only get performance enhancement. Therefore, we
decided to customize the Picoblaze by replacing the instruction ROM with a
dual-port RAM to incorporate the programmable feature.

Based on the discussion on Section 3.2, the timing profile of parallel imple-
mentations of multiple ECC datapaths based on the Processor Local Bus (PLB)
on a Xilinx FPGA platform can be obtained. The PLB interface is a memory-
mapped interface for peripheral components with typical bus transfer latency,
Tdelay , of 9 clock cycles. Instruction and data transfers for one operand require
M = 20 times bus transfers. As we use digit size 82 (denoted as D82), one
scalar multiplication on ECC defined on GF (2163) takes 24,689 clock cycles, i.e.
Tcomp = 24, 689. If we just consider the ideal case for data/instruction transfers
without any software overhead (e.g. function calls), the minimum average time,
Tavg min , is about of 540 clock cycles. However, 139 ECC datapaths in parallel

12 Xu Guo et al.

are required to achieve this minimum delay, which makes it impractical. Still,
we can find reasonable tradeoffs through Equation 3.

Following the discussion in Section 4.2, we also implement a ECC coprocessor
with two datapath to integrate our proposed unified countermeasure. It is shown
in Fig. 6. Moreover, we designed the coprocessor to support different operation
modes as defined in section 4.3.

Since the PLB bus is 32-bit wide and our targeting implementation is based
on GF(2163), we need 6 times bus transfers to send one scalar K to the coproces-
sor, which means we still have 29 bits left when transfer the last word. Therefore,
we encode these bits as function bits and they can be interpreted by the MicroB-
laze Instruction Decoder to make the coprocessor work under different modes.

Another advantage of this proposed architecture is that we can quantify
the security cost when different countermeasures are used. Without changing
the hardware, we can simply make changes in the software driver running on
MicroBlaze to turn the ECC coprocessor into different operation modes. This
is similar with the workload characterization in software-only implementations
[35]. Hence, the security cost can be expressed in terms of pure performance
overhead.

Normal Safe.Split-K Safe.PV Safe.Combine

0

50000

100000

150000

200000

250000

300000

350000

30,068
12,887

29,991

292,996

118,192

292,599

12,824

T
o
ta
l
L
at
en
cy
 (
cy
cl
es
)

Operation Modes

 BSMUL

 D82

117,972

Fig. 7. Comparison of timing profiling between different operation modes.

In Fig. 7, we compare the timing profiling of the design working in four
operation modes. Here, we select two extreme coprocessor configurations, the
smallest (with bit-serial multiplier, BSMUL) and the fastest (D82), for detailed
comparison. The whole system works at 100MHz, and the maximum frequency
of both coprocessors with BSMUL and D82 is 165.8MHz. The logic critical path
mainly goes through the programmable PicoBlaze. The hardware cost for the
bit-serial multiplier based design is 2,179 slices and 6,585 slices for the D82-based
design when implemented on a Vertex-5 XC5VLX50 FPGA.

Note that the cycle counts for normal mode and safe mode with only PV are
the average speed for two ECSMs in parallel. From [31], the authors conclude
that if fair performance evaluations are performed, many fault attack counter-
measures are not better than the naive solutions, namely duplication or repeti-

Programmable and Parallel ECC Coprocessor Architecture 13

tion. So, this means it is also important to find a universal platform to quantify
the security cost. From Fig. 7, it is easy to see that based on our proposed
generic ECC coprocessor architecture we can quantify the overhead of these
countermeasures in terms of a single metric – cycle counts.

To compare with other similar ECC codesigns [13,14,29,30,36,37], our pro-
posed ECC coprocessor architecture considers optimizations for performance,
flexibility and security at the same time. For performance, the designs described
in [29,30], same as the base design of the ECC coprocessor architecture pro-
posed in this paper with single ECC datapath, have already shown good trade-
offs between area and speed. For flexibility, the programmable coprocessor is
addressed for its advantages of both performance and security enhancement,
and the massively parallel architecture can be explored to meet various appli-
cation requirements. For security, unlike [14,36,37] which only consider passive
attacks (e.g. power analysis attacks and timing attacks), our design can defend
most existing passive and active attacks. Besides, it can be easily updated with
new algorithmic-level countermeasures to resist new attacks without hardware
changes.

6 Conclusions

In this paper we have presented a generic ECC coprocessor architecture, which
can fill the gap between efficient implementation and security integration at the
architecture level. For security, a unified countermeasure is proposed by com-
bining the random scalar splitting [27] and Point Verification [3,23]. For perfor-
mance, the introduction of distributed storage and new control hierarchy into
the ECC coprocessor datapath can greatly reduce the communication overhead
faced by a traditional centralized control scheme. Scalable parallelism can also
be explored to achieve tradeoff designs between area and speed. The feasibility
and efficiency of our proposed generic ECC coprocessor architecture and uni-
fied countermeasure are verified and shown from an actual implementation on
FPGA. Experimental results show that the proposed programmable and paral-
lel ECC coprocessor architecture can be suitable for a wide range of embedded
applications with different user defined security requriments.

Acknowledgments. This project was supported in part by the US National
Science Foundation through grant 0644070 and 0541472, by Virginia Tech Pratt
Fund, by IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science
Policy), by FWO projects G.0300.07, by the European Comission through the
IST Programme under Contract IST-2002-507932 ECRYPT NoE, and by the
K.U. Leuven-BOF.

References

1. Alrimeih, H., Rakhmatov, D.: Security-Performance Trade-offs in Embedded Sys-
tems Using Flexible ECC Hardware. IEEE Design & Test of Computers, vol.24,
no.6, pp.556-569. IEEE (2007)

14 Xu Guo et al.

2. Kocher, C., Jaffe, J., Jun, B.: Differential power analysis. In: Crypto’99, LNCS1666,
pp.388-397. Springer-Verlag (1999)

3. Dominguez-Oviedo, A.: On Fault-based Attacks and Countermeasures for Elliptic
Curve Cryptosystems. PhD Thesis, University of Waterloo (2008)

4. Verbauwhede, I., Schaumont, P.: Design Methods for Security and Trust. In: Pro-
ceedings of the conference on Design, automation and test in Europe –DATE 2007,
pp.1-6 (2007)

5. Yen, S., Kim, S., Lim, S., Moon, S.: A Countermeasure against One Physical
Cryptanalysis May Benefit Another Attack. In: Information Security and Cryptol-
ogy ICISC 2001, LNCS2288, pp.414-427. Springer (2002)

6. Baek, Y.-J., Vasyltsov, I.: How to prevent DPA and fault attacks in a unified way
for ECC scalar multiplication: Ring extension method. In: ISPEC 2007, LNCS4464,
pp.225-237. Springer-Verlag (2007)

7. Schaumont, P., Hwang, D., Yang S., Verbauwhede, I.: Multilevel Design Validation
in a Secure Embedded System. IEEE Transactions on Computers, vol.55, no.11,
pp.1380-1390. IEEE (2006)

8. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2004)

9. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m). In:
CHES99, LNCS, vol. 1717, pp. 316-327. Springer (1999)

10. Großschädl, J.: A low-power bit-serial multiplier for finite fields GF(2m). In: ISCAS
2001, vol. IV, pp.37-40. IEEE (2001)

11. Kumar, S., Wollinger, T., Paar C.: Optimum Digit Serial GF(2m) Multipliers for
Curve-Based Cryptography. In: IEEE Transactions on Computers, vol. 55, no. 10,
pp.1306-1311. IEEE (2006)

12. Rodŕıguez-Henŕıquez, F., Saqib, N. A., Dı́az-Pérez, A., Koç, Ç. K.: Cryptographic
Algorithms on Reconfigurable Hardware. Springer (2006)

13. Koschuch, M., Lechner, J., Weitzer, A., Großschädl, J., Szekely, A., Tillich, S.,
Wolkerstorfer, J.: Hardware/Software Co-design of Elliptic Curve Cryptography
on an 8051 Microcontroller. In: CHES 2006, LNCS, vol. 4249, pp. 430-444 (2006)

14. Sakiyama, K., Batina, L., Preneel B., Verbauwhede, I.: Superscalar Coprocessor
for High-Speed Curve-Based Cryptography. In:CHES 2006, LNCS, vol. 4249, pp.
415-429. IACR (2006)

15. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and Active Combined Attacks:
Combining Fault Attacks and Side Channel Analysis. In: FDTC2007, pp.92-102.
IEEE (2007)

16. Coron, J.-S.: Resistance against differential power analysis for elliptic curve. In
CHES ’99, LNCS 1717, pp.292-302. Springer-Verlag (1999)

17. Agrawal, D., Archambeault, B., Rao, J. R., Rohatgi, P.: The EM Side-Channel(s).
In: CHES2002, LNCS2523, pp.29-45. Springer-Verlag (2003)

18. Ciet, M., Neve, M., Peeters, E., Quisquater, J.: Parallel FPGA implementation of
RSA with residue number systems - can side-channel threats be avoided? In: IEEE
International Symposium on Micro-NanoMechatronics and Human Science, vol.2,
pp.806-810. IEEE (2003)

19. Fouque, P.-A., Valette, F.: The Doubling Attack - Why Upwards Is Better than
Downwards. In: CHES2003, LNCS2779, pp.269-280. Springer-Verlag (2003)

20. Ciet, M., Joye, M.: Elliptic Curve Cryptosystems in the Presence of Permanent
and Transient Faults. Design, Codes and Cryptography, vol.36, pp.33-43 (2005)

21. Blömer, J., Otto, M., Seifert, J.-P.: Sign Change Fault Attacks on Elliptic Curve
Cryptosystems. In: FDTC2006, LNCS4236, pp.36-52. Springer-Verlag (2006)

Programmable and Parallel ECC Coprocessor Architecture 15

22. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-
based cryptanalysis. IEEE Trans. on Computers, vol.49, no.9, pp.967-970 (2000)

23. Biehl, I., Meyer, B., Müller, V.: Differential Fault Attacks on Elliptic Curve Cryp-
tosystems. In: CRYPTO 2000, LNCS1880, pp.131-146. Springer-Verlag (2000)

24. Fouque, P.-A., Lercier, R., Real, D., Valette, F.: Fault Attack on Elliptic Curve
with Montgomery Ladder Implementation. In: FDTC2008, pp.92-98. IEEE (2008)

25. Kim, C.H., Quisquater, J.-J.: How can we overcome both side channel analysis and
fault attacks on RSA-CRT? In: FDTC2007, pp.21-29. IEEE (2007)

26. Joye, M.: On the Security of a Unified Countermeasure. In: FDTC2008, pp.87-91.
IEEE (2008)

27. Joye, M., Ciet, M.: (Virtually) Free Randomization Techniques for Elliptic Curve
Cryptography. In: ICICS2003, LNCS2836, pp.348-359. Springer-Verlag (2003)

28. De Mulder, E., Ors, S.B., Preneel, B., Verbauwhede, I.: Electromagnetic Analy-
sis Attack on an FPGA Implementation of an Elliptic Curve Cryptosystem. In:
EUROCON2005, vol.2, pp.1879-1882. IEEE (2005)

29. Guo, X., Schaumont, P.: Optimizing the HW/SW Boundary of an ECC SoC De-
sign Using Control Hierarchy and Distributed Storage. In: DATE2009, pp.454-459.
EDAA (2009)

30. Guo, X., Schaumont, P.: Optimizing the Control Hierarchy of an ECC Coprocessor
Design on an FPGA based SoC Platform. In: ARC2009, LNCS5453, pp.169-180.
Springer-Verlag (2009)

31. Malkin, T., Standaert, F.-X., Yung, M.: A Comparative Cost/Security Analysis of
Fault Attack Countermeasures. In: FDTC2006, LNCS4236, pp.159-172 (2006)

32. Hwang, D., Tiri, K., Hodjat, A., Lai, B.C., Yang, S., Schaumont, P., Verbauwhede,
I.: AES-Based Security Coprocessor IC in 0.18um CMOS with resistance to differ-
ential power analysis side-channel attacks. In: IEEE Journal of Solid-State Circuits,
vol.41, no.4, pp.781-791. IEEE (2006)

33. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Re-
duce Side-Channel Leakage. In: CHES2006, LNCS 4249, pp.242-254. IACR (2006)

34. Giraud, C.: An RSA Implementation Resistant to Fault Attacks and to Simple
Power Analysis. In: IEEE Trans. on Computers, vol.55, no.9, pp.1116-1120. (2006)

35. Koschuch, M., Großschädl, J., Payer, U., Hudler, M., Krüger, M.: Workload Char-
acterization of a Lightweight SSL Implementation Resistant to Side-Channel At-
tack. In: CANS2008, LNCS5339, pp.349-365. Springer-Verlag (2008)

36. Sakiyama, K., Batina, L., Schaumont, P., Verbauwhede, I.: HW/SW Co-design for
TA/SPA-resistant Public-Key Cryptosystems. In: ECRYPT Workshop on Crypto-
graphic Advances in Secure Hardware. (2005)

37. Batina, L., Mentens, N., Preneel, B., Verbauwhede, I: Balanced point operations
for side-channel protection of elliptic curve cryptography. In: IEE Proceedings of
Information Security, vol.152, no.1, pp.57-65. IEE (2005)

