
Faster Fp-arithmetic for Cryptographic Pairings

on Barreto-Naehrig Curves ⋆

Junfeng Fan, Frederik Vercauteren⋆⋆, and Ingrid Verbauwhede

ESAT/SCD-COSIC, Katholieke Universiteit Leuven and IBBT
Kasteelpark Arenberg 10

B-3001 Leuven-Heverlee, Belgium
{jfan, fvercauteren, iverbauwhede}@esat.kuleuven.be

Abstract. This paper describes a new method to speed up Fp-arithmetic
for Barreto-Naehrig (BN) curves. We explore the characteristics of the
modulus defined by BN curves and choose curve parameters such that
Fp multiplication becomes more efficient. The proposed algorithm uses
Montgomery reduction in a polynomial ring combined with a coefficient
reduction phase using a pseudo-Mersenne number. With this algorithm,
the performance of pairings on BN curves can be significantly improved,
resulting in a factor 5.4 speed-up compared with the state-of-the-art
hardware implementations. Using this algorithm, we implemented a pair-
ing processor in hardware, which runs at 204 MHz and finishes one ate
and R-ate pairing computation over a 256-bit BN curve in 4.22 ms and
2.91 ms, respectively.

Keywords: Pairings, BN curves, Modular reduction

1 Introduction

A bilinear pairing is a map G1×G2 → GT where G1 and G2 are typically
additive groups and GT is a multiplicative group and the map is linear
in each component. Many pairings used in cryptography such as the Tate
pairing [1], ate pairing [11], and R-ate pairing [13] choose G1 and G2 to
be specific cyclic subgroups of E(Fpk), and GT to be a subgroup of F

∗

pk .
The selection of parameters has a substantial impact on the security

and performance of a pairing. For example, the underlying field, the type
of curve, the order of G1, G2 and GT should be carefully chosen such that
it offers sufficient security, but still is efficient to compute. In this paper,

⋆ This work was supported by research grants of Katholieke Universiteit Leu-
ven (OT/06/40) and FWO projects (G.0300.07), by the IAP Programme P6/26
BCRYPT of the Belgian State (Belgian Science Policy), by the EU IST FP6 projects
(ECRYPT) and by the IBBT-QoE project of the IBBT.

⋆⋆ Postdoctoral Fellow of the Research Foundation - Flanders (FWO).



we focus on efficient implementation of pairings over BN curves [17]. BN
curves are defined over Fp where p = 36t̄4 + 36t̄3 + 24t̄2 + 6t̄ + 1 for
t̄ ∈ Z such that p is prime. In this paper, we propose a new modular
multiplication algorithm for BN curves. We show that when choosing t̄ =
2m+s, where s is a reasonably small number, the modular multiplication
in Fp can be substantially improved. Existing techniques to speed up
arithmetic in extension fields (see [7, 6] for fast operation in Fp2 , Fp6 and
Fp12) can be used on top of it. The proposed modular reduction algorithm
and parameters for BN curves result in a significant improvement on the
performance of ate and R-ate pairing.

The remainder of the paper is organized as follows. In Sect. 2 we review
cryptographic pairings and their computation. In Sect. 3 we present a new
modular multiplication algorithm and compare its complexity with known
algorithms. The details of the hardware implementation and results are
given in Sect. 4 and Sect. 5, respectively. We conclude the paper in Sect.
6.

2 Previous works

2.1 Bilinear Pairings

Let Fp be a finite field and let E(Fp) be an elliptic curve defined over Fp.
Let r be a large prime dividing #E(Fp). Let k be the embedding degree
of E(Fp) with respect to r, namely, the smallest positive integer k such
that r|pk− 1. We use E(K)[r] to denote the K-rational r-torsion group of
the curve for any finite field K. For P ∈ E(K) and an integer s, let fs,P

be a K-rational function with divisor

(fs,P ) = s(P )− ([s]P )− (s− 1)O,

where O is the point at infinity. This function is also known as Miller
function [14, 15].

Let G1 = E(Fp)[r], G2 = E(Fpk)/rE(Fpk) and G3 = µr ⊂ F
∗

pk (the

r-th roots of unity), then the reduced Tate pairing is a well-defined, non-
degenerate, bilinear pairing. Let P ∈ G1 and Q ∈ G2, then the reduced
Tate pairing of P, Q is computed as

e(P, Q) = (fr,P (Q))(p
k
−1)/r.

The ate pairing is similar but with different G1 and G2. Here we de-
fine G1 = E(Fp)[r] and G2 = E(Fpk)[r] ∩ Ker(πp − [p]), where πp is the
Frobenius endomorphism. Let P ∈ G1, Q ∈ G2 and let tr be the trace

2



Algorithm 1 Computing the R-ate pairing on BN curves [7]

Input: P ∈ E(Fp)[r], Q ∈ E(Fpk)[r]
T

Ker(πp − [p]) and a = 6t̄ + 2.
Output: Ra(Q, P ).

1: a =
PL−1

i=0 ai2
i.

2: T ← Q, f ← 1.
3: for i = L− 2 downto 0 do
4: T ← 2T .
5: f ← f2 · lT,T (P ).
6: if ai = 1 then
7: T ← T + Q.
8: f ← f · lT,Q(P ).
9: end if

10: end for
11: f ← (f · (f · laQ,Q(P ))p · lπ(aQ+Q),aQ(P ))(p

k−1)/r.

Return f .

of Frobenius of the curve, then the ate pairing is also well-defined, non-
degenerate bilinear pairing, and can be computed as

a(Q, P ) = (ftr−1,Q(P ))(p
k
−1)/r.

The R-ate pairing is a generalization of the ate pairing. For the same
choice of G1 and G2 as for the ate pairing, the R-ate pairing on BN
curves is defined as

Ra(Q, P ) = (f · (f · laQ,Q(P ))p · lπ(aQ+Q),aQ(P ))(p
k
−1)/r,

where a = 6t̄ + 2, f = fa,Q(P ) and lA,B denotes the line through point A
and B.

Due to limited space, we only describe the algorithm to compute the
R-ate pairing. The algorithms for Tate and ate pairings are similar, and
can be found in [7].

2.2 Choice of Curve Parameters

The most important parameters for cryptographic pairings are the un-
derlying finite field, the order of the curve, the embedding degree, and
the order of G1, G2 and GT . These parameters should be chosen such
that the best exponential time algorithms to solve the discrete logarithm
problem (DLP) in G1 and G2 and the sub-exponential time algorithms
to solve the DLP in GT take longer than a chosen security level. In this
paper, we will use the 128-bit symmetric key security level.

Barreto and Naehrig [17] described a method to construct pairing-
friendly elliptic curves over a prime field with embedding degree 12. The

3



finite field, trace of Frobenius and order of the curve are defined by the
following polynomial families:

p(t) = 36t4 + 36t3 + 24t2 + 6t + 1,
tr(t) = 6t2 + 1,
n(t) = 36t4 + 36t3 + 18t2 + 6t + 1.

The curve is defined as E : y2 = x3 + v for some v ∈ Fp. The choice
of t̄ must meet the following requirements: both p(t̄) and n(t̄) must be
prime and t̄ must be large enough to guarantee a chosen security level.
For the efficiency of pairing computation, t̄, p(t̄) and tr(t̄) should have
small Hamming-weight.

For example, [7] suggested to use t̄ = 0x6000000000001F2D, which is
also used in [10] and [12]. With this parameter, pairings defined over p(t̄)
achieves 128-bit security.

Table 1. Selection of t̄ for BN curves in [7]

t̄ HW(6t̄ + 2) HW(tr) HW(p) log(2, p)

0x6000000000001F2D 9 28 87 256

2.3 Multiplication in Fp

We briefly recall the techniques for integer multiplication and reduction.
Given a modulus p < 2n and an integer c < 22n, the following algorithms
can be used to compute c mod p.

Barrett reduction The Barrett reduction algorithm [2] uses a pre-

computed value µ = ⌊2
2n

p ⌋ to help estimate c
p , thus integer division is

avoided. Dhem [8] proposed an improved Barrett modular multiplication
algorithm which has a simplified final correction.

Montgomery reduction The Montgomery reduction method [16]
precomputes p′ = −p−1 mod r, where r is normally a power of two. Given
c and p, it generates q such that c + qp is a multiple of r. As a result,
(c + qp)/r is just a shift operation. Algorithm 2 shows both Barrett and
Montgomery multiplication algorithms.

Chung-Hasan reduction In [4, 5], Chung and Hasan proposed an
efficient reduction method for low-weight polynomial form moduli p =
f(t̄) = t̄n + fn−1t̄

n−1 + .. + f1t̄ + f0, where |fi| ≤ 1. The modular multi-
plication is shown in Alg. 3.

4



Algorithm 2 Digit-serial modular multiplication algorithm.

Barrett [8] Montgomery [16]
Input: a = (an−1, .., a0)d,
b = (bn−1, .., b0)d,
p = (pn−1, .., p0)d,0 ≤ a, b < p,
2(n−1)w ≤ p < 2nw, d = 2w.
Precompute µ =

¨

dn+3/p
˝

.
Output: c = ab mod p.

1: c← 0.
2: for i = n− 1 downto 0 do
3: c← c · d + a · bi.
4: q̂ ←

¨`

⌊c/dn−2⌋ · µ
´

/2w+5
˝

.
5: c← c− q̂ · p.
6: end for
7: if c ≥ p then
8: c← c− p.
9: end if

Return c.

Input: a = (an−1, .., a0)d,
b = (bn−1, .., b0)d,
p = (pn−1, .., p0)d, 0 ≤ a, b < p,
r = dn,
Precompute p′ = −p−1 mod d, d = 2w.
Output: c = abr−1 mod p.

1: c← 0.
2: for i = 0 to n− 1 do
3: c← c + abi.
4: u← c mod d, q ← (up′) mod d.
5: c← (c + qp)/d.
6: end for
7: if c ≥ p then
8: c← c− p.
9: end if

Return c.

Algorithm 3 Chung-Hasan multiplication algorithm [4].

Input: positive integers a =
Pn−1

i=0 ait
i, b =

Pn−1
i=0 bit

i, modulus p = f(t) = tn +
fn−1t

n−1 + .. + f1t + f0.
Output: c(t) = a(t)b(t) mod p.

1: Phase I: Polynomial Multiplication
2: c(t)← a(t)b(t).
3: Phase II: Polynomial Reduction
4: for i = 2n− 2 down to n do
5: c(t)← c(t)− cif(t)ti−n.
6: end for

Phase III: Coefficient Reduction
7: cn ← ⌊cn−1/t̄⌉, cn−1 ← cn−1- cn t̄.
8: c(t)← c(t)− cnf(t)t.
9: for i = 0 to n− 1 do

10: qi ← ⌊ci/t̄⌉, ri ← ci- qit̄.
11: ci+1 ← ci+1 + qi, ci ← ri.
12: end for
13: c(t)← c(t)− qnf(t)t.

Return c(t).

The polynomial reduction phase is rather efficient since f(t) is monic,
making the polynomial long division (step 3) simple. Barrett reduction is
used to perform divisions required in Phase III. The overall performance
is more efficient than traditional Barrett or Montgomery reduction algo-
rithm [4]. In [5], this algorithm is further extended to monic polynomials

5



with |fi| ≤ s where s ∈ (0, t̄) is a small number. Note that the polynomial
reduction phase is efficient only when f(t) is monic.

3 Fast modular reduction algorithm for BN curves

Instead of using a general modular reduction algorithm such as Mont-
gomery or Barrett algorithm, we explore the special characteristics of the
prime p. Note that the polynomial p(t) = 36t4 + 36t3 + 24t2 + 6t + 1
defined by BN is not monic, but has the following characteristics:

1. p(t) has small coefficients.
2. p(−1)(t) = 1 mod t.

The second condition implies via Hensel’s lemma that p(−1)(t) mod tn

has integer coefficients. This suggests that multiplication and reduction
with Montgomery’s algorithm in the polynomial ring could be efficient.
We first present a modular multiplication algorithm for polynomial form
primes that satisfy p(−1)(t) = 1 mod t and then apply this method to BN
curves.

3.1 Hybrid Modular Multiplication

Algorithm 4 describes a modular multiplication algorithm for polynomial
form moduli. The algorithm is composed of three phases, i.e. polynomial
multiplication (step 3), polynomial reduction (step 4-6), and coefficient
reduction phase (step 9). Note that we present the algorithm in a digit-
serial manner. The polynomial reduction uses the Montgomery reduction,
while the coefficient reduction uses division. We call this algorithm Hybrid
Modular Multiplication (HMM).

Note that algorithm 4 works for any irreducible polynomial p(t) satis-
fying the condition p(−1)(t) = 1 mod t or equivalently, p(t) = 1 mod t. It
can also be easily modified to support p(t) satisfying p(−1)(t) = −1 mod t.

Algorithm 4 requires division by t̄ in both step 4 and step 9. Like
Chung-Hasan’s algorithm, division can be performed with the Barrett re-
duction algorithm [4]. However, the complexity of division can be reduced
if t̄ is a pseudo-Mersenne number. Algorithm 5 transfers division by t̄ to
multiplication by s for t̄ = 2m + s where s is small.

3.2 Modular Multiplication for BN Curves

In order to apply Alg. 4 and Alg. 5 to BN curves, we select t̄ = 2m + s
where s is small. Note that any choice of t̄ which makes p and n primes

6



Algorithm 4 Hybrid Modular Multiplication Algorithm

Input: a(t) =
Pn−1

i=0 ait
i, b(t) =

Pn−1
i=0 bit

i, and modulus p(t) =
Pn−1

i=1 pit
i + 1.

Output: r(t) = a(t)b(t)t−n mod p(t).

1: c(t)(=
Pn−1

i=0 cit
i)← 0 .

2: for i = 0 to n− 1 do
3: c(t)← c(t) + a(t)bi .
4: µ← c0 div t̄, γ ← c0 mod t̄.
5: g(t)← (pn−1t

n−1 + .. + p1t + 1)(−γ).
6: c(t)← (c(t) + g(t))/t + µ.
7: end for
8: for i = 0 to n− 2 do
9: ci+1 ← ci+1 + (ci div t̄), ci ← ci mod t̄.

10: end for

Return r(t)← c(t).

Algorithm 5 Division by t̄ = 2m + s

Input: a, t̄ = 2m + s with 0 < s < 2⌊k/2⌋.
Output: µ and γ with a = µt + γ, |γ| < t̄.

1: µ← 0, γ ← a.
2: while |γ| ≥ t̄ do
3: ρ← γ div 2m, γ ← γ mod 2m.
4: µ← µ + ρ, γ ← γ − sρ.
5: end while

Return µ, γ.

of the required size will suffice. As such we can choose t̄ = 2m + s where
s is small; an example is shown in Table 2.

Table 2. Selection of t̄ = 2m + s for BN curves

t̄ HW(6t̄ + 2) HW(tr) HW(p) log(2, p)

263 + 29 + 28 + 26 + 24 + 23 + 1 6 20 68 257

With t̄ = 2m+s as shown in Table 2, Algorithm 6 describes a modular
multiplication algorithm for BN curves which we call HMMB.

The following lemma provides bounds on the input value such that
Algorithm 6 gives a bounded output. The proof is in the appendix.

Lemma 1. Given t̄ = 2m + s and ξ = (36s + 1) < 2m/2−7 (i.e. m ≥ 26),
if the input a(t) and b(t) satisfy

0 ≤ |ai|, |bi| < 2m/2, i = 4,
0 ≤ |ai|, |bi| < 2m+1, 0 ≤ i ≤ 3,

7



Algorithm 6 Hybrid Modular Multiplication Algorithm for BN curves

Input: a(t) =
P4

i=0 ait
i, b(t) =

P4
i=0 bit

i. p(t) = 36t4 + 36t3 + 24t2 + 6t + 1, p−1(t) =
1 mod t, t̄ = 2m + s.
Output: r(t) = a(t)b(t)t−5 mod p(t).

1: c(t)(=
P4

i=0 cit
i)← 0 .

2: for j = 0 to 4 do
3: c(t)← c(t) + a(t)bj .
4: µ← c0 div 2m, γ ← (c0 mod 2m)− sµ.
5: g(t)← (36t4 + 36t3 + 24t2 + 6t + 1)(−γ).
6: c(t)← (c(t) + g(t))/t + µ.
7: end for
8: for i = 0 to 3 do
9: µ← ci div 2m, γ ← (ci mod 2m)− sµ.

10: ci+1 ← ci+1 + µ, ci ← γ.
11: end for
12: Repeat step 8-11.

Return r(t)← c(t).

then r(t) calculated by Alg. 6 satisfies

0 ≤ |ri| < 2m/2, i = 4,
0 ≤ |ri| < 2m+1, 0 ≤ i ≤ 3.

This algorithm is suitable for high performance implementation on
multi-core systems. One can see that the first loop of HMMB algorithm
can be easily parallelized. This is an intrinsic advantage of this algorithm,
i.e. no carry propagation occurs during polynomial multiplication. The
coefficient reduction phase can also be parallelized. We modify the last
two loops of the HMMB algorithm and give a parallel version.

loop1 µi ← ci div 2m, γi ← (ci mod 2m)− sµi 0 ≤ i ≤ 3.
ci ← γi + µi−1 1 ≤ i ≤ 3.
c0 ← γ0, c4 ← µ3.

loop2 µi ← ci div 2m, γi ← (ci mod 2m)− sµi 0 ≤ i ≤ 3.
ci ← γi + µi−1 1 ≤ i ≤ 3.
c0 ← γ0, c4 ← c4 + µ3.

From the proof of Lemma 1 we know ci < 5 · 22m+3 for 0 ≤ i ≤ 4.
Thus, after loop1, we have

|ci| = |µi−1|+ |γi| < 5 · 2m+3 + 5 · 2m+3s + 2m < s2m+6.

Furthermore, after loop2, we have

|ci| = |µi−1|+ |γi| < s26 + 26s2 + 2m < 2m+1.

8



3.3 Complexity of Algorithm 6

We compare the complexity of Alg. 6 with Montgomery’s and Barrett’s
algorithm for 256-bit BN curves. We assume a digit-serial method is used
with digit-size 64-bit. Note that Alg. 6 requires four 64-bit words together
with one 32-bit word to represent a 256-bit integer.

For Montgomery multiplication, nine 64x64 multiplications are re-
quired in each iteration, resulting in 36 subword multiplications in to-
tal. Barrett multiplication has the same complexity as Montgomery algo-
rithm.

For HMMB, in the first loop four 64x64 and one 32x64 multiplications
are required in step 3, one ⌈log2(s)⌉x⌈log2(µ)⌉multiplication is required in
step 4. The last iteration takes four 32x64 and one 32x32 multiplications.
In total, the first loop takes one 32x32, eight 32x64, sixteen 64x64, and
five ⌈log2(s)⌉x⌈log2(µ)⌉ multiplications, where µ < 2k+6 as shown in the
proof of Lemma 1. Note that p(t)γ can be performed with addition and
shift operation, e.g. 36γ = 25γ + 22γ.

The coefficient reduction phase requires eight ⌈log2(s)⌉x⌈log2(µ)⌉mul-
tiplications. From the proof of Lemma 1 we know that ci < 5 ·22k+3, thus
µ < 2k+6 in the first for loop (step 8-10). In the second for loop (step
12), as shown in the end of section 3.2, we have µ < s26.

Table 3 compares the number of multiplications required by the Bar-
rett, Montgomery and the HMMB algorithm. Compared to Barrett and
Montgomery reduction, HMMB has much lower complexity. One can see
that sµ can be efficiently computed if s is small (see Table 2). Especially, if
s is of low Hamming-weight, sµ can be performed with shift and addition
operations.

Table 3. Complexity comparison of different modular multiplication algorithms

Algorithm 32x32 32x64 64x64 ⌈log2(s)⌉x⌈log2(µ)⌉

Barrett 36

Montgomery 36

HMMB 1 8 16 13

4 Hardware Design of Pairings

As a verification of the efficiency of the HMMB algorithm, we made a
hardware implementation of the ate and R-ate pairing using this algo-

9



Fig. 1. Fp multiplier using algorithm HMMB.

rithm. We chose t̄ = 263 + s, where s=29+28+26 + 24 + 23 + 1. With this
setting, the implementation achieves 128-bit security.

4.1 Multiplier

Figure 1 shows the realization of the HMMB algorithm. A row of mul-
tipliers is used to carry out step 3, namely, aibj for 0 ≤ i ≤ 4. We used
a 64x16 bit multiplier, thus four cycles are required for each iteration.
One can adjust the size of multiplier for different design purposes, i.e.
high clock frequency, small area and so on. The partial product is then
reduced by the ”Mod t” component. The ”Mod t” component, which is
composed of a multiplier and a subtracter, generates µ and γ from ci,
namely, µ← ci div 2m and γ ← (ci mod 2m)−sµ. Note that the ”Mod t”
component below rc0 is slightly different, where γ ← (sµ−(rc0 mod 2m)).

The dataflow of this implementation is slightly different from that in
Alg. 6. Instead of performing coefficient reduction in the end, we reduce
the coefficients before polynomial reduction. This reduces the length of
ci and rci in Fig. 1, and one instead of two coefficient reduction loop is
required in the end. The ”Mod t” components are reused to perform the
final reduction loop. After that, r(t) is ready in the accumulators.

10



4.2 Pairing Processor Architecture

Using the multiplier described above, we built a pairing processor. Fig-
ure 2 shows the block diagram of the processor. It consists of a micro-
controller, a program ROM, an Fp multiplier and adder/subtracter, a
register file and an IO buffer. The data is stored in a 64-bit single port
RAM. The program ROM contains subroutines that are used in Miller’s
loop, such as point addition, point doubling, line evaluation, multipli-
cation in Fp12 , and so on. The micro-controller realizes Miller’s loop by
calling the corresponding sub-routines.

Fig. 2. Block diagram of the system architecture.

The ALU is able to execute multiplication and addition/subtraction
instructions in parallel. A simple example is shown in Fig. 2. When per-
forming the mul operation, the micro-controller fetches the next instruc-
tion and checks if it is an add or sub instruction. If it is, then it is executed
in parallel if there is no data dependency on the ongoing mul instruction.
Table 4 gives the number of clock cycles that are required for each sub-
routine and pairing.

5 Implementation Results

The whole system is synthesized using 130 nm standard cell library. It can
run at a maximum frequency of 204 MHz. The pairing processor alone

11



Table 4. Number of clock cycles required by different subroutines

2T T+Q lT,T (P ) lT,Q(P ) f2 f · l f (pk−1)/r ate R-ate

#Cycles 574 984 422 260 1541 1239 281558 861724 592976

uses around 183 kGates, including 70 kGates used by Register File and
25 kGates used by controller and Program ROM. It finishes one ate and
R-ate pairing computation in 4.22 ms and 2.91 ms, respectively. Table 5
compares the result with the state-of-the-art implementations.

Table 5. Performance comparison of software and hardware implementations of pairing

Design Pairing Security Platform Area Frequency Performance
[bit] [MHz] [ms]

this design ate 128 130 nm ASIC 183 kGates 204 4.22
R-ate 2.91

Tate 34.4
[12] ate 128 130 nm ASIC 97 kGates 338 22.8

R-ate 15.8

[10] ate 128 64-bit core2 - 2400 6.25
R-ate 4.17

[9] ate 128 64-bit core2 - 2400 6.01

[18] ηT over F2239 67 XC2VP100-6 25278 slices 84 0.034
ηT over F2283 72 37803 slices 72 0.049

[3] ηT over F397 66 XC4VLX60-11 18683 slices N/A 0.0048
ηT over F3193 89 XC4VLX100-11 47433 slices N/A 0.010

Kammler et al. [12] reported the first, and so far the only, hardware
implementation of cryptographic pairings achieving a 128-bit security.
They chose t̄=0x6000000000001F2D to generate a 256-bit BN curve. The
Montgomery algorithm is used for Fp multiplication. Compared with this
design, our implementation is about 5 times faster in terms of R-ate pair-
ing calculation. The main speedup comes from fast modular multiplica-
tion in Fp and larger register file. For an Fp multiplication, the multiplier
shown in Fig. 1 takes 23 cycles excluding memory access, while 68 cycles
are required in [12]. Though the area of our design is around 1.9 times
larger, the area-latency product is still smaller than that in [12].

The results of software implementations [10, 9] are quite impressive.
On an Intel 64-bit core2 processor, R-ate pairing requires only 4.17 ms.
The advantages of Intel core2 is that it has a fast multiplier (two full 64-

12



bit multiplication in 8 cycles) and relatively high clock frequency. Though
it takes 16 times more clock cycles (107 cycles for R-ate [10]) than our
hardware implementation, the overall speed is only 1.4 times lower.

There are also some hardware implementations [18, 3] for ηT pairing
over binary or cubic curves. Note that the security achieved using the
reported parameters is much lower than 128-bit, which makes a fair com-
parison difficult.

6 Conclusions

In this paper, we studied a new fast implementation of cryptographic
pairings using BN curves. We introduce a new modular multiplication
algorithm and a method to select multiplication-friendly parameters. We
show that with careful selection of parameters the proposed algorithm
has much lower computational complexity than traditional Barrett or
Montgomery methods.

As a verification, we also implemented ate and R-ate pairing in hard-
ware using this algorithm. Our results outperform previous hardware im-
plementations by a factor of roughly 5. Note that smaller digit size can
be used when targeting a compact hardware implementation. For future
work, it is also definitely interesting to see the performance of this al-
gorithm implemented in software. Finally, we remark that the described
algorithms also generalize to other pairing friendly finite fields and even
more generally, to other types of finite fields.

Acknowledgments

The authors would like to thank the anonymous referees for detailed re-
view. We adequately appreciate their observations and helpful sugges-
tions.

References

1. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient Algorithms for
Pairing-Based Cryptosystems. In Advances in Cryptology CRYPTO 2002, pages
354–369, 2002.

2. P. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Proc. CRYPTO’86, pages
311–323, 1986.

3. J. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodŕıguez-Henŕıquez.
Hardware Accelerator for the Tate Pairing in Characteristic Three Based on
Karatsuba-Ofman Multipliers. Cryptology ePrint Archive, Report 2009/122, 2009.
http://eprint.iacr.org/.

13



4. J. Chung and M.A. Hasan. Low-Weight Polynomial Form Integers for Efficient
Modular Multiplication. IEEE Trans. Comput., 56(1):44–57, 2007.

5. J. Chung and M.A. Hasan. Montgomery Reduction Algorithm for Modular Multi-
plication Using Low-Weight Polynomial Form Integers. In ARITH ’07: Proceedings
of the 18th IEEE Symposium on Computer Arithmetic, pages 230–239, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

6. R. Dahab, A. Devegili, C. Ó’ hÉigeartaigh, and M. Scott. Multiplication and
Squaring on Pairing-Friendly Fields. Cryptology ePrint Archive, Report 2006/471.
Available from http://eprint.iacr.org.

7. A. Devegili, M. Scott, and R. Dahab. Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In Pairing-Based Cryptography Pairing 2007, pages 197–
207, 2007.

8. J.-F. Dhem. Design of an efficient public-key cryptographic library for RISC-based
smart cards. PhD thesis, Universite catholique de Louvain, Louvain-la-Neuve,
Belgium, 1998.

9. P. Grabher, J. Großchäedl, and D. Page. On Software Parallel Implementation
of Cryptographic Pairings. In Selected Areas in Cryptography – SAC 2008, pages
34–49. Springer Verlang, LNCS 5381, August 2008.

10. D. Hankerson, A. Menezes, and M. Scott. Software implementation of Pairings.
In M. Joye and G. Neven, editors, Identity-Based Cryptography, 2008.

11. F. Hess, N.P. Smart, and F. Vercauteren. The Eta Pairing Revisited. Information
Theory, IEEE Transactions on, 52(10):4595–4602, Oct. 2006.

12. D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg, D. Auras,
G. Ascheid, R. Leupers, R. Mathar, and H. Meyr. Designing an ASIP for Crypto-
graphic Pairings over Barreto-Naehrig Curves. Cryptology ePrint Archive, Report
2009/056, 2009. Available from http://eprint.iacr.org/.

13. E. Lee, H.-S. Lee, and C.-M. Park. Efficient and Generalized Pairing Computation
on Abelian Varieties. Cryptology ePrint Archive, Report 2009/040. Available from
http://eprint.iacr.org/.

14. V.S. Miller. Short Programs for Functions on Curves. 1986. Unpublished
manuscript, Available at http://crypto.stanford.edu/miller/miller.pdf.

15. V.S. Miller. The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology,
17(4):235–261, 2004.

16. P. Montgomery. Modular Multiplication without Trial Division. Mathematics of
Computation, 44(170):519–521, 1985.

17. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
Proceedings of SAC 2005, volume 3897 of LNCS, pages 319–331. Springer-Verlag,
2006.

18. C. Shu, S. Kwon, and K. Gaj. FPGA Accelerated Tate Pairing Based Cryptosys-
tems over Binary Fields. In Proceedings of IEEE International Conference on Field
Programmable Technology (FPT), pages 173–180, 2006.

APPENDIX

A: Proof of lemma 1.

Proof. The proof proceeds in two parts. The first part proves a bound on
the coefficients of c(t) after Step 7 and the second part analyzes the two
coefficient reduction loops (Step 8-12).

14



Denote ci,j the coefficients of c(t) at the beginning of the j-th iteration,
so c(t) in Step 7 has coefficients ci,5 (i.e. j ≤ 5). Let ∆ = 22m+3 then we
first show by induction on j that

|ci,j | ≤ j∆ . (1)

Clearly Equation (1) holds for j = 0, since ci,0 = 0. Now assume that (1)
holds for j, then we will show the inequality holds for j + 1. In Step 3,
ci,j increases by maximum 22m+2. In Step 4, we thus obtain

|µ| ≤ 2m+2 +
j∆

2m
and |γ| ≤ 2m + s|µ| .

In Step 5, we have |gi| ≤ 36|γ|, so in Step 6 we finally obtain

|ci,j+1| ≤ 22m+2 + j∆ + 36|γ|+ |µ| = (j + 1)∆− 22m+2 + 36|γ|+ |µ| ,

so it suffices to prove that 36|γ|+ |µ| ≤ 22m+2. Rewriting this leads to

36 · 2m + (36s + 1)|µ| = 36 · 2m + ξ|µ| ≤ 22m+2 ,

which concludes the proof of (1).
For c3,5 we need to obtain a better bound since the bound on the final

r4 is also smaller. Note that coefficient c3,5 is computed as c3,5 = a4b4+36γ
where γ can be bounded by 2m + 2m+6s. This finally leads to the bound

c3,5 < 2m + 36(2m + 2m+5s) < 37 · 2m + 2m+m/2−1 .

For the first coefficient reduction step, it is easy to see that for i =
0, 1, 2 we have |µ| ≤ 5 ·2m+3 +5 ·23, so after the first reduction we obtain
for i = 0, . . . , 3

|ci| ≤ 2m + s|µ| < 2m + (5 · 2m+3 + 5 · 23)s < 2m+6s .

For c3 however, we obtain |µ| < 37 + 2m/2−1 + 26s which becomes c4.
For the second coefficient reduction step, it is again easy to see that

i = 0, 1, 2 we have |µ| ≤ 26s and thus |ci| ≤ 2m + 26s2 < 2m+1. For c4 we
obtain, c4 = 37 + 2m/2−1 + 27s < 2m/2, since m > 26. ⊓⊔

15


