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Abstract. This paper presents a design-space exploration of an
application-specific instruction-set processor (ASIP) for the computa-
tion of various cryptographic pairings over Barreto-Naehrig curves (BN
curves). Cryptographic pairings are based on elliptic curves over finite
fields—in the case of BN curves a field Fp of large prime order p. Effi-
cient arithmetic in these fields is crucial for fast computation of pairings.
Moreover, computation of cryptographic pairings is much more complex
than elliptic-curve cryptography (ECC) in general. Therefore, we facili-
tate programming of the proposed ASIP by providing a C compiler.
In order to speed up Fp arithmetic, a RISC core is extended with ad-
ditional scalable functional units. Because the resulting speedup can be
limited by the memory throughput, utilization of multiple data-memory
banks is proposed.
The presented design needs 15.8 ms for the computation of the Optimal-
Ate pairing over a 256-bit BN curve at 338 MHz implemented with a
130 nm standard cell library. The processor core consumes 97 kGates
making it suitable for the use in embedded systems.

Keywords: Application-specific instruction-set processor (ASIP),
design-space exploration, pairing-based cryptography, Barreto-Naehrig
curves, elliptic-curve cryptography (ECC), Fp arithmetic.

1 Introduction

Pairings were first introduced to cryptography as a means to break cryptographic
protocols based on the elliptic-curve discrete-logarithm problem (ECDLP) [1],
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[2]. Joux showed in 2000 that they can also be used constructively for tripartite
key agreement [3]; Subsequently, different cryptographic protocols have been
presented involving cryptographic pairings, including identity-based encryption
[4] and short digital signatures [5]. A discussion of various applications that
would be impossible or very hard to realize without pairings is given in [6].

Cryptographic pairings are based on elliptic curves. To meet both, secu-
rity requirements and computational feasibility, only elliptic curves with special
properties can be considered as basis for cryptographic pairings. State-of-the-
art curves for high-security applications are 256-bit Barreto-Naehrig curves (BN
curves), introduced in [7]. They achieve 128-bit security according to [8] or 124-
bit security according to [9]. Fast arithmetic on these curves demands for fast
finite field arithmetic in a field Fp of prime order p, where p is determined by
the curve construction.

Several high-performance software implementations of pairings over BN
curves exist for general-purpose desktop and server CPUs [10], [11], [12]. How-
ever, the so far only implementation targeting an embedded system was pub-
lished by Devegili et al. in [10] (updated in [13]) for a Philips HiPerSmart

TM

smart card; a complete pairing computation requires 5.17 s at 20.57 MHz, cer-
tainly too much time for interactive processes.

This result shows that in order to make state-of-the-art pairing applications
available to the embedded domain we need dedicated hardware to accelerate
pairing computations. However, the variety and complexity of pairing applica-
tions demand for a flexible and programmable solution, that cannot be satisfied
by a static hardware implementation. Application-specific instruction-set proces-
sors (ASIPs) are a promising candidate to find a good trade-off between these
contradicting demands of speed, flexibility and ease of programmability.

This paper shows a design-space exploration of an ASIP for pairing compu-
tations over BN curves. We describe how to trade off execution time against area
making the ASIP suitable for use in the embedded domain. Dedicated scalable
functional units are introduced that speed up general Fp arithmetic. Moreover,
their critical path delay can be modified in order to be integrated with any exist-
ing RISC-like architecture without compromising its clock frequency. We show
that the speedup from the special functional units is limited by a memory system
with a single memory port. Hence, we introduce a memory system utilizing mul-
tiple memory banks. The number of banks can be altered without modification
to the pipeline or the target architecture tools including the C compiler. This
enables fast design-space exploration. The proposed ASIP thus offers a flexible
and scalable implementation for pairing applications.

We are—up to our knowledge—the first to implement and time a complete
implementation of high-security cryptographic pairings on dedicated specialized
hardware.

We would like to thank Jia Huang for supporting the implementation. We
furthermore thank Daniel J. Bernstein, Tanja Lange, Ernst Martin Witte, Fil-
ippo Borlenghi, and the anonymous reviewers for suggesting many improvements
to our explanations.
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Related work. Several architectures for the computation of cryptographic
pairings have been proposed in the literature [14–26]. All these implementations
use supersingular curves over fields of characteristic 2 or 3, achieving only very
low security levels, sometimes even below 80 bit.

Barenghi et al. recently proposed a hardware architecture for cryptographic
pairings using curves defined over fields of large prime characteristic [27]. They
use a supersingular curve (with embedding degree 2) defined over a 512-bit field
and thus achieve only 72-bit security, according to [9].

Another architecture targeting speedup of pairings and supporting fields of
large prime characteristic has been proposed in [28]. The instruction set of a
SPARC V8 processor is extended for acceleration of arithmetic in F2n , F3m and
Fp. However, the focus is put on minor modifications of the datapath resulting
in a performance gain for multiplications in Fp which is two-fold only.

The architectures closest to the one proposed in this paper are accelerating
arithmetic in general Fp for elliptic-curve cryptography (ECC) [29,30]. However,
these designs have not been reported to be used for pairing computations.

Some other architectures for ECC over prime fields limit their support to a
prime p which allows for particularly fast modular reduction (see i.e. [31]). These
approaches are not adequate for pairing-based cryptography where additional
properties of the elliptic curves are required. Thus, a detailed comparison with
these architectures is omitted here.

Organization of the paper. Section 2 of the paper gives an overview of
cryptographic pairings and Barreto-Naehrig curves. Section 3 describes our ap-
proach of an ASIP suitable for pairing computation. In Section 4 we discuss the
results. The paper is concluded and future work is outlined in Section 5.

2 Background on cryptographic pairings

We only give a short overview of the notion of cryptographic pairings, a com-
prehensive introduction is given in [32, chapter IX].

For three groups G1, G2 (written additively) and G3 (written multiplica-
tively) of prime order r a cryptographic pairing is a map e : G1 ×G2 → G3,

– Bilinearity:
e(kP,Q) = e(P, kQ) = e(P,Q)k for k ∈ Z.

– Non-degeneracy:
For all nonzero P ∈ G1 there exists Q ∈ G2 such that e(P,Q) 6= 1 and
for all nonzero Q ∈ G2 there exists P ∈ G1 such that e(P,Q) 6= 1.

– Computability:
There exists an efficient algorithm to compute e(P,Q) given P and Q.

We consider the following construction of cryptographic pairings: Let E be
an elliptic curve defined over a finite field Fp of prime order. Let r be a prime
dividing the group order #E(Fp) = n and let k be the smallest integer, such
that r | pk − 1. We call k the embedding degree of E with respect to r. Let t
denote the trace of Frobenius fulfilling the equation n = p+ 1− t.
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Let P0 ∈ E(Fp) and Q0 ∈ E(Fpk) be points of order r such that Q0 /∈ 〈P0〉,
let O ∈ E(Fp) denote the point at infinity. Define G1 = 〈P0〉 and G2 = 〈Q0〉.
Let G3 = µr be the group of r-th roots of unity in F∗pk .

For i ∈ Z and P ∈ E a Miller function [33] is an element fi,P

of the function field of E, such that the principal divisor of fi,P is
div(fi,P ) = i(P )− ([i]P )− (i− 1)O.

Using such Miller functions, we can define the map

es : G1 ×G2 → µr; (P,Q) 7→ fs,P (Q)(p
k−1)/r.

For certain choices of s the map es is non-degenerate and bilinear. For s = r we
obtain the reduced-Tate pairing τ and for s = T = t− 1 we obtain the reduced-
Ate pairing α by switching the arguments [34]. Building on work presented in
[35], Vercauteren introduced the Optimal-Ate pairing in [36] which for BN curves
can be computed using s ≈

√
t and a few additional computations (see also [37]).

Using twists of elliptic curves we can further define the generalized reduced-η
pairing [34], [38]. In [12] a method to compute the Tate and η pairing keeping
intermediate results in compressed form is introduced. We refer to the resulting
algorithms as Compressed-Tate and Compressed-η pairing, respectively.

2.1 Choice of an Elliptic Curve

For cryptographic protocols to be secure on the one hand and the pairing com-
putation to be computationally feasible on the other hand, the elliptic curve E
must have certain properties: Security of cryptographic protocols based on pair-
ings relies on the hardness of the discrete logarithm problem in G1, G2 and G3.
For the 128-bit security level, the National Institute of Standards and Technol-
ogy (NIST) recommends a prime group order of 256 bit for E(Fp) and of 3072
bit for the finite field Fpk [8].

Barreto-Naehrig curves, introduced in [7], are elliptic curves over fields of
prime order p with embedding degree k = 12. The group order n = r of E(Fp) is
prime by construction, the values p and n can be given as polynomial expressions
in an integer u as follows:

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 and

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1.

For our implementation we follow [10] and set u = 0x6000000000001F2D,
yielding two primes p(u) and n(u) of l = 256 bit. The field size of Fpk then has
256 ·k = 3072 bit. Note, that according to [9], a finite fields of size 3072 bit offers
only 124-bit security. In this paper we follow the more conservative estimations
of [9] and claim only 124-bit security for pairings over 256-bit BN curves.

2.2 Computation of Pairings

The computation of cryptographic pairings consists of two main steps: the com-
putation of fs,P (Q) for Tate and η pairings or of fs,Q(P ) when considering the
Ate pairing and the final exponentiation with (pk − 1)/r.
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The first part is usually done iteratively using variants of Miller’s algo-
rithm [33]. Several optimizations of this algorithm have been presented in [39].
The resulting algorithm is often referred to as BKLS algorithm. For BN curves
even more optimizations can be applied by exploiting the fact that such curves
have sextic twists. A detailed description of efficient computation of pairings over
BN curves, including the computation of Miller functions and the final exponen-
tiation is given in [10]. Our implementation follows this description in large parts.

Finite field computations constitute the bulk of the pairing computation –
in software implementations typically more than 90% of the time is spent on
modular multiplication, inversion and addition, the number of these operations
for the implemented pairing algorithms is the following:

Number of Opt. Ate Ate η Tate Comp. η Comp. Tate

multiplications 17,913 25,870 32,155 39,764 75,568 94,693
additions 84,956 121,168 142,772 174,974 155,234 193,496
inversions 3 2 2 2 0 0

Throughout the pairing computation we keep points on elliptic curves in
Jacobian coordinates and can thus almost entirely avoid field inversions; our
targets for hardware acceleration are thus multiplication and addition in Fp,
inversion is implemented as exponentiation with p− 2.

3 An ASIP for Cryptographic Pairings

To implement various pairing algorithms (Optimal Ate, Ate, η, Tate, Compressed
η and Compressed Tate), a programmable and therefore flexible architecture is
targeted in this paper. Standard architectures like embedded RISC cores are
flexible, but they are lacking sufficient computational performance for specific
applications. Therefore, we apply the ASIP concept to cryptographic-pairing
applications in order to reduce the computation time while maintaining pro-
grammability. Development and implementation of our ASIP have been carried
out using the Processor Designer from CoWare [40].

Keeping control over the data flow on the higher layers of the pairing com-
putation, like Fp12 or E(Fp2) arithmetic, is a rather complex task. This calls
for a convenient programming model. However, on the lower level realizing the
Fp arithmetic, computational performance is of highest priority. Therefore, we
decided to extend a basic 5-stage 32-bit RISC core with special Fp instructions
for modular multiplication, addition and subtraction. Inversions are not con-
sidered for special instructions as they are used very seldom (≤ 3×) in any of
the targeted applications. The available C compiler enables convenient applica-
tion development on higher levels, while the computational intensive tasks are
mapped to the specialized instructions accessible via intrinsics4.

4 An adoption of our code to general purpose processors using the GMP library instead
of intrinsics is available from http://cryptojedi.org/crypto/.
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Among the targeted Fp operations, the most challenging one to implement
is fast modular multiplication, especially for a large word width (e.g. 256 bit).
In general, multiplication in Fp can be done by first multiplying the two 256-bit
factors and then reducing the 512-bit product. This might indeed be the fastest
approach, if p could be chosen of a special form as for example specified in [41]
or [42]. However, due to the construction of BN curves (see [7]) we cannot use
such primes. Therefore, our approach uses Montgomery arithmetic [43].

3.1 Data Processing: A Scalable Montgomery-Multiplier Unit

In 1985 Montgomery introduced an algorithm for modular multiplication of two
integers A and B modulo an integer M [43]. The idea of the algorithm is to
represent A as Â = AR mod M and B as B̂ = BR mod M for a fixed integer
R > M with gcd(R,M) = 1. This representation is called Montgomery repre-
sentation. To multiply two numbers in Montgomery representation we have to
compute ÂB = ÂB̂R−1 mod M . For certain choices of R this computation can
be carried out much more efficiently than usual modular multiplication: Let us
assume that M is odd and let l be the bit length of M . Choosing R = 2l clearly
fulfills the requirements on R and allows for modular multiplication that replaces
division operations by shifts, allowing for an efficient hardware implementation.

In the context of Fp-multiplication the modulus M corresponds to p. All
Fp operations can be performed in Montgomery representation. Therefore, all
values can be kept in Montgomery representation throughout the whole pairing
computation.

Nibouche et al. introduced a modified version of the Montgomery multiplica-
tion algorithm in [44]. It splits the algorithm into two multiplication operations,
that can be carried out simultaneously, and allows for using carry save (CS) mul-
tipliers. This results in a fast architecture that can be pipelined and segmented
easily. Therefore, it is chosen as basis for our development. A 4×4-bit example
is shown in Fig. 1.

The actual multiplication is carried out in the left half of the architecture,
while the reduction is performed in the right part simultaneously. The left part is
a conventional multiplier built of gated full adders (gFAs), whereas the right part
consists of a multiplier with special cells for the least-significant bits (LSBs). The
LSB cells are built around a half adder (HA). Their overall delay is comparable
to that of a gFA. A more detailed description can be found in [44].

Due to area constraints we decided to implement only subsets of the regular
structures of the multiplier and perform the computation in multiple cycles. The
CS-based design provides the opportunity to not only make horizontal but also
vertical cuts while the critical path of the multiplier unit depends on its height
(H) only. This makes the design adaptable to existing cores in terms of timing
maintaining the performance of their general instruction set. Once the height of
the multiplier unit is chosen (in our case H = 8), the width (W ) can be selected
to adapt the design to the desired computational performance and to trade off
area vs. execution time of the multiplication.
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Fig. 1. Montgomery-multiplier based on Nibouche et al. [44]

Multiplication and reduction are carried out simultaneously starting from the
most-significant bit (MSB) of their second operand (B and M) first. However,
the reduction cannot be started until the incoming data for the LSB cells are
available from the two’s complementer. Therefore, reduction starts after the first
H lines of multiplication have been executed and remains delayed for

⌈
l

W

⌉
cycles

(required for the computation of H lines). Eventually, the CS results need to be
transformed back to two’s complement number representation (by addition #1
and addition #2 ) before they are combined to the result by addition #3. This
is necessary since the result lies in the range of 0 to 2M − 1, and requires a
final comparison against M , which is difficult to handle in CS representation.
The comparison including a necessary subtraction of M is performed in another
functional unit introduced later. Equation (1) gives the number of required cycles
cMM to perform a Montgomery multiplication with the proposed multi-cycle
architecture for the general case.

cMM =
(⌈

l

H

⌉
+ 1
)
·
⌈
l

W

⌉
+ 2 (1)

For evaluation, we implemented this multi-cycle Montgomery-multiplier
(MMM) in three different sizes (W×H): 32×8 bit, 64×8 bit and 128×8 bit,
resulting in an execution time of 266, 134 and 68 cycles respectively. However,
the area savings for smaller (and slower) architectures do not scale as well as the
execution time. This results from the increased complexity of the required mul-
tiplexing for smaller MMM units. In order to keep the amount of multiplexers
small, we designed special 256-bit shift registers, that enable a circular shift by
W bits for the operands B, M and the corresponding intermediate CS values.
This solution is suitable, since the input values are accessed in consecutive order
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by blocks of W bits. Still, area savings when scaling a 128×8-bit architecture
down to 32×8-bit are about 50%.

Fig. 2. Structure of the multi-cycle Montgomery-multiplier (MMM)

Fig. 2 shows the overall resulting structure of the MMM unit. The two’s
complementer is included in the multiplication unit, while the reduction unit
contains additional LSB cells that produce input for the gFA cells on the fly (as
depicted in Fig. 1). The input shift registers are initialized step by step during
the first

⌈
l

W

⌉
cycles. After the whole process, the result is stored in the registers

for temporary CS values (CM , SM , CR, SR). The adders for the final summations
are not depicted.

An advantage of stepwise executing the multiplication is that the total mul-
tiplication width l can be configured at runtime in steps of W . The overall
dependence of the execution time on l is quadratic. Modular multiplication is
thus significantly faster for smaller multiplication width. This may be interesting
for ECC applications requiring lower security.

Similar to the MMM unit we developed a multi-cycle adder unit for modular
additions and subtractions, which reads two operands block-wise and simultane-
ously. For evaluation, a 32-bit and a 64-bit version of this unit have been imple-
mented. Details are omitted here since the implementation is straightforward.

Both, MMM and adder unit require a final subtraction of M whenever the
result exceeds this prime number. A special writeback unit takes care of this
subtraction right before writing back the data, operating block-wise in multiple
cycles as well. This unit has been implemented with a width of 32, 64 and 128 bit.

During the execution of multi-cycle operations for modular addition, sub-
traction and multiplication the pipeline is stalled. Three special instructions
are implemented triggering these operations. Instruction arguments are regis-
ters containing the starting address of each of the three 256-bit operands. Since
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the modulus M is not changed during an application run, a special register is
utilized and implicitly accessed by the instructions. This register is initialized
with p at the beginning of an application via another dedicated instruction.

3.2 Data Access: An Enhanced Memory Architecture

Due to the large width of the operands, the existing 16x32-bit general purpose
register file could only store two operands simultaneously. This results in frequent
memory accesses consuming additional cycles and thus decreasing the overall
performance of the architecture significantly. Enlarging the register file would be
very costly in terms of area consumption. Hence, the instructions triggering the
multi-cycle operations for modular addition, subtraction and multiplication are
implemented as memory-to-memory instructions. This way, the memory accesses
can be almost completely hidden in the actual computation.

The resulting throughput demands on the memory system are quite high. Es-
pecially the modular addition/subtraction requires a throughput higher than one
32-bit word per cycle. The following two evident mechanisms to increase mem-
ory throughput for ASIP designs are not well suited here: First, using memories
with multiple ports is costly. The number of ports is limited to two for SSRAMs
and the required area is roughly doubled. Second, designing a dedicated system
with several (often specialized) memories targets highest performance, but is
a complex task. The data memory space gets segmented irregularly, making it
difficult to access and manage for a compiler.

Due to the drawbacks of these two approaches we apply a different technique,
which we would like to introduce as transparent interleaved memory segmentation
(TIMS). Its basic principle is to extend the number of ports to the memory
system in order to increase the throughput by using memory banks. These banks
are selected on the basis of address bits and can be accessed in parallel. In case of
our ASIP, the LSBs of the address are used for the memory bank selection. This
results in an addressing scheme, where the memory is selected by calculating the
address modulo the number of memories md, which has to be a power of two.

In principle, the distribution of accesses to a banked memory system can be
handled in software or hardware. However, memory-access conflicts can occur
when simultaneous accesses refer to the same memory. Solving these conflicts in
software requires an extension of the C compiler in order to avoid multiple simul-
taneous accesses to the same memory bank. If these conflicts can be ruled out at
compile time, this approach results in very efficient code. However, if the conflicts
do occur at runtime, additional code to resolve the conflict needs to be included
in the target software at the cost of increased execution time. Especially when
pointers are used and function calls have a substantial degree of nesting (which
is the case for the targeted pairing applications), detecting the conflicts at com-
pile time is often impossible. It requires a significant extension of the C compiler
functionality and comes at the cost of increased code size and execution time.

However, due to fairly simple mechanisms and regularity, the distribution
of accesses to the memories and resolution of access conflicts can be handled
efficiently at runtime by a dedicated hardware block, the memory-access unit
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(MAU) that distributes the memory accesses from the pipeline to the correct
memory. Memory accesses are requested concurrently by the pipeline on demand
resulting in multiple independent read or write connections (unidirectional) be-
tween pipeline and MAU. The MAU takes care of granting accesses. Therefore,
a simple handshaking protocol is used between pipeline and MAU, which is able
to confirm a request within the same cycle in order not to cause any delay cycles
when trying to access the fast SSRAMs.

One advantage of this mechanism is, that from the perspective of the core,
the memory space remains unchanged, regardless of the number of memories.
Existing load and store instructions are sufficient to access the whole data mem-
ory space. Even when special instructions perform concurrent memory accesses,
a modification in the memory system (e.g. changing number of memories) does
not result in a change of the core or the C compiler. This enables orthogonal im-
plementation and modification of the base architecture and the memory system.

A priority-based hardware resolution of access conflicts is implemented in the
MAU in two ways. Static priorities can be used if certain accesses always have
higher priority than others. For instance write accesses from later pipeline stages
should always have higher priority than read accesses from prior stages. When
the priority is changing at runtime, dynamic priority management is required.
Then, dedicated additional communication lines between core and MAU indicate
a change of priority. In our design this is required by the adder unit.

Fig. 3 depicts the four different connection schemes between MAU and
pipeline. The number and type of connections between MAU and pipeline are
determined by the number and type of independent memory accesses initiated
by the pipeline, while the number of actual memory connections depends on
the number of attached data memories md (md = 2 in this example). For sake
of clarity, the actual interconnections within the MAU have been omitted in
Fig. 3. The access-control block combines the enable and priority signals with
the log2(md) LSBs of the address signals from the read and write connections in
order to produce the grants. At the same time the enable signals for the SSRAMs
are set accordingly by this unit. It also controls the crossbars that are switching
the correct address, read data and write data signals to the memory ports. Please
note, that the read data crossbar is switched with one cycle delay compared to
the address crossbar in order to be in sync with the single cycle read latency
of the SSRAMs. Effects of TIMS on physical parameters like timing and area
consumption are discussed in detail in the result section.

Overall, the TIMS approach enables to extend any existing architecture with
memory banks without altering the existing pipeline or the basic instruction set.
The specialized memory-to-memory instructions can take full advantage of paral-
lel accesses to these banks reducing execution time. It is not necessary to extend
the C compiler of the base architecture with more than intrinsics for the special
instructions. The compiled executable can be used on any architecture variant
independently from the number of memory banks. As the MAU hides the actual
memory system from the pipeline, the number of memory banks can be changed
without modification to the pipeline enabling a fast design space exploration.
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Fig. 3. Interconnect of memory-access unit (MAU)

Still, memory access collisions decrease the performance of the system and
cannot be avoided completely due to the automatic address management of
the C compiler. However, in our case this effect is kept minimal due to the
good distribution of the 256-bit words. For additions and multiplications this
causes a maximum additional delay of one cycle only. This results in a maximum
performance degradation caused by memory-access conflicts of less than 2% for
any of the implemented pairing applications.

4 Results

Overall, we have implemented nine variants of our ASIP with different design
parameters regarding number of data memories and width of the computational
units for modular multiplication, modular addition and multi-cycle writeback
(Table 1). The number of data memories is closely coupled with the width of the
adder and the writeback unit. Other combinations would operate functionally
correctly, but would waste either performance or area. The implementation of
a 16-bit adder for the single memory case would not significantly reduce area
due to additional multiplexing and is therefore neglected. All synthesis results
have been obtained with Synopsys Design Compiler [45] using a 130 nm CMOS
standard cell library with a supply voltage of 1.2 V and are given before place
and route. The memories are synchronous single-port SRAMs with a latency
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Table 1. Implemented design variants of the ASIP for pairings

Variant 128m4 64m4 32m4 128m2 64m2 32m2 128m1 64m1 32m1

mod mul size (bit) 128×8 64×8 32×8 128×8 64×8 32×8 128×8 64×8 32×8
mod add width (bit) 64 64 64 32 32 32 32 32 32
writeback width (bit) 128 128 128 64 64 64 32 32 32
# data memories 4 4 4 2 2 2 1 1 1

total areaa (kGates) 195 186 182 164 153 148 145 134 130

core areab (kGates) 96 87 83 97 86 81 93 83 79
timing (ns) 3.69 3.65 3.52 2.96 2.97 3.02 2.95 3.03 3.09

Optimal Ate (ms) 17.5 21.8 29.9 15.8 19.4 27.3 19.2 23.4 32.0
Ate (ms) 25.3 31.4 42.6 22.8 27.9 38.9 27.6 33.5 45.6
η (ms) 32.3 39.5 52.8 28.8 35.0 48.1 34.6 41.6 56.2
Tate (ms) 38.5 47.0 62.7 34.4 41.6 57.1 41.1 49.5 65.3
Compressed η (ms) 38.6 55.0 86.2 34.5 48.2 77.1 41.6 56.5 85.8
Compressed Tate (ms) 48.2 68.9 107.8 43.2 60.3 96.5 52.0 70.7 107.3

a Including area for data memories
b Without area for memories, but including area for MAU

of one cycle. The total data-memory size is 2048 words for each of the design
variants. The program memory is not included in the area reports, since it is not
changing through the different designs and could be implemented differently (as
ROM, RAM, synthesized logic etc.) depending on the final target system. The
plain RISC (32-bit, 5-stage pipeline, 32-bit integer multiplier) without memories
and extensions consumes 26 kGates and achieves a timing of 2.89 ns.

Fig. 4 shows the area distribution of the different ASIP variants. While the
basic core only shows moderate area increase from 17 to 21 kGates for all vari-
ants (resulting from decoder extensions and additional pipeline registers), the
area for the register file increases from 9 to 28 kGates compared to the plain
RISC. The reason are specialized 256-bit registers storing the prime number
and intermediate results of the modular operations. These registers are indepen-
dent from the width of any of the additional functional units. The area of the
cryptographic extensions is dominated by the MMM unit.

Observe that splitting the memory into two of half the size results in a data-
memory area increase of 31%. Utilizing a dual port memory instead would in-
crease area by over 83%. The area overhead due to the MAU lies between only
0.5 and 1.2 kGates, when two memories are attached. Even for four attached
memories it is below 3.5 kGates.

However, limitations of TIMS utilizing the proposed MAU become visible
when looking at the timing of the different variants of the ASIP. While attach-
ing one or two data memories barely affects the critical path with respect to
the original RISC architecture (within design tool accuracy, see Table 1), an in-
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Fig. 4. ASIP area consumption and distribution

creased delay is observed when four memories are attached. This delay is caused
by the complexity of priority resolution for four attached memories combined
with four independent memory accesses with dynamic priority, which are neces-
sary to implement the 64-bit adder.

Fig. 5. Area-time trade-off for different ASIP variants (Optimal Ate pairing)

The execution times of all six implemented pairing applications on all nine
ASIP variants are shown in Table 1. For all applications performance improves
significantly with increasing width of the MMM. Also, the number of cycles de-
creases when increasing the number of connected data memories. Unfortunately,
the longer critical path of the four-memory system leads to a lower performance
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than for the designs with two memories. The overall fastest design is variant
128m2, executing the Optimal-Ate pairing in 15.8 ms. With the smallest and
slowest variant completing the task in 32.0 ms, the user is offered a quite broad
design space enabling trade-offs.

In order to evaluate the efficiency of the different design variants, Fig. 5
shows the area-time trade-off for the Optimal-Ate pairing. It can be seen clearly
that the best AT product is obtained by the 128m2 design. This shows the im-
portance of investigating the memory architecture of ASIPs during design-space
exploration. In our case the best results are obtained with TIMS and two data
memories in spite of the considerable area increase due to the memory splitting.

4.1 Performance Comparison

To our best knowledge there exists no literature reporting performance figures
resulting from actual implementations of cryptographic pairings on dedicated
hardware achieving a 124-bit security level. Hardware implementations for lower
security levels can obviously be much faster than the proposed design.

Table 2. Performance and area comparison for pairings

Freq. Field
Secu-

Time
Design Technology Area

(MHz)
Pairing

Characteristic
rity

(ms)
(bit)

this work 130 nm std. cell 97 kGates 338 Opt. Ate 256-bit prime 124 15.8
[14] Xilinx xc2vp20 8 kSlices 90 Tate 3 97 0.298
[14] Xilinx xc2vp20 8 kSlices 115 Tate 2 97 0.327
[21] Xilinx xc2vp100 44 kSlices 33 Tate 2 80 0.146

[18], [46] Xilinx xc2vp100 38 kSlices 72 Tate 2 76 0.049
[20] Xilinx xc2v6000 25 kSlices 47 Tate 2 76 2.81
[19] Xilinx xc2v6000 15 kSlices 40 Tate 2 76 3.0
[27] Xilinx xc2v8000 34 kSlices 135 Tate 512-bit prime 72 1.61
[23] Xilinx xc4vlx200 74 kSlices 199 ηT 3 68 0.008
[16] Altera ep2c35 19 kLEs 147 ηT 3 68 0.027
[17] 180 nm std. cell 194 kGates 200 ηT 3 68 0.047
[15] Xilinx xc4vlx15 2 kSlices 203 ηT 3 68 0.137
[25] Xilinx xc2vp100 15 kSlices 85 ηT 3 68 0.183
[26] Xilinx xc2vp200 14 kSlices 77 Tate 3 68 0.251
[22] Xilinx xc2vp4 4 kSlices 150 Tate 3 68 0.432
[24] Xilinx xc2vp125 56 kSlices 15 Tate 3 68 0.85

Table 2 gives an overview of performance and area consumption for various
pairing implementations on dedicated hardware; the given security levels are
according to [9]. Whenever more than one design variant is given in a publication,
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the fastest one with the highest security level is listed in the table. The previous
results listed in Table 2 are hardly comparable to the design proposed in this
paper. Not only do they achieve lower security levels, they also mainly focus on
FPGAs rather than standard cells and mostly use curves over binary or ternary
fields. In the following we therefore give a comparison with standard cell designs
which accelerate Fp arithmetic for elliptic-curve cryptography and finally discuss
our design in the context of smart cards.

Comparison with standard cell designs for ECC. Other publications de-
scribing dedicated-hardware implementations for ECC over fields of large prime
characteristic give performance figures in terms of time needed for a scalar mul-
tiplication with a scalar k of a certain size, i.e. the computation of [k]P for some
P ∈ E(Fp). An overview is presented in Table 3.

Table 3. Performance and area comparison for scalar multiplication

Design Technology Area
Freq. Scalar

log2(|Fp|) Time
(MHz) Mult. Alg. (ms)

this work 130 nm std. cell 97 kGates 338 NAF recoding 256 0.998
[30] 130 nm std. cell 122 kGates 556 NAF recoding 256 1.01
[29] 130 nm std. cell 107 kGates 138 NAF recoding 256 2.68

In order to compare the results of this work with these architectures we
implemented scalar multiplication on the 256-bit Barreto-Naehrig curve that we
also used for pairing computation. Our design does not accelerate field inversion
through hardware, so we use Jacobian projective coordinates to represent the
points on the curve, trading inversions for several multiplications.

A scalar multiplication with a 256-bit scalar takes 0.998 ms for the 128m2
variant of the proposed design. This number includes transformation of the scalar
into NAF and a transformation from Jacobian into affine coordinates at the end.
Note that ASIP variant 128m2 is not only slightly faster than the designs in [29]
and [30], but also consumes less area.

Application to smart cards. In [10] (updated in [13]), Devigili et al. report
5.17 s for the computation of the Ate pairing over a 256-bit Barreto-Naehrig
curve on a Philips HiPerSmart

TM
smart card operating at 20.57 MHz. This smart

card contains a SmartMIPS-based 32-bit architecture and is manufactured in
180 nm technology. For interactive processes this execution time is not sufficient
even when the smart card operates at its maximum frequency of 38MHz. Our de-
sign achieves—synthesized in a 180 nm CMOS standard cell library with a supply
voltage of 1.8 V—over 230 MHz. Even running our smallest design variant 32m1
at the clock speed of 20.57 MHz (leaving a substantial margin for place and route
and implementation of protection mechanisms against side channel attacks),
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the Ate pairing takes 0.71 s and the Optimal Ate pairing is executed in 0.50 s,
which is already sufficient for interactive processes. Depending on the design
variant used, speedups of over 20× could be achieved. This gives an impression
of the achievable performance increase for the computation of cryptographic
pairings in the embedded domain when more specialized hardware is used.

5 Conclusion and Outlook

In this paper we presented a design-space exploration of an ASIP for computation
of cryptographic pairings over BN curves. The design is based on extensions of an
existing RISC core, which are completely transparent and independent from the
original pipeline. Therefore, they could be applied to any RISC-like architecture,
which can stall the pipeline during multi-cycle operations. The extensions are
adaptable in terms of timing and allow for a trade-off between execution time
and area. A flexible and transparent memory-architecture extension making use
of multiple memories (TIMS) enables fast design space exploration and the usage
of existing compilers, since the address space remains unsegmented. We are—up
to our knowledge—the first to implement and time a complete implementation
of high-security cryptographic pairings on dedicated specialized hardware.

Future objectives include countermeasures against side-channel attacks,
which are not implemented in the current design, either in hard- or in software.
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