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Abstract. Most advanced security systems rely on public-key schemes
based either on the factorization or the discrete logarithm problem. Since
both problems are known to be closely related, a major breakthrough in
cryptanalysis tackling one of those problems could render a large set
of cryptosystems completely useless. The McEliece public-key scheme is
based on the alternative security assumption that decoding unknown lin-
ear binary codes is NP-complete. In this work, we investigate the efficient
implementation of the McEliece scheme on embedded systems what was
– up to date – considered a challenge due to the required storage of its
large keys. To the best of our knowledge, this is the first time that the
McEliece encryption scheme is implemented on a low-cost 8-bit AVR
microprocessor and a Xilinx Spartan-3AN FPGA.

1 Introduction

The advanced properties of public-key cryptosystems are required for many cryp-
tographic issues, such as key establishment between parties and digital signa-
tures. In this context, RSA, ElGamal, and later ECC have evolved as most pop-
ular choices and build the foundation for virtually all practical security protocols
and implementations with requirements for public-key cryptography. However,
these cryptosystems rely on two primitive security assumptions, namely the fac-
toring problem (FP) and the discrete logarithm problem (DLP), which are also
known to be closely related. With a significant breakthrough in cryptanalysis
or a major improvement of the best known attacks on these problems (i.e., the
Number Field Sieve or Index Calculus), a large number of recently employed
cryptosystems may turn out to be insecure overnight. Already the existence of
a quantum computer that can provide computations on a few thousand qubits
would render FP and DLP-based cryptography useless. Though quantum com-
puters of that dimension have not been reported to be built yet, we already
want to encourage a larger diversification of cryptographic primitives in future
public-key systems. However, to be accepted as real alternatives to conventional
systems like RSA and ECC, such security primitives need to support efficient
implementations with a comparable level of security on recent computing plat-
forms. For example, one promising alternative are public-key schemes based on
Multivariate Quadratic (MQ) polynomials for which hardware implementations
were proposed on CHES 2008 [11].

In this work, we demonstrate the efficient implementation of another public-
key cryptosystem proposed by Robert J. McEliece in 1978 that is based on coding
theory [22]. The McEliece cryptosystem incorporates a linear error-correcting
code (namely a Goppa code) which is hidden as a general linear code. For Goppa



codes, fast decoding algorithms exist when the code is known, but decoding
codewords without knowledge of the coding scheme is proven NP-complete [5].
Contrary to DLP and FP-based systems, this makes this scheme also suitable
for post-quantum era since it will remain unbroken when appropriately chosen
security parameters are used [8].

The vast majority1 of today’s computing platforms are embedded systems.
Only a few years ago, most of these devices could only provide a few hundred
bytes of RAM and ROM which was a tight restriction for application (and secu-
rity) designers. Thus, the McEliece scheme was regarded impracticable on such
small and embedded systems due to the large size of the private and public keys.
But nowadays, recent families of microcontrollers provide several hundreds of
bytes of Flash-ROM. Moreover, recent off-the-shelf hardware such as FPGAs
also contain dedicated memory blocks and Flash memories that support on-chip
storage of up to a few megabits of data. In particular, these memories can be
used to store the keys of the McEliece cryptosystem.

In this work, we present first implementations of the McEliece cryptosystem
on a popular 8-bit AVR microcontroller, namely the ATxMega192, and a Xilinx
Spartan-3AN 1400 FPGA which are both suitable for many embedded system
applications. To the best of our knowledge, no implementations for the McEliece
scheme have been proposed targeting embedded platforms. Fundamental oper-
ations for McEliece are based on encoding and decoding binary linear codes in
binary extension fields that, in particular, can be implemented very efficiently
in dedicated hardware. Unlike FP and DLP-based cryptosystems, operations on
binary codes do not require computationally expensive multi-precision integer
arithmetic what is beneficial for small computing platforms.

This paper is structured as follows: we start with a brief introduction to
McEliece encryption and shortly explain necessary operations on Goppa codes.
In Section 4, we discuss requirements and strategies to implement McEliece on
memory-constrained embedded devices. Section 5 and Section 6 describe our
actual implementations for an AVR 8-bit microprocessor and a Xilinx Spartan-
3AN FPGA. Finally, we present our results for these platforms in Section 7.

2 Previous Work

Although invented already more than 30 years ago, the McEliece encryption
scheme has never gained much attention due to its large keys and thus has not
been implemented in many products. The most recent implementation of the
McEliece scheme is due to Biswas and Sendrier [10] and presented a slightly
modified version for PCs that achieves about 83 bit security (taken the attack in
[8] into account). Comparing their implementation to other public key schemes,
it turns out that McEliece encryption can even be faster than that of RSA and
NTRU [7]. In addition to that, only few further McEliece software implemen-
tations have been published up to now and they were all designed for 32 bit
architectures [25, 26]. The more recent implementation [26] is available only as
uncommented C-source code and was nevertheless used for the open-source P2P
software Freenet and Entropy [15].

1 Already in 2002, 98% of 32-bit microprocessors in world-wide production were inte-
grated in embedded platforms.

2



Algorithm 1 McEliece Message Encryption

Input: m, Kpub = (Ĝ, t)
Output: Ciphertext c

1: Encode the message m as a binary string of length k

2: c‘← m · Ĝ
3: Generate a random n-bit error vector z containing at most t ones
4: c = c‘ + z

5: return c

Algorithm 2 McEliece Message Decryption

Input: c, Ksec = (P−1, G, S−1)
Output: Plaintext m

1: ĉ← c · P−1

2: Use a decoding algorithm for the code C to decode ĉ to m̂ = m · S
3: m← m̂ · S−1

4: return m

Hardware implementations of the original McEliece cryptosystem do not ex-
ist, except for a proof-of-concept McEliece-based signature scheme that was de-
signed for a Xilinx Virtex-E FPGA [9]. Hence, we here present the first FPGA-
based hardware and 8-bit software implementation of the McEliece public-key
encryption scheme up to date.

3 Background on the McEliece Cryptosystem

The McEliece scheme is a public key cryptosystem based on linear error-correcting
codes. The secret key is the generator matrix G of an error-correcting code with
dimension k, length n and error correcting capability t. To create a public key,
McEliece defined a random k × k-dimensional scrambling matrix S and n × n-
dimensional permutation matrix P disguising the structure of the code by com-
puting the product Ĝ = S × G × P . Using the public key Kpub = (Ĝ, t) and
private key Ksec = (P−1, G, S−1), encryption and decryption algorithms can be
given by Algorithm 1 and Algorithm 2, respectively.

Note that Algorithm 1 only consists of a simple matrix multiplication with the
input message and then distributes t random errors on the resulting code word.
Thus, the generation of random error vectors requires an appropriate random
number generator to be available on the target platform.

Decoding the ciphertext c for decryption as shown in Algorithm 2 is the
most time-consuming process and requires several more complex operations in
binary extension fields. In Section 3.1 we briefly introduce the required steps for
decoding codewords that we need to implement on embedded systems.

As mentioned in the introduction, the main caveat against the McEliece
cryptosystem is the significant size of the public and private key. The choice of
even a minimal set of security parameters (m = 10, n = 1024, t = 38, k ≥ 644)
according to [23] already translates to a size of 80.5 kByte for the public key
and at least 53 kByte for the private key (without any optimizations). However,
this setup only provides the comparable security of a 60 bit symmetric cipher.
For appropriate 80 bit security, even larger keys, for example the parameters
m = 11, n = 2048, t = 27, k ≥ 1751, are required (more details in Section 3.2).
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Many optimizations (cf. Section 4.2) of the original McEliece scheme focus
on size reduction of the public key, since the public-key has to be distributed.
Hence, a size reduction of Kpub is directly beneficial for all parties. However,
the situation is different when implementing McEliece on embedded platforms:
note that the private key must be kept secret at all times and thus should be
stored in a protected location on the device (that may be used in a potentially
untrustworthy environment). An effective approach for secret key protection is
the use of secure on-chip key memories that would require (with appropriate
security features such as prohibited memory readback) invasive attacks on the
chip to reveal the key. However, secure storage of key bits usually prove costly
in hardware so that effective strategies are required to reduce the size of the
private key to keep costs low. Addressing this issue, we demonstrate for the first
time how to use on-the-fly generation of the large scrambling matrix S−1 for the
McEliece instead of storing it in memory as in previous implementations. More
details on the reduction of the key size are given in Section 4.2.

3.1 Classical Goppa Codes

Theorem 1. Let G(z) be an irreducible polynomial of degree t over GF (2m).
Then the set

Γ (G(z), GF (2m)) = {(cα)α∈GF (2m) ∈ {0, 1}n |
∑

α∈GF (2m)

cα

z − α
≡ 0} (1)

defines a binary Goppa code C of length n = 2m, dimension k ≥ n − mt and

minimum distance d ≥ 2t+1. The set of the cα is called the support of the code.

A fast decoding algorithm exists with a runtime of n · t.

For each irreducible polynomial G(z) over GF (2m) of degree t exists a binary
Goppa code of length n = 2m and dimension k = n − mt. This code is capable
of correcting up to t errors [4] and can be described as a k ×n generator matrix
G such that C = {mG : m ∈ F k

2 } .
To encode a message m into a codeword c, represent the message m as a

binary string of length k and multiply it with the k × n matrix G.
However, decoding such a codeword r on the receiver’s side with a (possibly)
additive error vector e is far more complex. For decoding, we use Patterson’s
algorithm [24] with improvements from [29].

Since r = c + e ≡ e mod G(z) holds, the syndrome Syn(z) of a received
codeword can be obtained from Equation (1) by

Syn(z) =
∑

α∈GF (2m)

rα

z − α
≡

∑

α∈GF (2m)

eα

z − α
mod G(z) (2)

To finally recover e, we need to solve the key equation σ(z) · Syn(z) ≡ ω(z)
mod G(z), where σ(z) denotes a corresponding error-locator polynomial and
ω(z) denotes an error-weight polynomial. Note that it can be shown that ω(z) =
σ(z)′ is the formal derivative of the error-locator and by splitting σ(z) into even
and odd polynomial parts σ(z) = a(z)2 + z · b(z)2, we finally determine the
following equation which needs to be solved to determine error positions:

Syn(z)(a(z)2 + z · b(z)2) ≡ b(z)2 mod G(z) (3)

To solve Equation (3) for a given codeword r, the following steps have to be
performed:
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Algorithm 3 Decoding Goppa Codes

Input: Received codeword r with up to t errors, inverse generator matrix iG

Output: Recovered message m̂

1: Compute syndrome Syn(z) for codeword r

2: T (z)← Syn(z)−1 mod G(z)
3: if T (z) = z then

4: σ(z)← z

5: else

6: R(z)←
√

T (z) + z

7: Compute a(z) and b(z) with a(z) ≡ b(z) ·R(z) mod G(z)
8: σ(z)← a(z)2 + z · b(z)2

9: end if

10: Determine roots of σ(z) and correct errors in r which results in r̂

11: m̂← r̂ · iG {Map rcor to m̂}
12: return m̂

1. From the received codeword r compute the syndrome Syn(z) according to
Equation (2). This can also be done using simple table-lookups.

2. Compute an inverse polynomial T (z) with T (z) · Syn(z) ≡ 1 mod G(z)
(or provide a corresponding table). It follows that (T (z) + z)b(z)2 ≡ a(z)2

mod G(z).

3. There is a simple case if T (z) = z ⇒ a(z) = 0 s.t. b(z)2 ≡ z · b(z)2 · Syn(z)
mod G(z) ⇒ 1 ≡ z · Syn(z) mod G(z) what directly leads to σ(z) = z.
Contrary, if T (z) 6= z, compute a square root R(z) for the given polynomial
R(z)2 ≡ T (z) + z mod G(z). Based on a observation by Huber [19] we can
then determine solutions a(z), b(z) satisfying

a(z) = b(z) · R(z) mod G(z). (4)

Finally, we use the identified a(z), b(z) to construct the error-locator poly-
nomial σ(z) = a(z)2 + z · b(z)2.

4. The roots of σ(z) denote the positions of error bits. If σ(αi) ≡ 0 mod G(z)
with αi being the corresponding bit of a generator in GF (211), there was
an error in the position i in the received codeword that can be corrected by
bit-flipping.

This decoding process, as required in Step 2 of Algorithm 2 for message
decryption, is finally summarized in Algorithm 3.

3.2 Security Parameters

All security parameters for cryptosystems are chosen in a way to provide suf-
ficient protection against the best known attack (whereas the notion of “suffi-
cient” is determined by the requirements of an application). A recent paper [8]
by Bernstein et al. presents a state-of-the-art attack of McEliece making use of
a list decoding algorithm [6] for binary Goppa codes.

This attack reduces the binary work factor to break the original McEliece
scheme with a (1024, 524) Goppa code and t = 50 to 260.55 bit operations.
According to [8], Table 1 summarizes the security parameters for specific security
levels.
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Table 1. Security of McEliece Depending on Parameters

Security Level Parameters Size Kpub Size Ksec

(n, k, t), errors added in KBits (G(z), P, S) in KBits

Short-term (60 bit) (1024, 644, 38), 38 644 (0.38, 10, 405)
Mid-term (80 bit) (2048, 1751, 27), 27 3, 502 (0.30, 22, 2994)
Long-term (256 bit) (6624, 5129, 115), 117 33, 178 (1.47, 104, 25690)

4 Design Criteria for Embedded Systems

In this section, we discuss our assumptions, requirements and restrictions which
are required when implementing the original McEliece cryptosystem on small,
embedded systems. Target platforms for our investigation are 8-bit AVR mi-
croprocessors as well as low-cost Xilinx Spartan-3AN FPGAs. Some devices of
these platforms come with large integrated Flash-RAMs (e.g., 192 kByte and
2,112 kByte for an AVR ATxMega192 and Spartan-3AN XC3S1400AN, respec-
tively).

4.1 Requirements and Assumptions

For many embedded systems such as prepaid phones or micropayment systems,
the short life cycle or comparably low value of the enclosed product often does
not demand for very long-term security, Hence, mid-term security parameters
for public-key cryptosystems providing a comparable security to 64-80 key bits
of symmetric ciphers are often regarded sufficient (and help reducing system
costs). Hence, our implementations are designed for security parameters that
correspond to an 80 bit key size of a symmetric cipher. A second important de-
sign requirement is the processing and storage of the private key solely on-chip

so that all secrets are optimally never used outside the device. With appropriate
countermeasures to prevent data extraction from on-chip memories, an attacker
can then recover the private key only by sophisticated invasive attacks. For this
purpose, AVR µCs provide a lock-bit feature to enable write and read/write
protection of the Flash memory [2]. Similar mechanisms are also available for
Spartan-3AN FPGAs preventing configuration and Flash readback from chip
internals, e.g., using JTAG or ICAP interfaces [27]. Note that larger security pa-
rameters of the McEliece scheme are still likely to conflict with this requirement
due to the limited amount of permanent on-chip memories of today’s embedded
platforms.

Analyzing McEliece encryption and decryption algorithms (cf. Section 3.1),
the following arithmetic components are required supporting computations in
GF (2m): a multiplier, a squaring unit, calculation of square roots, and an in-
verter. Furthermore, a binary matrix multiplier for encryption and a permuta-
tion element for step 2 in Algorithm 1 are needed. Many arithmetic operations
in McEliece can be replaced by table lookups to significantly accelerate com-
putations at the cost of additional memory. For both implementations in this
work, our primary goal is area and memory efficiency to fit the large keys and
required lookup-tables into the limited on-chip memories of our embedded target
platforms.

The susceptibility of the McEliece cryptosystem to side channel attacks has
not extensively been studied, yet. However, embedded systems can always be
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subject to passive attacks such as timing analysis [20] and power/EM anal-
ysis [21]. In [28], a successful timing attack on the Patterson algorithm was
demonstrated. The attack does not recover the key, but reveals the error vector
z and hence allows for efficient decryption of the message c. Our implementations
are not susceptible to this attack due to unconditional instruction execution, e.g.,
our implementation will not terminate after a certain number of errors have been
corrected. Differential EM/power attacks and timing attacks are impeded by the
permutation and scrambling operations (P and S) obfuscating all internal states,
and finally, the large key size. Yet template-like attacks [12] might be feasible if
no further protection is applied.

4.2 Reducing Memory Requirements

To make McEliece-based cryptosystems more practical (i.e., to reduce the key
sizes), there is an ongoing research to replace the code with one that can be
represented in a more compact way.

Using a näıve approach in which the support of the code is the set of all
elements in GF (2m) in lexicographical order and both matrices S, P are totally
random, the public key Ĝ = S×G×P becomes a random n×k matrix. However,
since P is a sparse permutation matrix with only a single 1 in each row and
column, it is more efficient to store only the positions of the ones, resulting in
an array with n · m bits.

Another trick to reduce the public key size is to convert Ĝ to systematic form
{Ik | Q}, where Ik is the k × k identity matrix. Then, only the (k × (n − k))
matrix Q is published [14].

In the last step of code decoding (Algorithm 3), the k message bits out of
the n (corrected) ciphertext bits need to be extracted. Usually, this is done by a
mapping matrix iG with G × iG = Ik. But if G is in systematic form, then this
step can be omitted, since the first k bits of the corrected ciphertext corresponds
to the message bits. Unfortunately, G and Ĝ cannot both be systematic at the
same time, since then Ĝ = {Ik | Q̂} = S × {Ik | Q} × P and S would be the
identity matrix which is inappropriate for use as the secret key.

For reduction of the secret key size, we chose to generate the large scrambling
matrix S−1 on-the-fly using a cryptographic pseudo random number generator
(CPRNG) and a seed. During key generation, it must be ensured that the seed
does not generate a singular matrix S−1. Depending on the target platform and
available cryptographic accelerators, there are different options to implement
such a CPRNG (e.g. AES in counter mode or a hash-based PRNG) on embedded
platforms. However, the secrecy of S−1 is not required for hiding the secret
polynomial G(z) [14].

5 Implementation on AVR Microprocessors

In this section, we discuss our implementation of the McEliece cryptosystem
for 8-bit AVR microcontrollers, a popular family of 8-bit RISC microcontrollers
(µC) used in embedded systems. The Atmel AVR processors operate at clock
frequencies of up to 32 MHz, provide few kBytes of SRAM, up to hundreds of
kBytes of Flash program memory, and additional EEPROM or mask ROM.
For our design, we chose an ATxMega192A1 µC due to its 16 kBytes of SRAM
and the integrated crypto accelerator engine for DES and AES [2]. The crypto
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accelerator is particularly useful for a fast implementation of a CPRNG that
generates the scrambling matrix S−1 on-the-fly. Arithmetic operations in the
underlying field GF (211) can be performed efficiently with a combination of
polynomial and exponential representation. We store the coefficients of a value
a ∈ GF (211) in memory using a polynomial basis with natural order. Given an
a = a10α

10+a9α
9+a8α

8+· · ·+a0α
0, the coefficient ai ∈ GF (2) is determined by

bit i of an unsigned 16 bit integer where bit 0 denotes the least significant bit. In
this representation, addition is fast just by performing an exclusive-or operation
on 2×2 registers. For more complex operations, such as multiplication, squaring,
inversion and root extraction, an exponential representation is more suitable.
Since every element except zero in GF (211) can be written as a power of some
primitive element α, all elements in the finite field can also be represented by αi

with i ∈ Z2m−1. Multiplication and squaring can then be performed by adding
the exponents of the factors over Z2m−1 such as

c = a · b = αi · αj = αi+j | a, b ∈ GF (211), 0 ≤ i, j ≤ 2m − 2. (5)

If one of the elements equals zero, obviously the result is zero. The inverse of a
value d ∈ GF (211) in exponential representation d = αi can be obtained from

a single subtraction in the exponent d−1 = α211
−1−i with a subsequent table-

lookup. Root extraction, i.e., given a value a = αi to determine r = ai/2 is
simple, when i is even and can be performed by a simple right shift on index i.
For odd values of i, m − 1 = 10 left shifts followed by a reduction with 211 − 1
determine the square root.

To allow for efficient conversion between the two representations, we employ
two precomputed tables (so called log and antilog tables) that enable fast conver-
sion between polynomial and exponential representation. Each table consists of
2048 11-bit values that are stored as a pair of two bytes in the program memory.
Hence, each lookup table consumes 4 kBytes of Flash memory. Due to frequent
access, we copy the tables into the faster SRAM at startup time. Accessing the
table directly from Flash memory significantly reduces performance, but allows
migration to a (slightly) cheaper device with only 4 kBytes of SRAM. For multi-
plication, squaring, inversion, and root extraction, the operands are transformed
on-the-fly to exponential representation and reverted to the polynomial basis
after finishing the operation.

5.1 Generation and Storage of Matrices

All matrices as shown in Table 2 are precomputed and stored in Flash memory
of the µC. We store the permutation matrix P−1 as an array of 2048 16-bit un-
signed integers containing 11-bit indices. Matrix G is written in transposed form
to simplify multiplications (i.e., all columns are stored as consecutive words in
memory for straightforward index calculations). Additionally, arrays for the sup-
port of the code, its reverse mapping, and the precomputed inverse polynomials
(in the order as they correspond to the ciphertext bits) reside in Flash memory
as well. Since the scrambling matrix S−1 is too large to be stored in program
memory, we opted to generate it on-the-fly from an 80-bit seed, employing the
integrated DES-accelerator engine of the ATxMega as a CPRNG.

Encryption is a straightforward binary matrix-vector multiplication and does
not require field arithmetic in GF (211). However, the large public-key matrix
Kpub does not fit into the 192 kByte internal Flash memory. Hence, at least
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Table 2. Sizes of tables and values in memory including overhead for address align-
ment.

Use Name Actual Size Size in Memory

Encryption Public Key Ĝ 448,256 byte 448,512 byte

Decryption Private Key S−1 (IV only) 10 byte 10 byte
Decryption Private Key P−1 array 2,816 byte 4,096 byte

Decoding Syndrome table 76,032 byte 110,592 byte
Decoding Goppa polynomial 309 bits 56 byte
Decoding ω-polynomial 297 bits 54 byte
Decoding Log table 22,528 bits 4,096 byte
Decoding Antilog table 22,528 bits 4,096 byte

512 kByte external memory are required for storing the public key Ĝ. Note that
the ATxMega can access external memories at the same speed as internal SRAM.

Table 2 shows the requirements of precomputed tables separated by actual
size and required size in memory including the necessary 16-bit address align-
ment and/or padding.

5.2 System and Compiler Limitations

Due to the large demand for memory, we need to take care of some peculiarities
in the memory management of the AVR microcontroller. Since originally AVR
microcontrollers supported only a small amount of internal memory, the AVR
uses 16 bit pointers to access its Flash memory. Additionally, each Flash cell
comprises 16 bit of data, but the µC itself can only handle 8 bit. Hence, one
bit of this address pointer must be reserved to select the corresponding byte in
the retrieved word, reducing the maximal address range to 64 KByte (or 32K
16 bit words). To address memory segments beyond 64K, additional RAMP-
registers need to be used. Additionally, the used avr-gcc compiler internally
treats pointers as signed 16 bit integer halving again the addressable memory
space. For this reason, all arrays larger than 32 Kbyte need to be split into
multiple parts resulting in an additional overhead in the program code.

6 Implementation on Xilinx FPGAs

Since our target device is a low-cost Spartan-3 with moderate logic resources, we
only parallelized and unrolled the most time consuming parts of the algorithms
such as the polynomial multiplier and inverter. Alike the AVR implementa-
tion, we decided to implement less intensive operations of the field arithmetic
(i.e., inversion, division, squaring and square roots for single field elements over
GF (211)) using precomputed log- and antilog tables which are stored in dedi-
cated memory components (BRAM) of the FPGA (cf. Section 5.1). With such
precomputed tables being available, the number of computational units in hard-
ware can be reduced what also affects the number of required Lookup-Tables
(LUT) in the Configurable Logic Blocks (CLB) of the FPGA. However, note
that only 32 BRAMs are available on the Spartan-3AN 1400 FPGA (which is
the largest, low-cost device of its class). This limits the option to have more than
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one instance of each table for allowing parallel access (besides using the dual-
port feature of the BRAM). Hence, lookups to these tables need to be serialized
in most cases. Since the runtime of polynomial multiplication and polynomial
squaring is crucial for the overall system performance (cf. Steps 7 and 8 of Algo-
rithm 3), we opted for a parallel polynomial multiplier instead of using the log
and antilog tables as well. The polynomial multiplier consists of 27 coefficient
multipliers over GF (211) (the topmost coefficient is treated separately) of which
each coefficient multiplication is realized as logic directly in LUTs by linear com-
bination of the input bits and the field polynomial. Hence, the multiplication of a

polynomial B with a coefficient a (i.e., C = a ·B | a ∈ GF (211), B,C ∈ F [z]
G(z) ) can

be performed in a single clock cycle. All field operations, such as root extraction,
division, and inversion can be completed in 6 clock cycles using log and antilog
tables, of which two clock cycles are for the conversion to exponential representa-
tion, two are required for the corresponding operation and additional two cycles
for the reverse translation. Note that for several subsequent field computations
the conversion can be interleaved with the arithmetic operation so that only 4
cycles for each subsequent operations are required.

The remaining, time-critical component is the polynomial inverter which is
used in step 1 and step 2 of Algorithm 3, for example to compute the parity
check matrix H on-the-fly. An average of 1024 inverses need to be computed
for which we implemented the binary Extended Euclidean Algorithm (EEA)
over GF (211) in hardware. Note that each cycle of the polynomial EEA requires
exactly one coefficient division (which is realized again using the log and antilog
tables). In conclusion, the EEA is the largest component in our design (about
64%) and thus also comprises the critical path of the implementation. For the
generation of the inverse scrambling matrix S−1 on the FPGA, we implemented
a CPRNG based on the 80-bit low-footprint block cipher PRESENT. Note that
as an alternative, we store the large static table S−1 in the in-system Flash
memory of the FPGA. However, due to limitations of the serial SPI-Interface
we only can access a single bit of S−1 at a maximum frequency of 50 MHz that
significantly degrades our decryption performance.

This limitation also applies to the public-key matrix Ĝ which is required
for the encoding process during encryption. Since this matrix is too large to fit
into the 32 18 kBit BRAMs of our Spartan-3AN device, we need to store it in
Flash memory. To avoid a performance penalty due to the slow SPI interface
to the Flash, we could first load Kpub into an external DDR2-333 memory at
system startup which then can be accessed via a fast memory controller to
retrieve Kpub for encryption. With such undamped access to Kpub, we could
gain a performance speedup for encryption by a factor of 62 (1.15 ms) with
respect to loading Kpub directly from Flash (71.44 ms). We successfully verified
this approach by testing our implementation on a test board providing external
SRAM (however, no DDR2 memory). The interface between SRAM and FPGA
is realized as 16 bit bus, clocked at 100 MHz and two clock cycles access time
per read.

Due to the limited logic on our FPGA, we thus opted for an individual device
configuration for encryption and decryption, of which one can be selected during
system startup. Both configurations can be stored within the large, internal Flash
memory of the FPGA. Using the multi-boot features of Spartan-3 devices, the
corresponding configuration can also be loaded by the FSM (using the internal
SPI-interface) during runtime whenever switching between encryption and de-
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Fig. 1. McEliece implementation on Spartan-3AN FPGA

cryption is necessary. The McEliece implementation (decryption configuration)
for the Spartan-3AN FPGA is depicted in Figure 1.

7 Results

We now present the results for our two McEliece implementations providing
80 bit security (n = 2048, k = 1751, t = 27) for the AVR 8-bit microcontroller
and the Xilinx Spartan-3AN FPGA. We report performance figures for the
ATxMega192A1 obtained from the avr-gcc compiler v4.3.2 and a Xilinx Spartan-
3AN XC3S1400AN-5 FPGA using Xilinx ISE 10.1. The resource requirements
for our µC design and FPGA implementation after place-and-route (PAR) are
shown in Table 3.

Table 4 summarizes the clock cycles needed for every part of the de- and
encryption routines both for the FPGA and the microcontroller implementation.

In our FPGA design, the CPRNG to generate S−1 based on the PRESENT
block cipher turns out to be a bottleneck of our implementation since the ma-
trix generation does not meet the performance of the matrix multiplication. By
replacing the CPRNG by a more efficient solution, we can untap the full per-

Table 3. Implementation results of the McEliece scheme with n = 2048, k = 1751, t =
27 on the AVR ATxMega192 µC and Spartan-3AN XC3S1400AN-5 FPGA after PAR.

Resource Encryption Decryption Available

µ
C

SRAM 512 Byte 12 kByte 16 kByte
Flash Memory 684 Byte 130.4 kByte 192 kByte
External Memory 438 kByte − −

F
P
G

A

Slices 668 (6%) 11,218 (100%) 11,264
LUTs 1044 (5%) 22,034(98%) 22,528
FFs 804 (4%) 8,977 (40%) 22,528
BRAMs 3 (9%) 20 (63%) 32
Flash Memory 4,644 KBits 4,644 KBits 16,896 Kbits
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Table 4. Performance of McEliece implementations with n = 2048, k = 1751, t = 27
on the AVR ATxMega192 µC and Spartan-3AN XC3S1400AN-5 FPGA.

Aspect ATxMega192 µC Spartan-3AN 1400

E
n
cr

yp
t. Maximum frequency 32MHz 150 MHz

Encrypt c‘ = m · Ĝ 14,404,944 cycles (7,889,200)161,480 cycles
Inject errors c = c‘ + z 1,136 cycles 398 cycles

D
ec

ry
p
ti
o
n

Maximum frequency 32MHz 85 MHz

Undo permutation c · P−1 275,835 cycles combined with Syn(z)
Determine Syn(z) 1,412,514 cycles 360,184 cycles
Compute T = Syn(z)−1 1,164,402 cycles 625 cycles

Compute
√

T + z 286,573 cycles 487 cycles
Solve Equation (4) with EEA 318,082 cycles 312 cycles
Correct errors 15,096,704 cycles 312,328 cycles

Undo scrambling m̂ · S−1 1,196,984 cycles 1,035,684/217,800* cycles

* This figure is an estimate assuming that an ideal PRNG for generation of S−1

would be available.

formance of our implementation. Table 4 also gives estimates for a PRNG that
does not incur any wait cycles due to throughput limitations.

The public-key cryptosystems RSA-1024 and ECC-P160 are assumed2 to
roughly achieve a similar margin of 80 bit symmetric security [1]. We finally
compare our results to published implementations of these systems that target
similar platforms (i.e., AVR ATMega µC and Xilinx Spartan-3 FPGAs). Note
that the figures for ECC are obtained from the ECDSA signature scheme.

Embedded implementations of other alternative public key encryption schemes
are very rare. The proprietary encryption scheme NTRUEncrypt has received
some attention. An encryption-only hardware engine of NTRUEncrypt-251-128-3
for more advanced Xilinx Virtex platform has been presented in [3]. An embed-
ded software implementation of the related NTRUSign performs one signature
on an ATMega128L clocked at 7,37 MHz in 619 ms [13]. However, comparable
performance figures of NTRU encryption and decryption for the AVR platform
are not available.

Note that all throughput figures are based on the number of plaintext bits
processed by each system and do not take any message expansion in the cipher-
text into account.

8 Conclusions

In this paper, we described the first implementations of the McEliece public-
key scheme for embedded systems using an AVR µC and a Xilinx Spartan-3AN
FPGA. Our performance results for McEliece providing 80 bit security on these
systems exceed the throughput but could not outperform comparable ECC cryp-
tosystems with 160 bit in terms of number of operations per second. However,
although our implementations still leave room for further optimizations, our

2 According to [1], RSA-1248 actually corresponds to 80 bit symmetric security. How-
ever, no implementation results for embedded systems are available for this key size.
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Table 5. Comparison of our McEliece designs with single-core ECC and RSA imple-
mentations for 80 bit security.

Method Platform Time Throughput

ms/op bits/sec

8
-b

it
µ
C

McEliece encryption ATxMega192@32MHz 450 3,889
McEliece decryption ATxMega192@32MHz 618 2,835

ECC-P160 (SECG) [17] ATMega128@8MHz 810/2031 197/7881

RSA-1024 216 + 1 [17] ATMega128@8MHz 430/1081 2,381/9,5241

RSA-1024 random [17] ATMega128@8MHz 10,990/27481 93/3731

F
P
G

A

McEliece encryption A Spartan-3AN 1400-5 1.072 1,626,5172

McEliece encryption B Spartan-3AN 1400-5 2.243 779,9483

McEliece decryption Spartan-3AN 1400-5 21.61/10.824 81,023/161,8294

ECC-P160 [16] Spartan-3 1000-4 5.1 31,200

RSA-1024 random [18] Spartan-3E 1500-5 51 20,275

NTRU encryption [3] Virtex 1000EFG860 0.005 50,876,908

1 For a fair comparison with our implementations running at 32MHz, timings at lower
frequencies were scaled accordingly.

2 These are estimates are based on the usage of an external DDR-RAM.
3 These are measurements based on our test setup with external SRAM running at

100MHz.
4 These are estimates assuming that an ideal PRNG to generate S−1 is used.

results already show better performance than RSA-1024 on the selected plat-
forms. Thus, we believe with growing memories in embedded systems, ongoing
research and further optimizations, McEliece can evolve to a suitable and quan-
tum computer-resistant alternative to RSA and ECC that have been extensively
studied for years.
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