
A Design Flow and Evaluation Framework for

DPA-resistant Instruction Set Extensions

Francesco Regazzoni1,4, Alessandro Cevrero2,3, François-Xavier Standaert1,
Stephane Badel3, Theo Kluter2, Philip Brisk2, Yusuf Leblebici3, and Paolo

Ienne2
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Abstract. Power-based side channel attacks are a significant security
risk, especially for embedded applications. To improve the security of
such devices, protected logic styles have been proposed as an alternative
to CMOS. However, they should only be used sparingly, since their area
and power consumption are both significantly larger than for CMOS.
We propose to augment a processor, realized in CMOS, with custom
instruction set extensions, designed with security and performance as
the primary objectives, that are realized in a protected logic. We have
developed a design flow based on standard CAD tools that can automat-
ically synthesize and place-and-route such hybrid designs. The flow is
integrated into a simulation and evaluation environment to quantify the
security achieved on a sound basis. Using MCML logic as a case study,
we have explored different partitions of the PRESENT block cipher be-
tween protected and unprotected logic. This experiment illustrates the
tradeoff between the type and amount of application-level functionality
implemented in protected logic and the level of security achieved by the
design. Our design approach and evaluation tools are generic and could
be used to partition any algorithm using any protected logic style.

1 Introduction

Security is a fundamental requirement for modern embedded systems. Math-
ematically strong cryptographic algorithms are insufficient due to the advent
of side channel attacks, which exploit weaknesses in the underlying hardware
platform rather than directly attacking the algorithm itself. At present, there
is no perfect protection against side channel attacks. Hence, combining coun-
termeasures implemented at different abstraction levels is necessary to reach a
significant security level. In this context, solutions exploiting a dedicated tech-
nology such as protected logic styles are interesting because they directly tackle
the problem of information leakage at their source. These logic styles can also be



combined with software countermeasures to increase the difficulty of performing
an attack.

The main drawback of protected logic styles proposed so far is that their area
and power consumption are both significantly greater than that of traditional
CMOS. They can also significantly increase the design time compared to circuits
built from standard cells. Hence, complete processors and ASICs implemented
in protected logic styles are generally too costly for practical applications, and
would likely have low production volumes.

To overcome this issue without compromising security, protected logic styles
must be used sparingly. With this respect, an interesting alternative is to build
processors and ASICs that are realized primarily in CMOS logic, with a small
and security-critical portion of the design realized in a protected logic. This
creates a new and challenging partitioning problem that designers must be able
to solve. But doing so will be quite difficult unless there is a suitable metric to
evaluate and compare the security of a computation performed in either CMOS
or a protected logic. Additionally, CAD tools must be able to support complex
design flows that mix different logic styles. Finally, there is a distinct need for
a comprehensive evaluation framework that combines a simulation environment
with suitable metrics and provides a fair and accurate comparison of designs in
respect to different criteria (e.g., power consumption, area, throughput, security).

To this end, this paper proposes a complete design flow for implementing and
verifying circuits realized combining protected and non protected logic styles.
Our design flow is built from standard CAD tools and is integrated with a
methodology to evaluate the security of the designs that have been partitioned,
following a theoretical framework for analyzing the information leakage provided
by side-channel attacks. Focusing on a processors augmented with custom In-
struction Set Extensions (ISEs) realized in protected logic styles, we explore the
tradeoffs between the type and amount of application-level functionality imple-
mented in protected logic and the level of security that can be achieved by the
design. In our experiments, in particular, we vary the portions of the crypto-
graphic algorithm that are realized in protected logic and CMOS, which gives
us a better understanding of the tradeoffs between the usage of protected logic
and security.

Starting from an RTL description of the target processor and a software
implementation of a cryptographic algorithm, our tool allows the user to manu-
ally select the sensitive parts of the algorithm to be protected. Our design flow
then automatically generates the new software, the ISEs and their interface to
the processor, synthesizing a complete system as described above. The power
consumption of the full system is simulated at the SPICE level while running
the application. These power traces are then used to compute an information
theoretic metric in order to evaluate the information leakage of the protected
core. We have selected MOS Current Mode Logic (MCML) as the protected logic
for use in this study. However, the ideas presented in this paper are generally
amenable to any type of protected logic that is compatible with a CMOS process.



The remainder of the paper is organized as follows. Section 2 summarizes
previous works in the area of side channel attacks. Section 3 recalls the metric
used to evaluate the side-channel leakage and presents several extensions that
were necessary to make it usable in the context of our design flow. Section 4
describes our hybrid design and evaluation methodology. Section 5 presents the
results we obtained applying our methodology to the PRESENT block cipher
and discusses the security vs. cost tradeoffs. Section 6 concludes the paper.

2 Background and Related Work

Side channel attacks are a powerful and easy to perform class of physical attacks.
Consequently they have received much attention from the scientific community.
The most frequently considered sources of side-channel information are power
consumption and timing characteristics [13, 12]. To perform Differential Power
Analysis (DPA), the attacker executes the cryptographic algorithm on a tar-
get device multiple times, and then uses statistical methods to evaluate the
information observed from the executions. Countermeasures, such as algorith-
mic techniques [7, 23], architectural approaches [11, 18, 19], and hardware-related
methods [20, 27] can help to protect against DPA. Even if none of them are per-
fect, these countermeasures increase the efforts required to mount a successful
attack. In this paper, we are mainly concerned with technological solutions, usu-
ally denoted as DPA-resistant logic styles in the literature.

Many DPA-resistant logic styles have been proposed in the past. Sense Am-
plified Base Logic (SABL) [27], for example, combines dual-rail and pre-charged
logic [17]. SABL cells consume constant power, provided that they are designed
and implemented in a carefully balanced way. Other proposed DPA-resistant
logic styles include: Wave Dynamic Differential Logic (WDDL) [28], which bal-
ances circuit activity with complementary logic gates; Dynamic Current Mode
Logic (DyCML) [2, 15], a dual-rail pre-charge logic, similar to SABL, but with
a reduced power-delay product; Low-swing current mode logic (LSCML) [9],
which is similar to DyCML, but is independent of transistor sizes and load ca-
pacitances; Masked Dual-Rail Pre-charge Logic (MDPL) [21], which attempts to
eliminate routing constraints that plague other dual-rail style gates; Gammel-
Fischer Logic (GF) [8], a form of masked logic that protects against information
leakage in the presence of glitches; finally, MCML that will be our running ex-
ample [22], a MOS transistor-based current mode logic.

One of the key challenges when implementing protected logic styles is to an-
alyze the DPA-resistance of the different operators in an application. This task
is even more critical when partitioning a design between CMOS and a protected
logic. To address possible shortcomings, Standaert et al. [24] introduced a combi-
nation of metrics that can be used to describe the amount of information leaked
by a cryptographic device and the effectiveness of a side-channel adversary to ex-
ploit this information. When analyzing new countermeasures, it is primarily the
information theoretic metric that is most useful, since it quantifies the reduction
in information leakage resulting from the countermeasure using a sound criteria.



In theory, this metric yields an adversary-independent image of the asymptotic
security of the device. This metric was first applied to DPA-resistant logic styles
by Mace et al. [16], who describe in detail how to compute the entropy of a secret
key conditionally with respect to the physical leakage in different scenarios. In
this paper, we follow and extend this application of the metric.

Various studies on partitioning designs between CMOS and protected logic
have been published in the literature. The most relevant work related to our con-
cerns is probably the one of Tillich and Großschädl [26]. These authors analyze
the resistance against side channel attacks of a processor extended with custom
ISE for AES. They consider the possibility of implementing the most security-
critical portions of the processor datapath in a DPA-resistant logic style. Our
paper extends these initial ideas, providing different novel contributions. We
present a fully automated design flow that allows realizing and simulating a
complete environment (core + protected ISE). This proves the feasibility of com-
bining CMOS and protected logic styles on the same chip and provides realistic
measurements for area and power consumption. We also provide a more precise
evaluation of the resistance against power analysis attacks for each design, due
to the integration of an objective metric that quantifies the information leaked
by different protected implementation. Lastly, our quantitative analysis applies
jointly to security and performance issues and drives the process of ISE iden-
tification and synthesis; to the best of our knowledge, prior ISE identification
methods have been driven primarily by performance [10, 4, 25].

3 Security Evaluation

The evaluation of the power consumption leakage provided by our simulation
environment follows the principles of [24]. The goal of this methodology (that
we don’t detail here) is to provide fair evaluation metrics for side-channel leakage
and attacks. In particular and as far as evaluating countermeasures or protected
logic styles is concerned, the information theoretic metric that we now summa-
rize allows being independent of a particular DPA attack scenario. It intuitively
measures the resistance against the strongest possible type of side-channel at-
tacks. In summary, let K be a random variable representing the key that is to be
recovered in the side-channel attack; let X be a random variable representing the
known plaintexts entering the target (leaking) operations; and let L be a random
variable representing the power consumption traces generated by a computation
with input x and key k. In our design environment, L is the output of a SPICE
simulation trace T to which we add a certain amount of normally distributed
random noise R, i.e. L = T +R. We compute the conditional entropy (or mutual
information) between the key K and its corresponding leakage L, that is,

H[K|L] = −
∑

k

Pr[k] ·
∑

x

Pr[x]

∫
Pr[l|k, x] · log2 Pr[k|l, x] dl.

There are different factors that influence this conditional entropy. The first is
the shape of the simulated traces T . The second is the standard deviation of



the noise in the leakage L. The number of dimensions in the traces is also im-
portant. Simulated traces contain several thousands of samples. Hence, directly
applying multivariate statistics on these large dimensionality variables is hardly
tractable. Mace et al. [16] reduce the dimensionality using Principal Component
Analysis (PCA), and then evaluate the conditional entropy. Thus, the number
of dimensions remaining after PCA is a third parameter that we consider.

Our usage of the metric builds on Mace et al.’s in two respects. First, we move
from a 1-dimensional analysis to a multi-dimensional analysis, and we discuss
the extent to which more samples increase the estimated value of H[K|L]. Ad-
ditionally, we analyze complete designs, rather than 2-input logic gates, thereby
establishing the scalability of the aforementioned metric and evaluation tools.

4 The Proposed Hybrid Design Flow

This section describes the entire design flow, from RTL to the integration with
the information theoretic metric discussed in the preceding section. For any
application, there exists a range of possible architectural and electrical imple-
mentations, such as ASIC vs. processor, or standard cell vs. full custom design.
The choice of the platform has historically been dictated by performance, area,
and/or power consumption, each of which can be measured accurately. Once the
initial design point is fixed, designers consider a fine-grained space of possible
solutions, and only at this point is security typically considered, often based
mainly on empirical evaluation. The aim of this work is to bring security to the
forefront of design variables for embedded systems by associating it with a clear
quantitative metric. To achieve our goal, we propose a flexible and fully auto-
mated design flow based on standard CAD tools. The flow supports partitioning
of a design between CMOS and protected logic, and includes a sound metric to
measure resistance against side-channel attacks.

Figure 1 depicts the design flow, which is an extension of prior simulation-
based methodologies to evaluate resistance to power analysis attacks [6, 22]. The
key idea is to use commodity from EDA tools and to leverage on transistor level
simulation to provide a high degree of accuracy. The design flow that is used
in this study targets an embedded processor that is augmented with instruction
set extensions. The ISE are designed using information leakage as part of the
objectives to optimize, and are implemented in a protected logic style. This
point represents a major innovation, since in recent years, ISEs have been used
primarily to improve performance, rather than to enhance security.

The flow has two inputs: the RTL description of an embedded processor that
supports ISEs, and a software implementation of a cryptographic algorithm. The
software code is passed to a tool that automatically extracts its data flow graph.
The user manually select from the aforementioned graph the portion of the al-
gorithm to be implemented in protected ISEs. Once this selection is done, the
remainder of the flow is fully automated: the rewritten software, including an
explicit call to the ISE is generated, along with an RTL description of the ISE
and its interface to the processor. The output of the flow is a place-and-routed



hardware design that is evaluated using a sound metric that measures informa-
tion leakage. By iterating through different ISE implementations, an architect
could generate a set of a design among which select the most suitable one.
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Fig. 1. Full view of the design flow.

In the newly generated software, calls to the ISE are automatically generated
using the correct syntax, consistent with the RTL code, and thus supported by
the compiler. The corresponding binary file is generated and simulated using
an interpreter that mimics full system behavior, including the boot loader, and
generates the corresponding values of the processor pins for each cycle of software
execution. The pin values are then used in every validation step, including the
generation of test vectors for use in SPICE level simulation. The SPICE level
simulation of the full core (core + protected ISE) generates power traces which
are used to measure the leakage of the processor.

To generate the customized processor, we begin with an HDL description of
the processor core and a software implementation of a cryptographic algorithm.



The first step is to select from an automatically generated data flow graph one or
more ISEs to realize in protected logic; at present, this selection is the only step
still performed manually, although we intend to automate it in the future. Once
the HDL description of the ISE(s) has been generated, the circuit is synthesized
using protected logic based on a standard cell library using Synopsys Design
Compiler. The circuit is then placed and routed with Cadence Design Systems
SoC Encounter. A parasitics file (in spef format) is produced, along with the
Verilog netlist of the circuit and an sdf file for back annotation of the delays. The
library file describing the ISE (i.e., timing information, power and dimension)
and the layout exchange format file (the abstract view for placement and routing)
are generated to integrate the ISE as a black box during synthesis and placement
and routing of the complete design. Next, the complete design (i.e., the processor
augmented with ISEs as a black-box) is synthesized and placed and routed using
a standard CMOS flow. For the front end, the ISE library file is loaded by Design
Compiler; the unit is recognized by the synthesis engine and the ISE’s timing
information is used during the synthesis process. During the physical design
phase, the ISE is treated as a macro just like typical IP blocks and is pre-placed
into the core. The flow produces the spef and sdf files and the Verilog netlists of
the whole design.

Post-place-and-route simulation is now performed using ModelSim, with the
previously generated sdf files (CMOS and protected logic) under the considered
cryptographic benchmark. This simulation verifies the functionality of the pro-
cessor and generates the test vectors for transistor-level simulation that will be
used to generate power traces that will be input to the security evaluation. Syn-
posys Nanosim performs transistor-level simulation, using the spef files for the
protected ISE and CMOS core, with the relative Verilog netlists, SPICE mod-
els of the technology cells and the transistor models. This simulation generates
vector-based time-varying power profiles which are stored in a simple text for-
mat. This data typically corresponds to the simulated traces represented by the
variable T in Section 3 which concludes the treatment of the flow.

5 Case Study and Results

In this section we present the results of the evaluation of our design flow evaluated
with different metrics of performances and security.

5.1 PRESENT Algorithm and the Considered Versions Overview

PRESENT [5] is a block cipher based on an SP-network that consists of 31
rounds. The block length is 64 bits and two key lengths of 80 and 128 bits are
supported. During the encryption process, three different transformations are it-
erated 31 times. The three basic transformations are: addRoundKey, sBoxLayer,
and pLayer : the first is function of the state and the secret key, while the fi-
nal two are only functions of the state. At the completion of the last round an
extra addRoundKey transformation is performed. The added key is different in



each round and these round keys are generated by a key schedule routine that
takes the secret key and executes an expansion as specified in algorithm descrip-
tion. The evaluation performed in this work, is done on a reduced version of the
PRESENT algorithm, composed of just addRoundKey and sBoxLayer of 4 by 4
bit. We selected PRESENT as case of study for this work because the size of its
S-box permits an exhaustive search of the design space without compromising
the generality of the proposed methodology and results.
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Fig. 2. Considered implementations for the algorithm.

For our experiments, we considered the five possible implementations of the
algorithm, that are depicted in Figure 2. Each implementation has a different
section realized in protected logic. The first version, Full CMOS, is the reference
version, in which the core is completely implemented in CMOS and the software
does not leverage on any kind of ISE. In the second, XOR ISE, the full program
is executed on the CMOS core, except for the secret key, that is stored into
a protected register and the keyAddition, that is implemented using protected
ISE. The third version, S-box ISE, implements only the sBoxLayer in a protected
ISE, while the rest of the algorithm executes on the CMOS core. The fourth,
XOR + S-box ISE, stores the secret key in a protected register and executes both
addRoundKey and sBoxLayer using a protected ISE, but writes the result back
to the processor register file, which is unprotected. Lastly, full ISE implements
addRoundKey and sBoxLayer in protected logic, and stores the secret key and
the result in a protected register that is part of the ISE as well.

5.2 Experimental setup

The processor used in this work is an OpenRISC 1000 [14], a five stage pipelined
in-order embedded processor. The processor provides a 32-bit datapath and a
32-entry single write-port, dual read port register file. The processor includes
extra opcode space to support ISEs and is provided with a gcc cross-compiler.



We have selected MOS Current-Mode Logic (MCML) as secure logic style
to implement the protected ISEs. MCML cells are low-swing, fully-differential
circuits built with networks of differential pairs biased with a constant current
source [1]. The constant DC current and the differential nature of the cells pro-
vide an almost constant current consumption profile, which is independent of
the switching activity. In theory, this results in a dramatic decrease of side-
channel leakage and thus increased resistance against DPA attacks [22, 29]. The
increased DPA-resistance in differential logic circuits is obtained by the simul-
taneous and opposite switching of differential signal pairs resulting in almost
perfect cancellation of current transients. In order to obtain consistently robust
circuits, it is therefore critical to match the time constants in the two wires of
each pair. This implies that each pair of wires must be physically routed along
the exact same path, in order to equalize the length and parasitics of individ-
ual routes. To achieve this, the design flow proposed in [3] is used in this work.
This entirely automated methodology enables the implementation of standard
cell based-differential circuits from RTL with true differential routing, using a
classical timing-driven design flow without human intervention. With this ap-
proach, the sensitive parts of the processor are implemented with secure logic
and converter circuits are inserted at the boundary to interface between the
two different logic styles. This increases security in a transparent way, without
additional effort from the designers.
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// call the new instruction to calculate s-box(pt ˆkey)

2 Instr 1(plaintex, result);

3 return result; }; // return the result

Fig. 3. Example of an ISE and its source in C: the XOR + S-box .

One example of an automatically generated ISE, reported in Figure 3, depicts
the hardware view corresponding to the XOR + S-box ISE. The figure includes
the converters between CMOS and MCML, which are necessary to interface the
protected logic with the processor. These conversion circuits are automatically
added at the inputs and outputs of the ISE.

We performed our experiments using the following versions of the design
tools: Mentor Graphics Modelsim 6.2d for logic simulation, Synopsys Design
Compiler 2007.12 for synthesis, and Cadence Design System SoC Encounter 7.1,
for placementing and routing. Our CMOS target library was a 0.18µm commer-
cial standard cell library. SPICE level simulation was carried on using Synopsys
Nanosim 2007.03, and the transistor model is BSIM 3.3.



5.3 Results

Each of the five implementations presented in this paper has been synthesized
to run at a clock frequency of 100 MHz, under worst-case process conditions.
The same clock frequency is used for each of the ISEs.

Table 1 reports the area and average power consumption of the base Open-
RISC1000 processor, as well as all the four versions augmented with protected
ISEs. The average power consumption is calculated for each core during the ex-
ecution of the PRESENT algorithm, including calls to the ISEs. We report the
silicon area occupation and the gate count. The absolute silicon area provides
a clear measure for the physical cost of each implementation, while the number
of equivalent gates highlights the complexity of the circuit. We calculated the
number of equivalent gates for each implementation, with appropriate weights
to account for the disparity in sizes between reference gates for CMOS and
MCML. In our experiments, the difference in area penalty between the largest
and smallest ISE is 0.2%. This is primarily due to the small size of the PRESENT
algorithm, which tends to be overshadowed by the size of the conversion circuitry
at the CMOS-MCML boundary.

Table 1. Area occupation and average power consumption of each implementation.

Power Full Die ISE Gate
Version Consumption Size Size Count

(mW) (mm2) (mm2) (GE)

full CMOS 87.77 1.8603 - 139071

XOR ISE 129.24 1.9810 0.1207 140787

S-box ISE 129.42 1.9838 0.1235 140843

XOR + S-box ISE 129.81 1.9844 0.1241 140853

full ISE 129.83 1.9849 0.1246 140865

The full ISE implementation, which is the most resistant to DPA, increases
the power consumption by 47.9% with respect to the full CMOS design, while the
area overhead is to 6.7%. A similar level of leakage using the same protected logic
would be possible by implementing a full processor in MCML. Our results show
that this would increase the power consumption by a factor of approximately 40
time higher compared to a CMOS implementation, while increasing the total area
2.65 times. The large power difference is due to the static current consumption
of MCML gates, whose power consumption becomes close to CMOS gates for
high switching activity and operating frequancy. The MCML library, which has
been developed internally, has not been tuned for battery operated devices; an
MCML library tagetting these devices would significantly improve the results.

Preliminary results of our security evaluations using the information theo-
retic metric of Section 3 are plotted in Figure 4 for different implementations.
They show that increasing the number of dimensions to evaluate the mutual in-
formation I(K, L) improves the quality of the evaluations up to a certain extent,
where the noise variance is sufficiently large for hiding the small information
leakage in the higher dimensions of the transformed traces.
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Fig. 4. Mutual information leaked by different implementations in function of a noise
standard deviation, for different dimensions kept after application of the PCA.

Figures 5 and 6 compare the results for the five different processor and ISE
combinations. Figure 5 plots the mutual information leaked by the different
implementations. Figure 6 takes the opposite point of view, and illustrates the
amount of noise that is required to reduce the leakage up to a threshold. The
goal of a robust countermeasure is to reduce the information leakage.

These two figures concisely illustrate and confirm our intuition, namely, that
protecting a part of the algorithm reduces the leakage; however, the overall
security of a system depends on its weakest point. Consequently, there is a
significant improvement when considering a fully protected ISE. The analysis
shows that the fully protected ISE has no obvious logical weaknesses; however,
it remains to be determined the extent to which a fabricated piece of silicon can
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Fig. 5. Mutual information leaked by different implementations in function of a noise
standard deviation, with 5 dimensions kept after application of the PCA.

be built to confirm the results of the simulations. Anyway, these results confirm
the applicability of our proposed design flow up to the analysis of the side channel
leakage. The computation of the evaluation metrics, including the selection of
the points of interest in the leakage traces with a PCA, is fully automated.

6 Conclusions

With the increased use of embedded systems in security applications, protec-
tion against side channel attacks has become increasingly important. This paper
summarizes the first attempt to integrate a meaningful information leakage met-
ric into an industrial design flow for secure systems. Our results establish the
feasibility of the proposed flow, and show that the use of ISEs in protected logic
styles is a reasonable and low-cost method to provide the desired security. Fu-
ture work will focus on manufacturing the most promising implementations. It
is in fact well known that the decisive proof of robustness is obtained only when
the actual fabricated microchip is attacked using high frequency probes and an
oscilloscope. Nonetheless, our design flow is fundamental to perform a deeper
design space exploration before the fabrication.
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15. François Macé, François-Xavier Standaert, Ilham Hassoune, Jean-Didier Legat,

and Jean-Jacques Quisquater. A dynamic current mode logic to counteract power
analysis attacks. In Proceedings of the XIX Conference on Design of Circuits and

Integrated Systems, Bordeaux, France, November 2004.
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