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Abstract. We propose a new technique called Di�erential Cluster Anal-
ysis for side-channel key recovery attacks. This technique uses cluster
analysis to detect internal collisions and it combines features from previ-
ously known collision attacks and Di�erential Power Analysis. It captures
more general leakage features and can be applied to algorithmic collisions
as well as implementation speci�c collisions. In addition, the concept is
inherently multivariate. Various applications of the approach are possi-
ble: with and without power consumption model and single as well as
multi-bit leakage can be exploited. Our �ndings are con�rmed by practi-
cal results on two platforms: an AVR microcontroller with implemented
DES algorithm and an AES hardware module. To our best knowledge,
this is the �rst work demonstrating the feasibility of internal collision
attacks on highly parallel hardware platforms. Furthermore, we present
a new attack strategy for the targeted AES hardware module.

Keywords: Di�erential Cluster Analysis, Side-channel Cryptanalysis, Collision
Attacks, Di�erential Power Analysis, AES Hardware.

1 Introduction

Side-channel analysis became a mature area in the past decade with many contri-
butions to new attacks, models and countermeasures since the pioneering results
of Di�erential Power Analysis (DPA) [14]. DPA exploits the fact that informa-
tion on secret key bits can leak through a side-channel. It typically requires
known input to the cryptographic algorithm. Many practical and more recently
some theoretical works have been published showing the importance of applying
known techniques and ideas from other research communities.
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An internal collision attack (CA) is another kind of side-channel analysis.
Collision attacks have been introduced by Schramm et al. in [22]. A collision in
an algorithm occurs if, for at least two di�erent inputs, a function within the
algorithm returns the same output. If this happens, the side-channel traces are
assumed to be very similar in the time span when the internal collision persists.
Collision attacks use the side-channel to detect collisions and afterwards o�ine
computation with or without precomputed tables for key recovery. For both
steps there are di�erent approaches proposed in the literature. Considering the
assumptions, attacks can be with either chosen or known inputs.

The work of [21] and in particular recent works on collision attacks [3�7]
veer away from long sequences of instructions [22, 15], e.g. collisions that persist
for an entire round, and target short-scale intermediate results. Our approach
follows this development and shows that internal collisions can be the source for
both DPA and CA leakage.

More precisely, our work introduces Di�erential Cluster Analysis (DCA) as
a new method to detect internal collisions and extract keys from side-channel
signals. Our approach is to revisit collision attacks in the unsupervised analysis
setting, which can be two-fold e.g. viewed as collision and DPA approach. Our
strategy includes key hypothesis testing and the partitioning step similar to
those of DPA. Partitioning then yields collisions for the correct key which are
detected by cluster analysis. DCA typically requires known input data to the
cryptographic algorithm and can be applied to arbitrary algorithmic collisions
as well as to implementation speci�c collisions. Cluster analysis relates to some
extent to standard DPA, which is obvious for the univariate case. While DCA
is inherently multivariate, the technique inspires a simple extension of standard
DPA to multivariate analysis. The most interesting di�erence is that cluster
analysis is sensitive to more general leakage features and does not require a
power model for multi-bit collisions.

The idea of clustering for simple side-channel attacks was already used in the
work of Walter [25]. Therein, he uses clusters (called buckets) for partitioning
sets of similar measurements in order to reveal exponent digits for an attack on
sliding windows exponentiation. Our work is also related to Mutual Information
Analysis (MIA) [12] in that both approaches can succeed without but bene�t
from a good power model. Also related to our work is the use of Gaussian
mixture models for masked implementations [16]. In this work parameters of
di�erent Gaussian components that best �t to the observed mixed multivariate
side-channel leakage are estimated without knowing the masks.

Our experiments con�rm the �ndings on two platforms. One platform is an
unprotected software implementation of the DES algorithm running on an Atmel
AVR microcontroller and the other one is a hardware implementation of AES-
128. Collision attacks on platforms like the latter are believed to be unfeasible
due to the high parallelism of operations, e.g., [5] states �the collision attacks
on AES are mainly constrained to 8-bit software implementations on simple
controllers�.



The paper is organized as follows: Section 2 describes our new approach to
collision detection by use of cluster analysis of measurement samples. Section 3
introduces the new classi�cation of collisions into algorithmic and implemen-
tation speci�c collisions and presents examples for both classes. Experimental
results are provided in Section 4 and Section 5 summarizes the results of this
work.

2 Di�erential Cluster Analysis: The General Approach

An internal collision in a cryptographic algorithm occurs if, for at least two inputs
xi, xi′ ∈ {0, 1}u with xi 6= xi′ and subkey k◦ ∈ {0, 1}v, values of one particular
intermediate state ∆ ∈ {0, 1}w collide. The intermediate state ∆ is a speci�c
property of the cryptographic algorithm. Although we provide examples from
symmetric schemes the general approach is also valid for public key schemes. In
the case of DES for example, the intermediate state is given by a few bits after
an S-box access. Let fk denote the key dependent function fk : {0, 1}u 7→ {0, 1}w
that computes ∆ for a given input x in a cryptographic algorithm. The function
fk is said to be a many-to-one collision function if many inputs are mapped to
the same output.

Unlike previous collision attacks that search for similarity between di�erent
power traces, the new key recovery attack aims at detecting signi�cantly sep-
arated clusters as result of internal collisions. This is an unsupervised learning
process. The adversary observes the side-channel response on input patterns,
but has incomplete knowledge about the internal state of the system, especially
she does not know any key and therefore any true labels of samples. The adver-
sary, however, usually knows the number of di�erent clusters, i.e., the number
of possible values for ∆.

DCA assumes that it is feasible to run statistics for all subkey candidates in
the algorithm, i.e., v is a small number. For common constructions of ciphering
algorithms such as AES and DES this assumption is clearly ful�lled. In the
�rst step of the attack, the adversary classi�es measurement samples in (n ∈
{1, . . . , N}, where N is the total number of samples) with input1 xn into 2w

classes according to fk(xn) with guessed subkey hypothesis k. As result, the
adversary obtains 2w bins of classi�ed measurements for each key guess.2 This
new attack tests whether clustering statistics, such as good cluster separation or
high cluster compactness, indicates a separation of distinct clusters. Note that
if k = k◦ the separation of the samples into the 2w bins corresponds to the
computation of the cryptographic device. If the side-channel leakage of di�erent
values of ∆ is detectable, this in turn reveals the correct key. If the subkey
guess is wrong the measurements are generally classi�ed into bins incorrectly,
i.e. almost all bins include samples that result from di�erent values of ∆. As a
consequence, clusters of measurements resulting from di�erent values of ∆ are

1 Note that this attack can be applied to both known and chosen input.
2 Note that not all 2w states might be possible in a given cryptographic algorithm.



expected to broaden the statistical distribution of each bin and to smooth out
side-channel di�erences.

DCA classi�es objects into classes according to special collisions that relate
to known inputs and a key hypothesis. Cluster statistics are used to detect
the collisions. Note that this collision and clustering attack is a multivariate
approach. Cluster statistics can be applied to measurements samples from a
single (univariate) or from multiple (multivariate) time instants. Multivariate
DCA bene�ts if prior knowledge on the relative distances of points in time that
contain exploitable side-channel leakage is available, e.g. as a result of pro�ling.
Furthermore, additional options exist for combining DCA results. One example is
to combine the outcomes of DCA for w 1-bit intermediate states for the analysis
of an w-bit intermediate state.

2.1 Cluster Statistics

We provide details about criterion functions for clustering and describe how
to measure the clustering quality. In literature, e.g. [11, 24], cluster statistics
use a number of cluster characteristics. In Table 1 characteristics for c clusters
Di, i ∈ {1, . . . , c} with population ni of vectors x and total population N are
summarized. Note that in case of univariate analysis all vectors have only one

Table 1. Cluster Characteristics.

Mean vector for the i-th cluster: mi = 1
ni

∑
x∈Di

x

Total mean vector: m = 1
N

∑c
i=1 nimi where

∑c
i=1 ni = N

Variance vector for the i-th cluster: vi = 1
ni

∑
x∈Di

(x−mi)
2

Total variance vector: v = 1
N

∑c
i=1 nivi where

∑c
i=1 ni = N

Squared Euclidean norm (Rk → R): ||(z1, z2, . . . , zk)||2 =
∑k

j=1 z2
j

element.
The sum-of-squared-error is a widely used cluster criterion function. It com-

putes

JSSE =
c∑

i=1

∑
x∈Di

‖ x−mi ‖2 .

This function evaluates the sum of the squared Euclidean distances between the
vectors (x −mi). Informally speaking that is the sum of the scatter over all
clusters. The optimal partition minimizes JSSE . An alternative is the sum-of-

squares criterion. It evaluates the square of the Euclidean distance between the
cluster centroids mi and the total mean vector m:

JSOS =
c∑

i=1

ni ‖mi −m ‖2 .



The optimal partition maximizes JSOS . An interesting observation is that the
sum of JSSE and JSOS is a constant, thus minimizing JSSE (yielding intra
cluster cohesion) is equivalent to maximizing JSOS (yielding inter cluster sepa-
ration) [24].

In the context of side-channel analysis computing variances can also be useful.
In such cases, one can either take variances into account explicitly or normalize
the measurements before evaluating cluster criteria like JSOS and JSSE . The
variance test [23] is a criterion function that evaluates

JV AR =
‖ v ‖2

1
N

∑c
i=1 ni ‖ vi ‖2

,

i.e. the ratio between the overall variance and the weighted mean of intra clus-
ter variances. The optimal partition maximizes JV ar. The student's T-test [13]
evaluates the distances between cluster centroids, normalized by intra cluster
variances and cluster sizes. We use it in the T-test criterion that evaluates the
sum of squared distances for all pairs of clusters

JSTT =
c∑

i,j=1;i 6=j

‖mi −mj ‖2√
‖vi‖2

ni
+ ‖vj‖2

nj

.

Again, the optimal partition maximizes JSTT .

2.2 The General Approach

Here we summarize our general approach:

1. Measure N samples in of power traces while the targeted device computes
the cryptographic algorithm with unknown �xed subkey k◦. For each sample,
store the associated known input xn for n = 1, 2, . . . , N .

2. For each subkey hypothesis k ∈ {0, 1}v do the following3:

(a) Sort the N measurements according to ∆i = fk(xi) into 2w clusters
D0, . . . ,D2w−1.

(b) For each cluster Di do the following: Compute mean value mi and vari-
ance vi.

(c) Compute a cluster criterion Jk (e.g. JSSE or JSOS) to quantitatively
assess the quality of the cluster separation.

(d) Store the pair of k and Jk: (k, Jk).

3. Rank the pairs (k, Jk) according to Jk.

4. Output the key candidate k with the value of Jk that leads to the best
clustering quality (min. or max., depending on the criterion function).

3 In practice, steps might be iterated for components of in, e.g., each iteration might
include samples of one or a few clock cycles of the device.



2.3 Re�nements

Several re�nements of the general approach can make the attack more e�cient.

(i) Known input xn is assumed in the general approach. Noise due to non-
targeted operations can be highly reduced if the input xn can be chosen. If
the input can be further adaptively chosen this allows to apply an adaptive
sieving of key candidates, thereby minimizing the number of samples needed.

(ii) In the general approach we do not include any assumption on similarity
of some clusters. Integration of a side-channel leakage model is possible by
merging of clusters, e.g., for a Hamming weight model the number of clusters
is reduced from 2w to w + 1. See Sect. 2.4 and 3 for a detailed discussion.

(iii) Depending on the algorithm and the choice of ∆ related key hypotheses that
lead to so called �ghost peaks� [8] exist. For such key hypotheses the formed
clustering is, to a certain degree, identical to the correct clustering. If such
related key hypotheses exist this may allow for a special adaption of the
analysis.

(iv) Prior normalization of the N samples in to zero mean and unit standard de-
viation is often useful in practice if the spread is due to noise. Transformation
to principal components is another useful pre-processing step.

2.4 Detailed Comparison with DPA

Here, we compare DCA with DPA in more detail. For DPA, di�erent variants are
known in literature [18]. The original approach for DPA [14] selects one bit of an
intermediate state to test whether there is a provable imprint of this bit in the
power traces. Kocher's original DPA can be derived from DCA when restricted
to two clusters (w = 1) and one time instant. The proposed statistics, however,
di�er to some extent.

Essential di�erences between DPA and DCA occur for w > 1. Multi-bit DPA
was �rst introduced by Messerges et. al. [19]. The main idea is that each bit in
an intermediate state causes the same amount of leakage and that considering
multiple bits at once in an attack may be advantageous. A drawback of this �all-
or-nothing� DPA is the ine�cient use of measurements: although 2w clusters
exist, only two of them are used. Correlation Power Analysis (CPA) [8] with a
Hamming weight or distance model correlates the predicted side-channel leakage
with the measured side-channel traces to check for provable correlation. CPA
uses all available measurements and can be very e�cient in practice. Potential
drawbacks are the requirement for a good leakage model, which may be hard to
come up with, and the fact that CPA with a Hamming model may not capture
all leakage details as Pearson correlation solely tests for equidistance of cluster
centroids, i.e. linearity.

The general DCA approach uses 2w clusters and all available measurements.
The assumption of a side-channel leakage model is only optional in multi-bit
DCA, e.g. an adjustment to the Hamming weight or distance model works with
w+1 clusters instead. Unlike CPA, DCA can also capture special features of the
leakage, e.g. unequal densities, non-spherical shapes, and unequal proximities.



Example for w = 2 where DCA is advantageous. The following example
shows that special cases of side-channel leakage exist that can neither be detected
with single-bit DPA nor with Hamming weight based CPA, but still with DCA.
We consider a general case with w = 2, i.e. four equally likely intermediate states
�00�, �01�, �10�, �11� that have a mean side-channel leakage of α0, α1, α2, α3,
respectively.

Resistance against single-bit DPA requires that the following conditions must
hold: α0 + α1 = α2 + α3 and α0 + α2 = α1 + α3 in order to not reveal any
information on either the left or the right bit of the intermediate state. To
achieve resistance against Hamming weight CPA the following condition must
hold: α0 = α3.

Resistance against both single-bit DPA and Hamming weight CPA is achieved
if the previous three conditions are combined, which leads to α0 = α3 and
α1 = α2. The trivial solution α0 = α1 = α2 = α3 implies a single joint cluster
and no information leakage at all. If α0 6= α1 two di�erent clusters arise: a
joint cluster of intermediate states �00� and �11� as well as a joint cluster of
intermediate states �01� and �10�. These two separated clusters can be directly
detected with DCA which, assuming that the intermediate state results from
a non-injective mapping and depends on a secret subkey value, enables key
recovery. We acknowledge that an adapted selection function that tells apart
whether the two bits are equal or not would enable multi-bit DPA and CPA.
However, the general DCA approach detects such particular features by its own
nature while DPA and CPA require a guiding selection function. As mentioned
earlier, coming up with such a selection function may not always be easy and
can require detailed knowledge of the device's leakage behavior.

3 Di�erential Cluster Analysis: Applications

In this section we �rst distinguish between two types of collisions, algorithmic
and implementation speci�c collisions. While an algorithm assumes a more ab-
stract concept, an implementation is a concrete realization of it. There may exist
many implementations of an algorithm. On the other hand, having an implemen-
tation, one can �nd just one algorithm corresponding to it.

In general, internal collisions may occur due to the algorithm or may be
caused by a particular implementation. In the former case, we speak about algo-
rithmic collisions that are results of non-injective mappings within the algorithm.
Algorithmic collisions are therefore typically implementation independent. For
algorithmic collisions the adversary guesses the colliding intermediate state as it
is computed in the algorithm, e.g. a cryptographic standard. Neither a leakage
model nor any other information about implementation properties are used here.
The question is whether clusters for a complete or partial intermediate state can
be distinguished when applying cluster criterion functions.

On the other hand, implementation speci�c collisions can be observed merely
due to the way a certain algorithm is implemented. In other words, there can
be ways to implement an algorithm that induce this type of collisions, while



the collisions are not obvious in the algorithm. For implementation speci�c col-
lisions the adversary adds knowledge of con�rmed or assumed implementation
properties to the algorithmic attack. Examples include targeting particular in-
termediate states of the implementation or applying a special leakage model.
Clusters are built according to such a special implementation speci�c intermedi-
ate state or clusters are merged according to such a special leakage model. Next
we present examples for both cases.

3.1 Algorithmic Collisions

Data Encryption Standard. We revisit collisions in isolated S-boxes [22]. The
S-box function is 4−to−1, i.e., it maps four inputs to one output. For each S-box,
the collision function fk = Si maps a group of four values of z ∈ {0, . . . , 26 − 1}
to one cluster of fk(z) ∈ {0, . . . , 24 − 1}. As z = x ⊕ k the mapping depends
on subkey k given known x. Alternatively, the 4-bit output di�erential of the
�rst round can be used as a collision function that evolves from tracking the
four output bits of the active S-box to the R-register in the next round. For the
correct key hypothesis, up to sixteen separated clusters are expected.

Advanced Encryption Standard. An isolated AES S-box is not a collision
function because one merely obtains a permutation of cluster labels for each key
guess. Targeting only r-bit (1 ≤ r < 8) of an S-box outcome, however, is an
applicable many-to-one collision function, at the cost of loosing predicted bits of
the full intermediate result.

Collisions also occur in a single output byte after the MixColumns trans-
formation as described in [21], because this is a 224 − to − 1 collision function.
For the purpose of saving computation time, an attack with two measurement
series using two �xed input bytes to each MixColumns transformation is ad-
vantageous, if applicable. This leads to a 28 − to − 1 collision function. Let b00
be the �rst output byte of MixColumns, (x22, x33) the two �xed input bytes, S
the AES S-box, and (k00, k11) the target for key recovery. Then we have b00 =
02·S(x00⊕k00)⊕03·S(x11⊕k11)⊕c, where constant c = S(x22⊕k22)⊕S(x33⊕k33).
Without loss of generality we assume c = 0 and label clusters with the value
of b00, as there exists a bijective mapping from b00 to the correct cluster label
b00⊕c. Similarly, the second measurement series can be used to recover the other
two key bytes.

3.2 Implementation Speci�c Collisions

Examples for this type of collisions include hardware and software implemen-
tations at which some internal registers are used multiple times, e.g., in sub-
sequent rounds of an algorithm or during subsequent processing of functional
units. Hereby, internal collisions can be caused for intermediate results that are
not provided in an algorithmic description.



AES-128 hardware architecture. In Appendix A we describe an AES-128
hardware architecture that leaks such implementation dependent collisions and
that we analyze in the experimental part of this paper. The architecture is
very compact and suitable for smartcards and other wireless applications, which
makes the attacks extremely relevant.

Let xi ∈ {0, 1}8 (i ∈ {0, 1, . . . , 15}) denote the plaintext byte. Accordingly,
let ki ∈ {0, 1}8 be the corresponding AES key byte. By S we denote the AES
S-box. The targeted intermediate result is

∆ii′ = S(xi ⊕ ki)⊕ S(xi′ ⊕ ki′) (1)

with i 6= i′. This intermediate result ∆ii′ is, e.g., given by the di�erential of two
adjacent data cells in the studied AES hardware architecture. ∆ii′ depends on
two 8-bit inputs to the AES S-box (xi ⊕ ki, xi′ ⊕ ki′) and that is crucial for the
new attacks. For the key-recovery attack we consider the pairs of known plaintext
(xi, xi′) and �xed unknown subkey (k◦i , k

◦
i′). Our attack is enabled because (1)

is the result of a 28-to-1 collision function.
Using the general approach one evaluates the clustering quality for 216 key

hypotheses, but for this particular internal collision a special approach is feasible:
for ∆ii′ = 0 equation (1) simpli�es to

S(xi ⊕ ki) = S(xi′ ⊕ ki′)⇒ xi ⊕ ki = xi′ ⊕ ki′ ⇒ ki ⊕ ki′ = xi ⊕ xi′ .

This leads to the observation that for all key guesses (ki,ki′) satisfying ki⊕ki′ =
k◦i ⊕k◦i′ the elements assigned to the class ∆ii′ = 0 are the same as in the correct
assignment (caused by (k◦i , k

◦
i′)). This allows for a two-step key recovery attack:

1. Determine the correct xor-di�erence k◦i ⊕ k◦i′ based on 28 hypotheses.
2. Determine the correct pair (k◦i , k

◦
i′) based on 28 hypotheses.

We illustrate these steps in Sect. 4.2. As a result of this approach, the complexity
of the key search is reduced from 216 to 29 hypotheses.

Note that this strategy is not exclusively accredited to DCA. This imple-
mentation speci�c attack strategy can also be applied using standard DPA tech-
niques.

4 Experimental Results

In this section we describe the setups for our experiments, experimental settings
and provide results. The empirical evidence shows that the proposed attacks are
practical and lead to a successful key recovery.

4.1 DES in Software

Our experimental platform is an unprotected software implementation of the
DES running on an Atmel AVR microcontroller. The code executes in constant
time and the µC is clocked at about 4MHz. For our �rst experiments we used a set



of N = 100 power traces in. The samples represent the voltage drop over a 50Ω
shunt resistor inserted in the µC's ground line. Power consumption was sampled
at 200 MS/s during the �rst two rounds of DES encryption with a constant
key k◦ = (k◦0 , . . . , k

◦
7). The plaintexts xn = (x0n, . . . , x7n) were randomly chosen

from a uniform distribution to simulate a known plaintext scenario. The targeted
4-bit intermediate result is S1(x̃1 ⊕ k̃1) where x̃1 and k̃1 denote respectively the
six relevant bits of plaintext and roundkey entering the �rst DES S-box (S1)
in the �rst round. Figure 1 shows results of our cluster analysis for the criteria
JSOS , JSSE , JV AR and JSTT . The plots show that all four criteria allow recovery

Fig. 1. Results of Cluster Analysis with JSOS (top, left), JSSE (top, right), JV AR

(bottom, left) and JSTT (bottom,right) when using 26 key hypotheses on the subkey
k̃1 of S1. Results for the correct key guess are plotted in black, all other in gray.

of k̃1 but also indicate that JV AR and JSTT are preferable. Furthermore, Figure 1
nicely illustrates the complementary character of JSOS and JSSE .

Multivariate DPA. So far, integration of power or di�erential traces over
small time intervals was proposed for the re-construction of a DPA signal in
the presence of hardware countermeasures [10] and as a compression technique
for measurement traces [18]. More generally, DPA can be extended to capture
multiple well-separated leakage signals in two ways. The �rst approach applies
standard DPA statistics and combines the (absolute) scores of multiple leakage
signals afterwards. The second approach is to �rst combine, e.g. sum up, the mea-
surement samples from multiple selected time instants before running univariate
statistics. Both approaches were tested for CPA and yielded virtually identical
results if the second approach takes positive and negative side-channel contri-
butions at the di�erent points in time into account, e.g. samples with positive
correlation are added and samples with negative correlation are subtracted. As
long as the number of instants is small, all possible combinations for combining
the leakage at these instants can be tested exhaustively if the right combination
is unknown.



Univariate vs. Multivariate Analysis. We study the performance of DCA
for univariate and multivariate statistics. To allow a fair comparison we also
provide results for univariate and multivariate CPA. Preliminary experiments
indicated that the least signi�cant bit (LSB) of S1(x̃1⊕ k̃1) is a preferable target
for attacks. We thus focus on attacks using two clusters, i.e. w = 1, targeting
the LSB. Additionally, we identi�ed three points in time (A,B,C) when the LSB
leaks most.

For this analysis we used 5000 measurements in one hundred sets of �fty
measurements. For each attack we used N = 15, 20, 25, . . . , 50 measurements
and repeated the attack one hundred times. We report the percentage of at-
tack scenarios where an attack was successful, i.e. where the attack outputs the
correct subkey value.

Table 2 shows the success rates for the various scenarios. Comparing univari-

Table 2. Success rates in % for various univariate and multivariate attack scenarios.

Test Model Point in time N=15 N=20 N=25 N=30 N=35 N=40 N=45 N=50

CPA LSB overall 3 15 37 62 84 95 96 98
CPA LSB A 42 64 69 77 89 93 94 96
CPA LSB B 64 77 83 93 96 98 98 99
CPA LSB C 17 28 29 38 50 55 59 65

JSSE LSB overall 3 15 37 62 84 95 96 98
JSSE LSB A 42 64 70 77 89 93 94 96
JSSE LSB B 64 78 82 93 96 98 98 99
JSSE LSB C 18 28 31 38 50 56 59 65

CPA LSB AB 70 85 90 96 99 100 100 100
JSSE LSB AB 70 83 91 97 99 100 100 100
CPA LSB ABC 76 90 96 99 100 100 100 100
JSSE LSB ABC 78 94 96 99 100 100 100 100

ate CPA and DCA with the JSSE criterion we observe that the success rates
are very similar in all scenarios. The third block of results in the table shows
success rates for DCA and CPA still targeting only the LSB but exploiting the
multivariate leakage at points A,B, and C. For multivariate CPA, the measure-
ment values were summed up, taking into account the respective signs of the
correlation at each point in time, before computing correlation coe�cients. Both
multivariate attacks perform also very similar. It is clear that multivariate at-
tacks are superior to univariate attacks, but they usually require knowledge of
the instants A,B, and C.

4.2 AES in Hardware

Our experimental platform is a prototype chip which implements an 8051-compa-
tible µC with AES-128 co-processor in 0.13 µm sCMOS technology without
countermeasures. The architecture of the AES co-processor, which is the target



of our attacks, is discussed in detail in Appendix A. The susceptibility of the chip
towards templates [9, 13], stochastic methods [20, 13], DPA and rank correlation
has already been analyzed in [2].

For our experiments we obtained a set of N = 50 000 power traces in. The
samples represent the voltage drop over a 50Ω resistor inserted in the dedicated
core VDD supply. Power consumption was sampled at 2 GS/s during the �rst
round of AES-128 encryption with a constant key k◦ = (k◦0 , . . . , k

◦
15). The plain-

texts xn = (x0n, . . . , x15n) were randomly chosen from a uniform distribution.
In all following examples we focus on the neighboring data cells C0,2 and

C0,3 of Figure 4 that represent AES state bytes 8 and 12, respectively. How-
ever, we point out that all key bytes can be attacked in the same way since all
corresponding state bytes enter the MixColumns circuit at some time.

DCA. We showed in Sect. 3.2 that clustering of the power consumption values
caused by the di�erential ∆ii′ has three interesting properties. First, for the cor-
rect hypotheses (k8, k12) on both involved key bytes all power traces are assigned
to clusters ∆ii′ correctly which maximizes (minimizes) the cluster statistic Jk

over all clusters. Second, for a wrong hypothesis (k8, k12) where the xor-di�erence
k8 ⊕ k12 is correct (i.e. equal to k◦8 ⊕ k◦12) power traces are assigned to cluster
∆ii′ = 0 correctly and uniformly at random to all other clusters ∆ii′ 6= 0. Third,
for a wrong hypothesis (k8, k12) power traces are assigned to all clusters ∆ii′

uniformly at random. The second property enables our two step attack.
The results reported in the remainder are based on either N1 = 50 000 or

N2 = 10 000 measurements. We restrict to univariate analysis and computed
JSOS , JSSE , JV AR and JSTT .

Step 1: Detecting (k8, k12) with the correct xor-di�erence. In order to
detect a hypothesis with the correct xor-di�erence one has to decide whether the
cluster ∆ii′ = 0 is di�erent from all other clusters. We thus merge the clusters
∆ii′ 6= 0 to analyze them as one single cluster. The statistic Jk is then evaluated
for the two cluster case, ∆ii′ = 0 and the union of the remaining clusters.

We sort N1 measurements into two clusters ∆ii′ = 0 and ∆ii′ 6= 0 and
evaluate the cluster criterion functions for the two cluster case. Interestingly,
for this approach it does not matter whether one applies the Hamming distance
model or not, since in both cases the same measurements are assigned to∆ii′ = 0
and ∆ii′ 6= 0. Figure 2 shows the resulting cluster criteria. One can observe that
the criteria JSOS and JSST yield signals at the points in time when the collision
occurs.

Step 2: Detecting the correct key pair. We search all pairs (k8, k12) with
the now known xor-di�erence k◦8 ⊕ k◦12. Detecting the correct pair is easier than
detecting a pair with the correct xor-di�erence, because di�erences of many
clusters yield stronger side-channel signals. We can therefore work with fewer
measurements which speeds up the analysis (note that the measurements from



Fig. 2. Results of Cluster Analysis with JSOS (top, left), JSSE (top, right), JV AR

(bottom, left) and JSTT (bottom,right) when using 28 hypotheses on the pair (k8, k12).
Results for the correct xor-di�erence are plotted in black, all other in gray.

step 1 are re-used). For each hypothesis we sort N2 measurements into 256
clusters and evaluate the cluster criteria. Figure 3 shows the cluster criteria for
this setting (without any power model).

We observe that all criterion functions are able to identify the correct guess.
We also evaluated the cluster criteria under the assumption of the Hamming
distance model, where we sorted the measurements into nine clusters according
to the Hamming weight of ∆ii′ . The results are similar and we do not present
them in detail. The results demonstrate the feasibility of our approach on both
platforms and show that it works with or without a power model. Among the
cluster criteria that we considered JSTT gives in general the best results but is
particularly error-prone when very few measurements are used.

Fig. 3. Results of Cluster Analysis with JSOS (top, left), JSSE (top, right), JV AR

(bottom, left) and JSTT (bottom,right) when using 28 hypotheses on the pair (k8, k12).
Results for the correct key guess are plotted in black, all other in gray.



Complexity. For the two-step attack, approximately 50 000 measurements were
needed to reveal the correct two key bytes and 2 ·28 key hypotheses were tested.
The general DCA approach tests 216 key hypotheses and the threshold for suc-
cessful key recovery is approximately at 5000 measurements. As result, our spe-
cial attack strategy for the AES hardware implementation allows to reduce the
number of hypotheses for which cluster criterion functions have to be computed
by a factor of 27 at the cost of a tenfold increase of measurements.

5 Conclusion

We propose a new technique for side-channel key recovery based on cluster anal-
ysis and detection of internal collisions. The technique is broader in applications
than previously known DPA attacks. It has obvious advantages when more than
two clusters are used. In particular DCA does not require but can bene�t from
a good leakage model and it is inherently multivariate. DCA inspires a simple
extension of standard DPA to multivariate analysis that is also included in this
contribution. While previous works focus on internal collisions that are mainly
results of algorithmic properties, we additionally consider implementation spe-
ci�c collisions. Our approach is con�rmed in practice on two platforms: an AVR
microcontroller with implemented DES algorithm and an AES hardware module.
This is the �rst work demonstrating the feasibility of internal collision attacks
on highly parallel hardware platforms. Furthermore we present a new attack
strategy for the targeted AES hardware module.
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A The AES Hardware Architecture

A similar implementation is described in [17]. The module includes the following
parts: data unit, key unit, and interface. The most important part is the data unit
(see Figure 4), which includes the AES operation. It is composed of 16 data cells
(Ci,j , where i, j ∈ {0, 1, 2, 3}) and four S-Boxes. A data cell consists of �ip-�ops
(able to store 1 byte of data) and some combinational logic (xors gates) in order
to perform AddRoundKey operations. It has the ability to shift data vertically
and horizontally, which is the feature exploited in our attacks. Load data is done
by shifting the input data column by column into the registers of the data cells.
The initial AddRoundKey transformation is performed in the fourth clock cycle
together with the load of the last column. To calculate one round, the bytes
are rotated vertically to perform the S-box and the ShiftRows transformation
row by row. In the �rst clock cycle, the S-Box transformation starts only for the
fourth row. Because of pipelining the result is stored after two clock cycles in the
�rst row. S-boxes and the ShiftRows transformations can be applied to all 16
bytes of the state within �ve clock cycles due to pipelining. The S-Boxes in the
AES module are implemented by using composite �eld arithmetic as proposed
by Wolkerstorfer et al. [26] following the original idea of Rijmen [1].

Fig. 4. The architecture of the AES module.


