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Abstract. We introduce and analyze a side-channel attack on a straight-
forward implementation of the RSA key generation step. The attack ex-
ploits power information that allows to determine the number of the trial
divisions for each prime candidate. Practical experiments are conducted,
and countermeasures are proposed. For realistic parameters the success
probability of our attack is in the order of 10–15 %.
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1 Introduction

Side-channel attacks on RSA implementations have a long tradition (e.g. [8, 9,
12, 13]). These attacks aim at the RSA exponentiation with the private key d
(digital signature, key exchange etc.). On the other hand only a few papers on
side-channel attacks, resp. on side-channel resistant implementations, exist that
focus on the generation of the primes p and q, the private key d and the public key
(e, n = pq) (cf., e.g. [4, 1]). If the key generation process is performed in a secure
environment (e.g., as part of the smart card personalisation) it is infeasible to
mount any side-channel attack. However, devices may generate an RSA key pair
before the computation of the first signature or when applying for a certificate.
In these scenarios the primes may be generated in insecure environments.

Compared to side-channel attacks on RSA exponentiation with the secret
key d the situation for a potential attacker seems to be less comfortable since
the primes, resp. the key pair, are generated only once. Moreover, the generation
process does not use any (known or chosen) external input.

We introduce and analyse a power attack on a straight-forward implemen-
tation of the prime generation step where the prime candidates are iteratively
incremented by 2. The primality of each prime candidate v is checked by trial
divisions with small primes until v is shown to be composite or it has passed all
trial divisions. To the ‘surviving’ prime candidates the Miller-Rabin primality
test is applied several times. We assume that the power information discovers the
number of trial divisions for each prime candidate, which yields information on p
and q, namely p(mod s) and q(mod s) for some modulus s, which is a product



of small primes. The attack will be successful if s is sufficiently large. Simu-
lations and experimental results show that for realistic parameters (number of
small primes for the trial divisions under consideration of the magnitude of the
RSA primes) the success probability is in the order of 10–15%, and that our
assumptions on the side-channel leakage are realistic.

Reference [4] considers a (theoretical) side channel attack on a careless im-
plementation of a special case of a prime generation algorithm proposed in [7]
that is successful in about 0.1% of the trials. Reference [3] applies techniques
from [1], which were originally designated for the shared generation of RSA keys.
We will briefly discuss these aspects in Section 6.

The intention of this paper is two-fold. First of all it presents a side-channel
attack which gets by with weak assumptions on the implementation. Secondly,
the authors want to sensibilise the community that RSA key generation in po-
tentially insecure environments may bear risks. The authors want to encourage
the community to spend more attention on the side-channel analysis of the RSA
key generation process.

The paper is organized as follows: In Section 2 we have a closer look at
the RSA prime generation step. In Section 3 we explain our attack and its
theoretical background. Section 4 and Section 5 provide results from simulations
and conclusions from the power analysis of an exemplary implementation on a
standard microcontroller. The paper ends with possible countermeasures and
final conclusions.

2 Prime Generation

In this section we have a closer look at the prime generation step. Moreover, we
formulate assumptions on the side-channel leakage that are relevant for the next
sections.

Definition 1. For any k ∈ N a k-bit integer denotes an integer that is con-
tained in the interval [2k−1, 2k). For a positive integer m ≥ 2 as usually Zm :=
{0, 1, . . . ,m − 1} and Z∗m := {x ∈ Zm | gcd(x,m) = 1}. Further, b(modm)
denotes that element in Zm that has the same m-remainder as b.

Pseudoalgorithm 1 (prime generation)
1) Generate a (pseudo-)random odd integer v ∈ [2k−1, 2k)
2) Check whether v is prime. If v is composite then goto Step 1
3) p := v (resp., q := v)

Pseudoalgorithm 1 represents the most straight-forward approach to generate
a random k-bit prime. In Step 2 trial divisions by small odd primes from a
particular set T := {r2, . . . , rN} are performed, and to the ‘surviving’ prime
candidates the Miller-Rabin primality test (or, alternatively, any other proba-
bilistic primality test) is applied several times. The ‘trial base’ T := {r2, . . . , rN}
(containing all odd primes ≤ some bound B) should be selected to minimize the
average run-time of Step 2.



By the prime number theorem

# primes ∈ [2k−1, 2k) ≈ 2k
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k
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)
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Consequently, for a randomly selected odd integer v ∈ [2k−1, 2k) we obtain

Prob
(
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)
≈ 2
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(
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k
− 1
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)
≈ 2
k loge(2)
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For k = 512 and k = 1024 this probability is ≈ 1/177 and ≈ 1/355, respectively.
This means that in average 177, resp. 355, prime candidates have to be checked
to obtain a k-bit prime. The optimal size |T | depends on k and on the ratio
between the run-times of the trial divisions and the Miller-Rabin tests. This
ratio clearly is device-dependent.

Hence Pseudoalgorithm 1 requires hundreds of calls of the RNG (random
number generator), which may be too time-consuming for many applications.
Pseudoalgorithm 2 below overcomes this problem as it only requires one k-bit
random number per generated prime. References [2, 11], for example, thus recom-
mend the successive incrementation of the prime candidates or at least mention
this as a reasonable option. Note that the relevant part of Pseudoalgorithm 2
matches with Algorithm 2 in [2] (cf. also the second paragraph on p. 444). The
parameter t in Step 2d depends on the tolerated error probability.

Pseudoalgorithm 2 (prime generation)
1) Generate a (pseudo-)random odd integer v0 ∈ [2k−1, 2k)

v := v0;
2) a) i := 2;

b) while (i ≤ N) do {
if (ri divides v) then {
v := v + 2; GOTO Step 2a; }

i++;
}

c) m := 1;
d) while (m ≤ t) do {

apply the Miller-Rabin primality test to v;
if the primality test fails then {
v := v + 2; GOTO Step 2a; }

else m++;
}

3) p := v (resp., q := v)

Pseudoalgorithm 2 obviously ‘prefers’ primes that follow long prime gaps but
until now no algebraic attack is known that exploits this property. However, the
situation may change if side-channel analysis is taken into consideration. We
formulate two assumptions that will be relevant for the following.



Assumptions 1. a) Pseudoalgorithm 2 is implemented on the target device.
b) Power analysis allows a potential attacker to identify for each prime candidate
v after which trial division the while-loop in Step 2b terminates. Moreover, he
is able to realize whether Miller-Rabin primality test(s) have been performed.

Remark 1. We may assume that
(i) a strong RNG is applied to generate the odd number v0 in Step 1 of Pseu-
doalgorithm 2.
(ii) the trial division algorithm itself and the Miller-Rabin test procedure are ef-
fectively protected against side-channel attack. This means that the side-channel
leakage does not reveal any information on the dividend of the trial divisions,
i.e. on the prime candidates v.

Remark 2. (i) If any of the security assumptions from Remark 1 are violated
it may be possible to improve our attack or to mount a different, even more
efficient side-channel attack. This is yet outside the scope of this paper. In the
following we merely exploit Assumption b)
(ii) Assumption b) is clearly fulfilled if the attacker is able to determine the be-
ginning or the end of each trial divisions. If all trial divisions require essentially
the same run-time (maybe depending on the prime candidates v) it suffices to
identify the beginning of the while-loop or the incrementation by 2 in Step 2b.
The run-time also reveals whether Miller-Rabin tests have been performed.
(iii) It may be feasible to apply our attack also against software implementations
on PCs although power analysis is not applicable there. Instead, the attacker may
try to mount microarchitectural attacks (cache attacks etc.).
(iv) We point out that more efficient (and more sophisticated) prime genera-
tion algorithms than Pseudoalgorithm 2 exist (cf. Section 6 and [1, 7, 11], Note
4.51(ii), for instance).

3 The Attack

In Section 3 we describe and analyze the theoretical background of our attack.
Empirical and experimental results are presented in Section 4 and Section 5.

3.1 Basic Attack

We assume that the candidate vm := v0 + 2m in Pseudoalgorithm 2 is prime,
i.e. p = vm. If for vj = v0 + 2j Pseudoalgorithm 2 returned to Step 2a after the
trial division by ri then vj is divisible by ri. This gives

vj ≡ 0 (mod ri)
vj = v0 + 2j
p = vm = v0 + 2m

⇒ p = vj + 2(m− j) ≡ 2(m− j) (mod ri). (3)

Let

Sp := {2}∪{r ∈ T | division by r caused a return to 2a for at least one vj}. (4)



We point out that ‘caused a return ...’ is not equivalent to ‘divides at least one
vj ’. (Note that it may happen that r ∈ T \ Sp divides some vj but loop 2b
terminates earlier due to a smaller divisor r′ of vj .) We combine all equations of
type (3) via the Chinese Remainder Theorem (CRT). This yields a congruence

ap ≡ p(mod sp) for sp :=
∏
r∈Sp

r (5)

with known ap. As pq = n we have

aq :≡ q ≡ a−1
p n(mod sp). (6)

By observing the generation of q we obtain

bq ≡ q(mod sq) and bp ≡ p ≡ b−1
q n(mod sq) (7)

where Sq and sq are defined analogously to Sp and sp. Equations (5), (6) and
(7) give via the CRT integers cp, cq and s with

s := lcm (sp, sq), cp ≡ p(mod s), cq ≡ q(mod s) and 0 ≤ cp, cq < s. (8)

By (8)

p = sxp+cp and q = syq+cq with unknown integers xp, yq ∈ IN (9)

while cp, cq and s are known. Lemma 1 transforms the problem of finding p and
q into a zero set problem for a bivariate polynomial over Z.

Lemma 1. (i) The pair (xp, yq) is a zero of the polynomial

f :Z × Z → Z, f(x, y) := sxy + cpy + cqx− t with t := (n− cpcq)/s. (10)

(ii) In particular

t ∈ IN, f is irreducible over Z, and (11)

0 < xp, yq < max
{p
s
,
q

s

}
<

2k

s
. (12)

Proof. Obviously,

0 = pq − n = (sxp + cp)(syq + cq)− n = s2xpyq + scpyq + scqxp − (n− cpcq),

which verifies (i). Since n ≡ cpcq(mods) the last bracket is a multiple of s,
and hence t ∈ Z. Since cp ≡ p 6≡ 0(mod rj) and cq ≡ q 6≡ 0(mod rj) for all
prime divisors rj of s we conclude gcd(s, cp) = gcd(s, cq) = 1, and in particular
gcd(s, cp, cq, t) = 1. Assume that f(x, y) = (ax+by+c)(dx+ey+f) for suitably
selected integers a, b, c, d, e and f . Comparing coefficients immediately restricts
to (a = e = 0) or (b = d = 0). The gcd-properties yield gcd(bd, bf) = 1 =
gcd(bd, cd), resp. gcd(ae, af) = 1 = gcd(ae, ce), and thus b = d = 1, resp.
a = e = 1, leading to a contradiction. Assertion (12) is obvious.



In general finding zeroes of bivariate polynomials over Z is difficult. It is well-
known that ‘small’ integer solutions yet can be found efficiently with the LLL-
algorithm, which transforms the zero set problem to finding short vectors in
lattices.

Theorem 1. (i) Let p(x, y) be an irreducible polynomial in two variables over
Z, of maximum degree δ in each variable separately. Let X,Y be upper bounds for
the absolute value of the searched solutions x0, y0. Define p̃(x, y) := p(xX, yY )
and let W be the absolute value of the largest coefficient of p̃. If

XY < W 2/(3δ)

then in time polynomial in (logW, δ), one can find all integer pairs (x0, y0) with
p(x0, y0) = 0, |x0| < X,|y0| < Y .
(ii) Let p and q be k-bit primes and n = p · q. If integers s and cp are given with
s ≥ 2

k
2 and cp ≡ p(mods) then one can factorize n in time polnomial in k.

Proof. (i) [5], Corollary 2
(ii) We apply assertion (i) to the polynomial f(x, y) from Lemma 1. By (12) we
have 0 < xp < X := 2k/s and 0 < yq < Y := 2k/s. Let f̃(x, y) = f(xX, yY ) and
let W denote the maximum of the absolute values of the coefficients of f̃(x, y).
Then W ≥ sXY = 22k

s , and for s > 2
k
2 we get

XY =
(

2k

s

)2

<

(
22k

s

) 2
3

≤W 2
3

where the first inequality follows from 2k < s2 by some equivalence transforma-
tions. Since the degree δ in each variable is one by (i) we can find (xp, yq) in
time polynomial in k.

3.2 Gaining Additional Information

Theorem 1 demands log2(s) > 0.5k. If log2(s) is only slightly larger than 0.5k the
dimension of the lattice (→ LLL-algorithm) has to be very large which affords
much computation time. For concrete computations thus log2(s) ≥ C > 0.5k is
desirable for some bound C that is reasonably larger than 0.5k.

If log2(s) ≥ C Theorem 1 can be applied and then the work is done. If
log2(s) < C one may multiply s by some relatively prime integer s1 (e.g. the
product of some primes in T \ (Sp ∪ Sq)) with log2(s) + log2(s1) > C. Of
course, the adversary has to apply Theorem 1 to any admissible pair of re-
mainders (p(mod (s · s1)), q(mod (s · s1))). Theorem 1 clearly yields the factor-
ization of n only for the correct pair (p(mod (s · s1)), q(mod (s · s1))), which in-
creases the workload by factor 2s1 . Note that p(mod (s · s1)) determines q(mod
(s · s1)) since n(mod (s · s1)) is known.

The basic attack explained in Subsection 3.1 yet does not exploit all inform-
ation. Assume that the prime ru ∈ T does not divide s, which means that



ru /∈ Sp ∪ Sq or, equivalently, that the trial division loop 2b in Algorithm 2 has
never terminated directly after a division by ru. Assume that during the search
for p the prime candidates vj1 , . . . , vjτ have been divided by ru. Then

vj1 = p− 2(m− j1) 6≡ 0 (mod ru)
...

vjτ = p− 2(m− jτ ) 6≡ 0 (mod ru)
vm = p 6≡ 0 (mod ru)

 =⇒ (13)

p 6≡ 0, 2(m− j1), . . . , 2(m− jτ ) (mod ru). (14)

This yields a ‘positive list’

L′p(ru)={0, 1, . . . , ru−1}\{0, 2(m−j1)( mod ru), . . . , 2(m−jτ )( mod ru)} (15)

of possible ru-remainders of p. Analogously, one obtains a positive list L′q(ru)
for possible ru-remainders of q. The relation p ≡ nq−1(mod ru) reduces the set
of possible ru-remainders of p further to

Lp(ru) := L′p(ru) ∩
(
nL′q(ru)−1(mod ru)

)
, and finally (16)

(p(mod ru), q(mod ru)) ∈ {(a, na−1(mod ru)) | a ∈ Lp(ru)}. (17)

For prime ru equations (16) and (17) provide

I(ru) := log2

(
ru

|Lp(ru)|

)
= log2 (ru)− log2 (|Lp(ru)|) (18)

bit of information. From the attacker’s point of view the most favourable case
clearly is |Lp(ru)| = 1, i.e. I(ru) = log2(ru), which means that p(mod ru) is
known. The attacker may select some primes ru1 , . . . , ruw ∈ T \ (Sp ∪ Sq) that
provide much information I(ru1), . . . , I(ruw) (or, maybe more effectively, se-
lecting primes with large ratios I(ru1)/ log2(ru1), . . . , I(rjw)/ log2(rjw)) where
w clearly depends on the gap C − log2(s). Then he applies Theorem 1 to
(s · s1) with s1 = ru1 · · · ruw for all |Lp(ru1)| · · · |Lp(ruw)| admissible pairs of
remainders (p(mod(s · s1)), q(mod(s · s1))). Compared to a ‘blind’ exhaustive
search without any information p(mod s1) (17) reduces the workload by factor
2I(ru1 )+···+I(ruw ) or, loosely speaking, reduces the search space by I(ru1) + · · ·+
I(ruw) bit.

After the primes p and q have been generated the secret exponents dp ≡
e−1( mod (p−1)) and dq ≡ e−1( mod (q−1)) are computed. These computations
may provide further information. Analogously to Assumptions 1 we formulate

Assumptions 2. The exponents dp and dq are computed with the extended Eu-
clidean algorithm, and the power consumption allows the attacker to determine
the number of steps that are needed by the Euclidean algorithm.

We may clearly assume p > e, and thus the first step in the Euclidean
algorithm reads p − 1 = α2e + x3 with α2 ≥ 1 and x3 = p − 1(mod e). The



following steps depend only on the remainder p − 1(mod e), resp. on p(mod e).
As p 6≡ 0(mod e) for j ∈ IN0 we define the sets

M ′(j)={x ∈ Z∗e | for (e, x−1) the Euclidean alg. terminates after j steps}. (19)

Assume that the attacker has observed that the computation of dp and dq require
vp and vq steps, respectively. By definition, p(mod e) ∈ M ′(vp − 1) and q(mod
e) ∈M ′(vq − 1). Similarly as above

Mp := M ′(vp − 1) ∩
(
n (M ′(vq − 1))−1 (mod e)

)
, and finally (20)

(p(mod e), q(mod e)) ∈ {(a, na−1(mod e)) | a ∈Mp}. (21)

If e is relatively prime to s, resp. to s · s1 (e.g. for e = 216 + 1), the attacker
may apply Theorem 1 to s · e, resp. to s · s1 · e, and the gain of information is
I(e) = log2(e) − log2(|Mp|). If gcd(s, e) > 1, resp. if gcd(s · s1, e) > 1, one uses
e′ := e/ gcd(s, e), resp. e′ := e/ gcd(s · s1, e), in place of e.

Remark 3. In Section 2 we assumed p, q ∈ [2k−1, 2k). We note that our attack
merely exploits p, q < 2k, and it also applies to unbalanced primes p and q.

4 Empirical Results

The basic basic attack reveals congruences p( mod s) and q( mod s) for some mod-
ulus s. If s is sufficiently large Theorem 1 allows a successful attack. The term
log2(s) quantifies the information we get from side-channel analysis. The prod-
uct s can at most equal

∏
r∈T r but usually it is much smaller. Experiments

show that the bitsize of s may vary considerably for different k-bit starting can-
didates v0 for Pseudoalgorithm 2. Theorem 1 demands log2(s) > k

2 , or (from a
practical point of view) even better log2(s) ≥ C for some bound C which allows
to apply the LLL-algorithm with moderate lattice dimension. We investigated
the distribution of the bitlength of s for k = 512 and k = 1024 bit primes and
for different sizes of the trial division base T = {r2 = 3, 5, 7, . . . , rN} by a large
number of simulations. Note that two runs of Pseudoalgorithm 2 generate an
RSA modulus n of bitsize 2k − 1 or 2k.

We implemented Pseudoalgorithm 2 (with t = 20 Miller-Rabin-tests) in
MAGMA [10] and ran the RSA-generation process 10000 times for each of sev-
eral pairs (k,N). For k = 512 and N = 54 we obtained the empirical cumulative
distribution shown in Figure 1. The choice N = 54 is natural since r54 = 251 is
the largest prime smaller than 256, and thus each prime of the trial division base
can be represented by one byte. Further results for k = 512 and k = 1024 are
given in Table 1, resp. in Table 2. The ideas from Subsection 3.2 are considered
below.

Further on, we analysed how the run-time of the LLL-algorithm and thus
the run-time of the factorization of the RSA modulus n by Theorem 1 depends
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Fig. 1. Basic attack: Cumulative distribution for rN = 251 and k = 512 (1024-bit RSA
moduli)

k = 512

N rN Prob(log2(s) > 256) Prob(log2(s) > 277) log2(
∏

r≤rN
r)

54 251 0.118 0.055 334.8

60 281 0.188 0.120 388.3

70 349 0.283 0.208 466.5

Table 1. Basic attack

on the bitsize of s. We did not use the original algorithm of Coppersmith from
[5]. Instead we implemented Coron’s algorithm from [6] in the computer algebra
system MAGMA [10].

The LLL-reduction in Coron’s algorithm uses a lattice of dimension ω =
(k̃ + δ)2 − k̃2 where δ denotes the degree of the polynomial and k̃ an adjustable
parameter of the algorithm. In our case δ = 1, so the lattice dimension is ω =
2k̃ + 1. For ω = 15 our implementation (i.e. the LLL-substep) never terminated
in less than one hour; we stopped the process in these cases. Table 3 provides
empirical results. (More sophisticated implementations may allow to get by with
smaller s (→ larger ω) but this is irrelevant for the scope of this paper.)

If the basic attack yields log2(s) ≤ k/2 or log2(s) < C the attacker may
apply the techniques from Subsection 3.2. Since the information I(e) is deduced
from the computation of gcd(e, p − 1) it is independent of the outcome of the
basic attack while I(ru1) + · · · + I(ruw) depends on the size of s. If log2(s) is
contained in [230, 260], a relevant range for k = 512, for rN = 251 the mean
value of I(ru1) + · · ·+ I(ruw) is nearly constant.

Simulations for k = 512, e = 216 + 1, and T = {3, . . . , 251} show that
(I(216 + 1), log2(216 + 1)) = (6.40, 16), while (I(ru1), log2(ru1)) = (2.81, 6.39),



k = 1024

N rN Prob(log2(s) > 512) Prob(log2(s) > 553 log2(
∏

r≤rN
r)

100 541 0.125 0.065 729.7

110 601 0.178 0.113 821.2

120 659 0.217 0.150 914.5

Table 2. Basic attack

Bitsize(n = pq) ω Min{Bitsize(s)| factorization
succesfull

} ≈ run− time(sec)

512 5 156 0.01
512 7 148 0.07
512 9 144 0.24
512 11 141 1.1
512 13 139 4.6

1024 5 308 0.02
1024 7 294 0.17
1024 9 287 0.66
1024 11 281 3.1
1024 13 277 13.2

1536 5 462 0.05
1536 7 440 0.36
1536 9 428 1.6
1536 11 420 8.1
1536 13 415 41.5

2048 5 616 0.06
2048 7 587 0.76
2048 9 571 3.3
2048 11 560 18.5
2048 13 553 87.4

Table 3. Empirical run-times for different lattice dimensions and moduli

resp. (I(ru1) + I(ru2), log2(ru1) + log2(ru2)) = (4.80, 13.11), resp. (I(ru1) +
I(ru2) + I(ru3), log2(ru1) + log2(ru2) + log2(ru3)) = (6.42, 20.04), where ru1 , ru2

and ru3 (in this order) denote those primes in T \ (Sp ∪ Sq) that provide maxi-
mum information.

Multiplying the modulus s from the basic attack by e, resp. by e · ru1 , resp.
by e · ru1 · ru2 , resp. by e · ru1 · ru2 · ru3 , increases the bitlength of the modulus
by 16 bits, resp. by 16 + 6.39 = 22.39, resp. by 29.11, resp. by 36.04 in average
although the average workload increases only by factor 216−6.40 = 29.6, resp. by
29.6 · 26.39−2.81 = 213.18, resp. by 217.91, resp. by 223.22.

Combining this with the run-time of 13.2 seconds given in Table 3 with our
implementation we can factorize a 1024-Bit RSA modulus in at most 213.18 ·
13.2 sec ≈ 34 hours (in about 17 hours in average) if the modulus s gained
by the basic attack only consists of 277 − 22 = 255 bits. According to our
experiments this happens with probability ≈ 0.119. Table 1 shows that the



methods of Subsection 3.2 double (for our LLL-implementation) the success
probability. Further on we want to emphasize that by Theorem 1 the attack
becomes principally feasible if the basic attack yields log2(s) > 256. So, at cost
of increasing the run-time by factor 213.18 the modulus n can be factored with the
LLL-algorithm if the basic attack yields a modulus s with log2(s) > 256− 22 =
234. This means that the success probability would increase from 11.8% to 21.2%
(cf. Table 1).

5 Experimental Results

The central assumption of our attack is that the power consumption reveals the
exact number of trial divisions for the prime candidates v0 = v, v1 = v + 2, . . ..
To verify that this assumption is realistic we implemented the relevant part of
Pseudoalgorithm 2 (Step 1 to Step 2b) on a standard microcontroller (Atmel
ATmega) and conducted measurements.

The power consumption was simply measured as a voltage drop over a resistor
that was inserted into the GND line of this chip. An active probe was used. As the
controller is clocked by its internal oscillator running at only 1MHz a sampling-
rate of 25 MHz was sufficient. The acquired waveforms were high-pass-filtered
and reduced to one peak value per clock cycle.

Figure 2 shows the empirical distribution of the number of clock cycles per
trial division. We considered 2000 trial divisions testdiv(v, r) with randomly
selected 512 bit numbers v and primes r < 216. The number of clock cycles are
contained in the interval [24600, 24900], which means that they differ not more
than about 0.006µ cycles from their arithmetic mean µ. In our standard case
T = {3, . . . , 251} a maximum sequence of 53 consecutive trial divisions may
occur. We point out that it is hence not necessary to identify the particular
trial divisions, it suffices to identify those positions of the power trace that
correspond to the incrementation of the prime candidates by 2. Since short
and long run-times of the individual trial divisions should compensate to some
extent, this conclusion should remain valid also for larger trial bases and for
other implementations of the trial divisions with (somewhat) larger variance of
the run-times.

The crucial task is to find characteristic parts of the power trace that allow
to identify the incrementation operations or even the individual trial divisions.
The trial division algorithm and the incrementation routine were implemented
in a straight-forward manner in an 8-bit arithmetic. Since the incrementation
operations leave the most significant parts of the prime candidates v0, v1, . . .
unchanged and since all divisors are smaller than 255 it is reasonable to expect
that the power consumption curve reveals similar parts. Observing the following
sequence of operations confirmed this conjecture.

Prime generation and trial divisions

rnd2r (); // generates an odd 512 bit random number v
testdiv512 (v,3); // trial division by 3



Fig. 2. Empirical run-times of trial divisions

testdiv512 (v,5);
testdiv512 (v,7);
incrnd (v); // increments v by 2
testdiv512 (v,3);
incrnd (v);
testdiv512 (v,3);
testdiv512 (v,5);

We measured the power-consumption xi for each clock cycle i. We selected short
sample sequences {y1 = xt, . . . , yM = xt+M−1} ⊂ {x1, x2, . . .} that correspond
to 10 to 20 consecutive cycles, and searched for similar patterns in the power
consumption curve. For fixed sample pattern (y1, . . . , yM ) we used the ‘similarity
function’,

aj =
1
M

M∑
i=1

|xi+j − yi| for shift parameter j = 1, . . . , N −M, (22)

which compares the sample sequence (y1, . . . , yM ) with a subsequence of power
values of the same length that is shifted by j positions. A small value aj in-
dicates that (xj , . . . , xj+M−1) is ‘similar’ to the sample sequence (y1, . . . , yM ).
It turned out that it is even more favourable to consider the minimum within
‘neighbourhoods’ rather than local minima. More precisely, we applied the values

bj = min {aj , . . . , aj+F−1} (23)



Fig. 3. Similarity curves (bj-values)

with F ≈ 100. Figure 3 shows three graphs of bj-values. The vertical grey bars
mark the position of the selected sample sequence (y1, . . . , yM ). For Curve (1)
the sample sequence was part of the random number generation process. Obvi-
ously, this sample sequence does not help to identify any trial division or the
incrementation steps. For Curve (2) we selected a sample sequence within a
trial division. The high peaks of Curve (2) stand for ‘large dissimilarity’ and
identify the incrementation steps. Curve (3) shows the bj-values for a sample
sequence from the incrementation step, and low peaks show the positions of the
incrementation steps. Our experiments showed that the procedure is tolerant
against moderate deviations of M , F and the sample pattern (y1, . . . , yM ) from
the optimal values.

6 Countermeasures and Alternative Implementations

Our attack can be prevented by various countermeasures. The most rigorous
variants are surely to divide each prime candidate by all elements of the trial
base or to generate each prime candidate independent from its predecessors (→
Pseudoalgorithm 1). However, both solutions are very time-consuming and thus
may be inappropriate for many applications due to performance requirements.
Clearly more efficient is to XOR some fresh random bits to every τ th prime can-
didate v in order to compensate the side-channel leakage of the trial divisions of
the previous τ prime candidates. These random bits should at least compensate
the average information gained from the leakage or, even better, compensate the



maximum information leakage that is possible (worst-case scenario). In analogy
to (5) let sτ denote the product of all primes of T , after which the while loop in
Step 2b of Pseudoalgorithm 2 has terminated for at least one of the last τ prime
candidates vj . For τ = 10, for instance, the while-loop must have terminated at
least three times after the trial division by 3 and at least once after a trial divi-
sion by 5. In the worst case, the remaining six loops terminated after the division
by one of the six largest primes of T , which gives the (pessimistic) inequality
log2(sτ ) ≤ log2(3 · 5 · rN−5 · · · · rN ). For k = 512 and T = {3, 5, . . . , 251}, for
instance, log2(s10) < log2(3 · 5 · 227 · . . . · 251) ≈ 51.2. Simulations showed that
the average value of log2(s10) is much smaller (≈ 18.6). By applying the ideas
from Subsection 3.2 the attacker may gain some additional information, in the
worst case yet not more than

∑48
j=4 log2(rj/(rj − 6)) ≈ 10.66 bit. The designer

should be on the safe side if he selects randomly at least 8 bytes of each 10th

prime candidate v and XORs 64 random bits to these positions. (Simulations
indicate that the average overall gain of information is less than 24 bit.)

We mention that several other, more sophisticated prime generation algo-
rithms have been proposed in literature. For instance, the remainders of the first
prime candidate v0 with respect to all primes in T may be stored in a table, sav-
ing the trial divisions for all the following prime candidates in favour of modular
additions of all table entries by 2 ([11], Note 4.51 (ii)). This prevents our attack
but, of course, a careless implemention of the modular additions may also reveal
side-channel information. A principal disadvantage is that a large table has to be
built up, stored and managed, which may cause problems in devices with little
resources. Alternatively, in a first step one may determine an integer v that is
relatively prime to all primes of a trial base T . The integer v then is increased
by a multiple of the product of all primes from the trial base until v is a prime.
Reference [3] applies techniques from [1], which were originally designated for
the shared generation of RSA keys. The authors of [3] yet point out that they
do not aim at good performance, and in fact, for many applications performance
aspects are crucial.

Reference [7] proposes a prime generation algorithm that uses four integer
parameters P (large odd number, e.g. the product of the first N−1 odd primes),
w, and bmin ≤ bmax. The algorithm starts with a randomly selected integer y0 ∈
Z∗P and generates prime candidates vj = vj(yj) = (v+b)P+yj or vj(yj) = (v+b+
1)P − yj , respectively, for some integer b ∈ [bmin, bmax] and yj = 2jy0(mod P )
until a prime is found, or more precisely, until some vj passes the primality
tests. Reference [4] describes a (theoretical) side channel attack on a special
case of this scheme (with bmin = bmax = 0 and known (P,w)) on a careless
implementation that reveals the parity of the prime candidates vj . This attack
is successful in about 0.1% of the trials, and [4] also suggests countermeasures.
For further information on primality testing we refer the interested reader to the
relevant literature.



7 Conclusion

This paper presents an elementary side-channel attack which focuses on the RSA
key generation. The attack works under weak assumptions on the side-channel
leakage, and practical experiments show that these assumption may be realistic.
If the attack is known it can be prevented effectively.

Reference [4] and the above results demonstatrate that the RSA key gen-
eration process may be vulnerable to side-channel attacks. It appears to be
reasonable to analyse implementations of various key generation algorithms in
this regard. New attacks (possibly in combination with weaker assumptions than
Remark 1) and in particular effective countermeasures may be detected.
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