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Abstract. Algebraic side-channel attacks have been recently introduced
as a powerful cryptanalysis technique against block ciphers. These at-
tacks represent both a target algorithm and its physical information
leakages as an overdefined system of equations that the adversary tries
to solve. They were first applied to PRESENT because of its simple alge-
braic structure. In this paper, we investigate the extent to which they can
be exploited against the AES Rijndael and discuss their practical speci-
ficities. We show experimentally that most of the intuitions that hold for
PRESENT can also be observed for an unprotected implementation of
Rijndael in an 8-bit controller. Namely, algebraic side-channel attacks can
recover the AES master key with the observation of a single encrypted
plaintext and they easily deal with unknown plaintexts/ciphertexts in
this context. Because these attacks can take advantage of the physical
information corresponding to all the cipher rounds, they imply that one
cannot trade speed for code size (or gate count) without affecting the
physical security of a leaking device. In other words, more intermediate
computations inevitably leads to more exploitable leakages. We analyze
the consequences of this observation on two different masking schemes
and discuss its impact on other countermeasures. Our results exhibit
that algebraic techniques lead to a new understanding of implementa-
tion weaknesses that is different than classical side-channel attacks.

1 Introduction

Template attacks [9] are usually considered as the most powerful type of side-
channel attacks and can be viewed as divided in two distinct phases. First, an
adversary profiles the device that he targets. That is, he builds a probabilistic
model for the leakages of this device, usually referred to as templates. Then in
a second phase, the adversary uses these templates to compare key-dependent
predictions of the leakages with actual measurements. By repeating successive
measurements and comparisons, he can eventually identify the secret data that
is manipulated by the leaking implementation. This key recovery is generally
performed using a divide-and-conquer strategy, recovering small pieces of the
key one by one. Following, this description, an important practical question in
template attacks is to determine which templates to build. For example, one can
decide to profile key bits directly or to profile intermediate operations occurring
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in a cryptographic implementation. But once templates have been built, it also
remains to determine which information to extract from the leaking device. Most
side-channel attacks in the literature directly recover key bytes. In this paper,
we tackle the question to know whether it is necessary to extract such a precise
information or if extracting some function of the intermediate values in a cryp-
tographic computation (that is easier to guess with the side-channels than key
bytes) can lead to a successful cryptanalysis with smaller data complexity.

As a matter of fact, this question is not new and several papers already dealt
with very similar issues. Most notably, collision attacks such as, e.g. [4, 5, 18, 24,
25] don’t use the side-channels to recover key bytes. They rather detect pairs
of plaintexts giving rise to similar leakages for some intermediate values in the
target algorithm. Then, in an offline cryptanalysis step, they use these collisions
to recover the complete block cipher key. More generally, papers such as [3, 7, 15]
also combine the side-channel leakages with black box (differential, impossible
differential, square) cryptanalysis techniques. Still, and as classical side-channel
attacks, these attacks mainly exploit the information provided by the first block
cipher rounds, where the diffusion is not yet complete. Very recently, a new
type of side-channel attacks, denoted as algebraic, has been introduced in order
to get rid of this limitation [23]. These attacks (inspired from [10]) first write
the target block cipher as a system of quadratic (or cubic, . . . ) equations. But
since solving such systems of equations is generally too hard, they additionally
add the physical information leakages provided by any intermediate computa-
tion during the encryption process to the system. In the previously investigated
example of the block cipher PRESENT implemented in an 8-bit controller, this
allowed to recover the cipher key with the observation of a single encryption.
Compared to classical side-channel attacks, algebraic techniques bring two in-
teresting features. First, they can take advantage of the information leakages in
all the cipher rounds. Second, they can exploit any type of information leakage.
In other words, whatever information about the intermediate computations can
be added to the system and the more intermediate computations (i.e. clock cy-
cles, generally), the more powerful the key recoveries. Hence, they can be viewed
as an extreme version of template attacks in which more intermediate leakage
points are targeted but less information need to be recovered from them.

The contributions of this paper are threefold. Since algebraic attacks have
first been applied to the block cipher PRESENT, due to its simple algebraic
structure, it is interesting to evaluate if a more conservative cipher would lead
to significantly different results. Hence, we follow the ideas of [23] and apply them
to the AES Rijndael. We show that algebraic attacks are still applicable in this
context, but also exhibit an increase in the attacks time complexity. Second, we
analyze the security of two different masking schemes and show how algebraic
attacks modify previous intuitions (e.g. more mask bits do not always imply
more security anymore). Eventually, we discuss the influence of different design
choices and countermeasures in view of the new algebraic techniques.
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2 Algebraic side-channel attacks

A detailed description of algebraic side-channel attacks is given in [23]. In this
paper, we aim to evaluate the impact of various parameters on their effectiveness
and to apply them to a practical implementation of the AES Rijndael. Hence,
this section only provides a high level description of the different attack phases.

2.1 Offline phase 1: building the system of equations

The goal of this first phase is to transform the AES into a big system of low
degree boolean equations. In this system, the key bits appear as variables in such
a way that solving the system is equivalent to recovering them. In this paper, we
exploit the techniques presented in [2] to build our system of equations. In the
case of the AES Rijndael with 128-bit plaintext and key, it results in a system
of approximately 18 000 equations in 10 000 variables (27 000 monomials).

2.2 Online phase: extracting the physical information

Since directly solving the system of equations representing the AES Rijndael is
generally too hard with present techniques, the idea of algebraic side-channel at-
tacks is to feed this system with additional information. Quite naturally, physical
leakages are very good candidates for this additional information. As detailed in
the introduction of this paper, the issue is then to decide what to extract from
the target implementation (a somewhat arbitrary decision). The more physical
information extracted, the easier the solving and the more interesting the alge-
braic techniques compared to standard DPA. Therefore, it yields two questions:

Which intermediate operations to target? This question mainly depends
on the target implementation. For example, our following experiments consider
the AES Rijndael with a 128-bit master key in an 8-bit PIC microcontroller. In
this context, SubBytes will generally be implemented as a 256-byte table lookup
and MixColumn will exploit the description of [13] in which it is implemented
with four 256-byte table lookups and 9 XOR operations (giving 13 potential leak-
age points). It is therefore natural to profile the target device in such a way that
the leakages corresponding to all these intermediate computations (additionally
considering the key additions) are exploited by the adversary.

Which information to recover from each target operation? Once the
target operations have been decided by the adversary, it remains to determine
what to learn about them. This again depends on the target device (and on
countermeasures that could possibly be included to the implementation). For
example, an unprotected implementation of the AES Rijndael in the PIC is such
that for each of the previously mentioned operations, the output data has to
commute on an 8-bit bus. During this clock cycle, the leakages will be highly
correlated to the Hamming weight of this output data. Hence, it is again natural
to perform a template attack such that these Hamming weights will be recovered.
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Importantly, algebraic side-channel attacks exploit the leakages of several
target operations at once. It implies that one needs to recover a correct infor-
mation about all these operations at once. Indeed, introducing false information
into the system of equations will generally lead to inconsistencies and prevent
its proper solving. Fortunately, this can be achieved for our target device. As
an illustration, the left part of Figure 1 illustrates the leakage traces of differ-
ent values commuting on the PIC bus and their mean for different Hamming
weights. In the right part of the same figure, we plotted the probability that the
Hamming weight of large amounts of target bytes can be recovered with high
confidence, possibly exploiting simple error detection (ED) and likelihood rating
(LR) techniques (NEDLR means that we do not use these techniques).

– Error detection consists in rejecting side-channel information that gives rise
to incoherent input and output values for the S-boxes.

– Likelihood rating means that we only use a subset of all the Hamming weights
values extracted with the templates, starting with the most likely ones.

We stress the fact that all our attacks use a data complexity of q = 1. That is,
we use only the encryption of one single plaintext to perform our measurements.
This data complexity is different from the number of traces since we can some-
times repeat the same measurement. In our experiments, we use a repetition
umber of nr = 1 or 2. This is significantly different than standard DPA attacks
which usually require a much higher data complexity (typically, 10 ≤ q ≤ 100).
We see that using these techniques, roughly 200 Hamming weights can be recov-
ered with the observation of a single encrypted plaintext and that by repeating
the measurement of the same encryption, this number can be up to 700.

Fig. 1. Leakage traces, mean leakage traces and multiple byte success rate.

As previously mentioned, the implementation of the AES-128 that we attack
was profiled in such a way that we recovered the Hamming weights corresponding
to AddRoundKey (16 weights), SubBytes (16 weights) and MixColumn (4 ∗ 13
weights in our implementation of the AES). For the 10 cipher rounds, it corre-
sponds to a maximum of 788 (not always necessary) correct Hamming weights.
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It is essential to note that algebraic side-channel attacks in general could work
with totally different choices for the target operations and leakages. As a proof
of concept and because of their wide use and good connection with our target
device, we extracted Hamming weights from our power consumption traces. But
one can theoretically exploit any type of information leakage. A particularly in-
teresting open problem is to apply these attacks to advanced circuit technologies
with more complex leakage behaviors. It raises the question of how to best ex-
tract partial information that is both meaningful (i.e. allows to solve the system)
and robust (i.e. can be easily recovered with high confidence).

2.3 Offline phase 2: solving the system

Once the system of equation including the additional side-channel information is
written, it remains to attempt solving it. Different solutions have been proposed
in the literature for this purpose. The original attack of Courtois and Pieprzyk
proposed linearization techniques called XL or XSL [10]. Groebner basis-based
techniques have then been suggested as possible alternatives, e.g. in [6, 12]. Yet
another possibility is to use a SAT solver as in [11]. In this paper, we take
advantage of this last solution. It implies that the system has to be expressed as
a satisfiability problem. The satisfiability problem is the reference NP-complete
problem and is widely studied (see [14] for a survey). It consists of determining if
a boolean formula (a formula combining boolean variables, AND, OR and NOT
gates) can be “satisfied”, i.e. if it exists at least one assignment of the variables
such that the whole formula is true. Most SAT solvers require a particular type of
formula denoted as a Conjunctive Normal Form (CNF). A CNF is a conjunction
(AND) of clauses, each clause being a disjunction (OR) of literals.

In practice, we can write a CNF from our system of equations so that the
only valid assignment corresponds to the solution of the system, as detailed
in [1]. But this conversion to a boolean formula can be done in a number of
ways. For example, the substitution boxes of the AES can either be written
as non-linear boolean equations (during the first offline phase of the attack)
that are then converted into a boolean formula, or as a set of clauses that are
introduced directly into the global CNF. While the first method seems more
complex and introduces (much) more intermediate variables, it gave rise to better
results in some of our experiments. We conjecture that the SAT solver better
handles certain hard instances of the attack with some redundancy and a few
additional intermediate variables. As an illustration, the first solution gives about
120 000 clauses of 4 literal per substitution box, versus 2048 clauses of 9 literals
for the second solution. The final size of the CNF derived from the system of
equations consequently depends on the conversion strategy. To the previous S-
boxes, one has to add the linear layers (MixColumn and AddRoundKey) that
produce approximately 45 000 clauses of 4 literals per round. Eventually, the
additional side-channel information can be defined by approximately 70 000
clauses of up to 8 literals. This gives a formula containing between a minimum
of 500 000 and up to several millions of clauses of 1 to 9 literals (the SAT solver
used in our experiments [8] was not able to handle more than 5 millions of them).
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3 Attacking the AES key scheduling algorithm

Before starting the investigations of algebraic side-channel attacks against the
AES, a preliminary remark has to be made about attacks against its key schedul-
ing algorithm. Because of the relatively simple structure of the key expansion in
Rijndael, it is possible to write a system of equations only for this part of the
algorithm and to solve it successfully with (even a part of) the Hamming weights
gathered from its execution. Such attacks then closely connect to the SPA pro-
posed by Mangard in [19]. In the following, we consequently consider the more
challenging case in which round keys are pre-computed in a safe environment.

4 Attacking the AES Round functions

In this section, we assess the practicability of algebraic side-channel attacks
against the AES. For this purpose, we considered several situations. First, we at-
tacked an unprotected implementation with a known pair of plaintext/ciphertext.
Then, we studied the influence of unknown plaintexts/ciphertexts. Finally, we
considered two different masking schemes and analyzed their resistance against
algebraic attacks. Each attack exploits the observation of a single encryption
trace from which side-channel information is extracted. Additionally, the amount
of information recovered by the adversary is used as a parameter in our eval-
uations. It is measured in “number of rounds of Hamming weights”, obtained
consecutively (i.e. the adversary recovers all the Hamming weights of a few con-
secutive rounds - the chosen rounds are picked starting in the middle of the block
cipher) or randomly (i.e. the adversary recovers the same amount of Hamming
weights randomly spread over the different intermediate computations).

We first assume that no incorrect side-channel information is used (which
would lead the SAT solver to fail). Hence, the experiments in Section 4.1, and
4.2 only focus on the second part of the offline phase described in Section 2.3.
Then, in Section 4.4, we discuss the tradeoff between the applicability of this
offline phase and the online information extraction described in Section 2.2.

Note that for difficult instances of the attack, the SAT solver is sometimes
unable to solve the system in a reasonable time. We consider that an attack
has failed whenever the solver has not found a solution within 3600 seconds.
Eventually, the SAT solver was running on an Intel-based server with a Xeon
E5420 processor cadenced at 2.5GHz running a linux 32-bit 2.6 Kernel.

4.1 Attacking an 8-bit device with known plaintext/ciphertext

The results of this first scenario are in Figure 2 (solid lines). Each dot is obtained
from averaging on a set of 100 independent experiments. They illustrate that the
success rate of the attacks depends heavily on whether the side-channel leakages
correspond to successive operations or not. Indeed, 3 rounds of consecutive leak-
ages (i.e. 252 Hamming weights) is enough to solve more than 95% of the cases,
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whereas 8 rounds of randomly distributed leakages only give a 60% success rate.
It is interesting to note that it is in fact the leakage of the MixColumn operation
that seems to be the most critical when solving the system. Removing some of
the Hamming weights obtained from this operation highly impacts the attack ef-
fectiveness. This can be justified by recalling that MixColumn consumes a large
amount of clock cycles in a software implementation of the AES.

Fig. 2. Success rate of the attacks against an unprotected implementation of the AES
Rijndael in function of the amount of exploited leakages. One round of side-channel
information is equivalent to 84 known Hamming weights.

We finally remark that the SAT solver can also deal with less precise leakages.
For example, if one Hamming weight cannot be determined exactly, it is possible
to consider a pair of Hamming weights including the correct one and to add this
information to the system. This context is investigated in Figure 2 (circled line).

4.2 Attacking an 8-bit device with unknown plaintext/ciphertext

The dotted lines in Figure 2 represent the results of an attack with unknown
plaintext and ciphertext. It is an interesting scenario to consider since classical
DPA attacks such as [17] would generally fail to recover keys in this context.
Intuitively, it is also a much harder case, since the plaintext and ciphertext
represent 256 unknown variables in our SAT problem. But excepted for a slight
reduction of the success rate, our results show that algebraic side-channel attacks
against the AES Rijndael are quite strongly immune against unknown inputs.
This can be understood when considering that 3 consecutive rounds of Hamming
weight are enough to recover the complete master key.
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4.3 Time complexity and attack strategies

The solving times of the SAT problem for different instances of side-channel
algebraic attacks (represented in Figure 3) seem to follow an exponential distri-
bution. It means that a small number of instances require much more effort from
the SAT solver, which may be due to the intrinsic difficulty of these instances,
but also to some poor decisions made by the SAT solver. Therefore, the question
to know if good strategies could be applied in order to better cope with this
distribution directly arises. This section brings some insights with this respect.

Fig. 3. Distribution of the solving times (8 consecutive rounds of Hamming weights).

In its basic version, the SAT solver behaves deterministically, always spend-
ing the same amount of time on the same boolean formula, for the same result.
However, it is possible to introduce randomness in the resolution process, thereby
forcing the solver to explore the search space differently. Figure 4 shows how far
the solver was able to go towards the resolution of the same SAT problem, when
launched 70 times with different random seeds. A successful run has to assign
12577 variables within 3600 seconds. The bold line in the figure shows the max-
imum number of variables that the solver was able to assign at a given time,
averaged over the 70 runs. All the other curves represent single runs. One can ob-
serve that the solving time for the same instance varies with random resolutions.
As previously, it seems to follow an exponential distribution (i.e. the probability
that a problem has not been solved after x seconds decreases exponentially in
x). Also, most of the time is spent in assigning the first 3000 variables. Once this
is done, finding the rest of the solution is almost instantaneous (this is observed
with the vertical jump of the single runs in the figure).

These results suggest that performing a serial of short random resolutions
can give better results than using a single long resolution. Unfortunately, it is
not possible to predict a priori how long the resolution will take. Hence, in order
to optimize the attack, we need to adapt the time limit in function of some
preliminary analyzes. For example, in our experiments, 90% of the resolutions
succeed in less than 100 seconds. Hence, a reasonable strategy would be to fix
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Fig. 4. Evolution of the solving for 70 random runs of the same SAT instance (8 rounds
of Hamming weights are known, randomly spread over the block cipher).

the time limit at 100 seconds (rather than 3600, originally). In this setting, most
of the attacks will succeed in a single run, and the harder instances will hopefully
be solved by another random resolution. Of course, such strategies are mainly
interesting for attacks that are successful with high probability within reasonable
time constraints, which may not always be the case in practice.

4.4 Global success rate

Figure 4.4 finally presents the global success rate of our attack, combining the
success rate of the online side-channel phase (given in Figure 1) and the success
rate of the offline computation phase (given in Figure 2). It clearly illustrates
the tradeoff between these two phases. On the one hand, the success rate of the
side-channel information extraction decreases with the quantity of information
the attacker tries to recover. On the other hand, the success rate of the algebraic
cryptanalysis increases with the quantity of information available. This implies
that for a strictly limited amount of measurements (e.g. nr = 1 in the figure),
the best global success rate does not occur for the maximum amount of Ham-
ming weights inserted into the system. Note that this global success rate could
be improved by better dealing with failures in the solving. For example, if an
inconsistency is found, it is possible to reject a few Hamming weights and try
again to solve the system, hoping that the incorrect leakages have been rejected.

4.5 Attacking masked implementations

The previous section suggests that attacking an unprotected implementation
of the AES Rijndael in an 8-bit controller is not significantly more difficult
than attacking the block cipher PRESENT in the same device in terms of data
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Fig. 5. Global success rate for an unprotected implementation, with known P, C.

complexity: both attacks succeed with the observation of a single encrypted
plaintext. Nevertheless, attacks against the AES exhibit a significantly increased
average time complexity (2.5 seconds for 31-round vs. 344 seconds for 10-round
AES). In this section, we investigate the extent to which the increased algebraic
complexity of the AES could lead to more hardly solvable systems if the target
implementation is protected with a masking scheme.

Masking is a very popular countermeasure against side-channel attacks. It
aims at rendering the power consumption of the device independent of the inter-
mediate values used by the cryptographic algorithm. This is achieved by com-
bining theses values with random “masks” internal to the cryptographic device
(hence hidden to the adversary), that vary from execution to execution. The
masks are generated at the beginning of the encryption, combined with the
plaintext and key, and propagated through the cryptosystem so that every value
transiting on the bus is a combination of the original intermediate value and
a mask. In terms of security, masking provably prevents certain types of side-
channel attacks. But it does not remove the existence of physically exploitable
leakages (since the secret data is still manipulated by the device and the cor-
rect encryption result has to be produced). In terms of cost overheads, masking
affects the performances of an implementation, mainly because the masks have
to be propagated through the encryption process in a tractable manner. For
this reason, several masking schemes have been proposed in the open literature,
trading effectiveness for more random masks (hopefully implying more security).

In the following, we focus on two proposals that we believe illustrative of the
state-of-the art countermeasures. Namely, we first focus on the efficient masking
scheme proposed by Oswald and Schramm in [20] that uses one different mask
for every plaintext byte. Then we consider the AES software implementation
resistant to power analysis attacks proposed by Herbst et al. in [16].
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1. Masking in GF(24)2. As noticed in several publications, the most difficult
part of the AES to mask is its non-linear layer. This is because for a masked
input x+m, one needs to generate a masked SubBytes such that: MSubBytes(x+
m)=SubBytes(x) +m′ with m′ an output mask that can be propagated through
the cipher rounds. The practical issue for designers is to deal with different masks
efficiently. If the same mask m is used for all the AES bytes in all the rounds,
only one MSubBytes table needs to be computed, which can be done quite easily
prior to the encryption. But this may lead to security issues because different
intermediate variables are masked with the same value. On the opposite, using a
different mask for all the AES bytes implies to recompute MSubBytes anytime an
S-box is computed, which is generally too expensive for practical applications. In
order to get rid of this limitation, [20] proposes to take advantage of the algebraic
structure of the AES S-box to deal with multiple masks efficiently. The main idea
is to represent the non-linear part of the AES S-box as a multiplicative inverse
in the composite field GF(24)2. Doing this, it is possible to compute a masked
inverse “on-the-fly” in 14 table lookup operations and 15 XOR operations (this
requires to store a total of 1024 bytes of tables in ROM).

Assuming that we can obtain the Hamming weights corresponding to all these
intermediate computations, mounting an attack is straightforward. In fact, we
can even attack each S-box (anywhere in the cipher) separately and find a so-
lution in less than one second. This simplicity is due to the large quantity of
side-channel information leaked (more than 20 Hamming weights for one substi-
tution) and the extreme simplicity of the operations between two leakage points
(one XOR or one table look-up operation). As an illustration, Figure 6 presents
the results of such an attack mounted with partial information. It turns out that
the amount of cycle makes this masked implementation even easier to target than
the original (unprotected) implementation, due to the large redundancy of its
leakages. We mention that we considered the compact representation described
in [20] and only targeted 8-bit intermediate values. But the efficient represen-
tation in the same paper would make the situation even worse, allowing 4-bit
values to be computed and observed through their Hamming weights.

2. Masking with S-box pre-computation. As previously mentioned, an-
other approach for masking the AES, is to limit the number of 8-bit masks
applied to the cipher state so that a reasonable number of masked tables can
be pre-computed. The solution proposed by [16] is to use 2 masks m and m′ for
all the S-boxes inputs and outputs and 4 additional masks (m1, m2, m3, m4) for
the MixColumn operation, resulting in only 48 random bits to generate prior
to the encryption. In practice, this scheme turned out to be quite resistant to
an algebraic side-channel attack. About 20% of the instances were solved in less
than 24 hours of computation, and the fastest solving took about 5 hours. This
is surprising, since the masking only adds 48 new variables to the problem while
providing 32 more leaked values per round. From an intuitive point of view, this
again comes back to the fact that such a masking scheme adds randomness to
the computation without too much affecting the number of clock cycles required
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Fig. 6. Attacking one masked AES S-box with partial information leakage.

to encrypt one plaintext. It also relates to the previous observation that Mix-
Column is an important source of side-channel information in our attacks and
becomes more complex because of the masking. For example, whereas the un-
protected AES leaks WH(a0 ⊕ a1) during the computation of MixColumn, the
masked version leaks WH(a0 ⊕ m1 ⊕ a1 ⊕ m2). That is, the masking doubles
the number of bytes in each Hamming weight leakage. The quantity of informa-
tion that one can extract from them is thus significantly less than that of the
unmasked implementation. Such a masking scheme in therefore better suited to
resist against an algebraic side-channel attack than [20].

5 Countermeasures

The previous section underlines that algebraic side-channel attacks shed a differ-
ent light on the security of cryptographic implementations. In general, resisting
against such attacks should follow different guidelines that we now detail:

1. Use block ciphers with high algebraic complexity.
2. Limit the number of clock cycles in the implementations (i.e. have each

elementary operation/instruction that has sufficient algebraic complexity).
3. Increase the algebraic complexity of the leakages (i.e. use large data buses,

add noise and countermeasures to the implementations).

With respect to masking in an 8-bit device, the impact of these observations has
been carefully analyzed in the previous section. In addition to the fact that [16]
seem to better resist algebraic cryptanalysis than [20], our results obviously con-
firm that one cannot mask the first/last rounds of a block cipher only. We now
discuss how the previous principles apply to practical countermeasures. First, us-
ing table-based implementations seems to be the most natural choice to improve
resistance against algebraic side-channel attacks. The AES Rijndael has nice fea-
tures with this respect (e.g. the ability to compute four S-boxes and MixColumn

12



in four 256×4-byte table lookups and three XOR operations). Although this so-
lution is not directly applicable to small devices, preliminary experiments suggest
that removing all the Hamming weights of the MixColumn operation but the 4
output ones significantly increases the resistance against algebraic side-channel
attacks (we could only attack up to 70% of the SAT instances corresponding to
an 4-round AES in this context). Hence, implementing table-based implemen-
tations in 32-bit (or larger) devices where the leakages would depend on larger
amounts of intermediate bits (32 or more) is a challenging scenario for further
investigation. Then, increasing the algebraic complexity of the leakages implies
to reduce the amount of information provided by any elementary operation. Us-
ing large buses is helpful with this respect. But other countermeasures could be
helpful: noise addition, dual-rail circuits, . . . Eventually, we mention that time
randomization would also increase the difficulty of performing the attacks, by
preventing the direct profiling of the intermediate operations.

6 Conclusion and open problems

This paper shows that algebraic side-channel attacks can be applied to the AES
Rijndael implemented in an 8-bit controller. The observation of a single leakage
trace can be sufficient to perform a complete key recovery in this context and the
attack directly applies to certain masking schemes. Our experiments also suggest
interesting scenarios where less information is available (table-based implemen-
tations, typically) and for which solving the system of equations describing the
target cipher and its leakages becomes challenging. Open problems consequently
include the investigations of advanced strategies to attack protected devices (e.g.
exploiting the leakages in a more flexible manner, dealing with errors, . . . ). In
particular, circuit technologies where the leakage models are significantly differ-
ent than Hamming weights would be interesting to evaluate.

To properly understand the impact of this result, it is important to relate it
with theoretical and practical concerns. From a purely practical point of view,
one could argue that algebraic side-channel attacks do not improve previous at-
tacks against leaking ciphers. Indeed, these attacks require to recover the leakages
corresponding to a significant amount of operations. In other words, they can
be seen as (very) high-order attacks. Hence, a first-order DPA exploiting the
leakages corresponding to as many leakage points (but for different plaintexts)
would generally succeed as well. But from a theoretical point of view, the data
complexity that is required to reach high success rates is significantly decreased.
In other words, what eventually matters from a security point of view is the num-
ber of observed plaintexts required to recover a key. The attacks in this paper
allow reaching a success rate of one with the observation of a single encrypted
plaintext (which was never the case for previous side-channel attacks we are
aware of). Even if multiple measurements have to be made (we require a maxi-
mum of one or two measurements in the present paper), they still correspond to
a unique plaintext. By exploiting the leakages in all the cipher rounds, algebraic
side-channel attacks also get rid of the computational limitations of classical
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DPA in which enumerating key candidates is necessary. Eventually, they have
an impact on the assumptions of constructions such as [21, ?]. Hence, we believe
these results have both a theoretical and practical relevance.
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